mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-07 15:03:34 +00:00
This change introduces the nointernet() function which may be called to prevent a process and its descendants from communicating with publicly routable Internet addresses. GNU Make has been modified to always call this function. In the future Landlock Make will have a way to whitelist subnets to override this behavior, or disable it entirely. Support is available for Linux only. Our firewall does not require root access. Calling nointernet() will return control to the caller inside a new process that has a SECCOMP BPF filter installed, which traps network related system calls. Your original process then becomes a permanent ptrace() supervisor that monitors all processes and threads descending from the returned child. Whenever a networking system call happens the kernel will stop the process and wakes up the monitor, which then peeks into the child memory to read the sockaddr_in to determine if it's ok. The downside to doing this is that there can be only one supervisor at a time using ptrace() on a process. So this firewall won't be enabled if you run make under strace or inside gdb. It also makes testing tricky.
1002 lines
24 KiB
C
1002 lines
24 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
|
|
╞══════════════════════════════════════════════════════════════════════════════╡
|
|
│ Copyright 2022 Justine Alexandra Roberts Tunney │
|
|
│ │
|
|
│ Permission to use, copy, modify, and/or distribute this software for │
|
|
│ any purpose with or without fee is hereby granted, provided that the │
|
|
│ above copyright notice and this permission notice appear in all copies. │
|
|
│ │
|
|
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
|
|
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
|
|
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
|
|
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
|
|
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
|
|
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
|
|
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
|
│ PERFORMANCE OF THIS SOFTWARE. │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "libc/errno.h"
|
|
#include "libc/sysv/consts/af.h"
|
|
#include "libc/sysv/consts/at.h"
|
|
#include "libc/sysv/consts/clock.h"
|
|
#include "libc/sysv/consts/f.h"
|
|
#include "libc/sysv/consts/fd.h"
|
|
#include "libc/sysv/consts/ip.h"
|
|
#include "libc/sysv/consts/ipproto.h"
|
|
#include "libc/sysv/consts/lock.h"
|
|
#include "libc/sysv/consts/madv.h"
|
|
#include "libc/sysv/consts/map.h"
|
|
#include "libc/sysv/consts/msync.h"
|
|
#include "libc/sysv/consts/o.h"
|
|
#include "libc/sysv/consts/ok.h"
|
|
#include "libc/sysv/consts/rusage.h"
|
|
#include "libc/sysv/consts/sicode.h"
|
|
#include "libc/sysv/consts/sig.h"
|
|
#include "libc/sysv/consts/so.h"
|
|
#include "libc/sysv/consts/sock.h"
|
|
#include "libc/sysv/consts/sol.h"
|
|
#include "libc/sysv/consts/tcp.h"
|
|
#include "libc/sysv/consts/termios.h"
|
|
#include "libc/sysv/consts/w.h"
|
|
#include "libc/sysv/errfuns.h"
|
|
#include "tool/build/lib/case.h"
|
|
#include "tool/build/lib/endian.h"
|
|
#include "tool/build/lib/xlat.h"
|
|
|
|
#define XLAT(x, y) CASE(x, return y)
|
|
|
|
int XlatSignal(int x) {
|
|
switch (x) {
|
|
XLAT(1, SIGHUP);
|
|
XLAT(2, SIGINT);
|
|
XLAT(3, SIGQUIT);
|
|
XLAT(4, SIGILL);
|
|
XLAT(5, SIGTRAP);
|
|
XLAT(6, SIGABRT);
|
|
XLAT(7, SIGBUS);
|
|
XLAT(8, SIGFPE);
|
|
XLAT(9, SIGKILL);
|
|
XLAT(10, SIGUSR1);
|
|
XLAT(11, SIGSEGV);
|
|
XLAT(12, SIGUSR2);
|
|
XLAT(13, SIGPIPE);
|
|
XLAT(14, SIGALRM);
|
|
XLAT(15, SIGTERM);
|
|
XLAT(17, SIGCHLD);
|
|
XLAT(18, SIGCONT);
|
|
XLAT(21, SIGTTIN);
|
|
XLAT(22, SIGTTOU);
|
|
XLAT(24, SIGXCPU);
|
|
XLAT(25, SIGXFSZ);
|
|
XLAT(26, SIGVTALRM);
|
|
XLAT(27, SIGPROF);
|
|
XLAT(28, SIGWINCH);
|
|
XLAT(29, SIGIO);
|
|
XLAT(19, SIGSTOP);
|
|
XLAT(31, SIGSYS);
|
|
XLAT(20, SIGTSTP);
|
|
XLAT(23, SIGURG);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
|
|
int UnXlatSignal(int x) {
|
|
if (x == SIGHUP) return 1;
|
|
if (x == SIGINT) return 2;
|
|
if (x == SIGQUIT) return 3;
|
|
if (x == SIGILL) return 4;
|
|
if (x == SIGTRAP) return 5;
|
|
if (x == SIGABRT) return 6;
|
|
if (x == SIGBUS) return 7;
|
|
if (x == SIGFPE) return 8;
|
|
if (x == SIGKILL) return 9;
|
|
if (x == SIGUSR1) return 10;
|
|
if (x == SIGSEGV) return 11;
|
|
if (x == SIGUSR2) return 12;
|
|
if (x == SIGPIPE) return 13;
|
|
if (x == SIGALRM) return 14;
|
|
if (x == SIGTERM) return 15;
|
|
if (x == SIGCHLD) return 17;
|
|
if (x == SIGCONT) return 18;
|
|
if (x == SIGTTIN) return 21;
|
|
if (x == SIGTTOU) return 22;
|
|
if (x == SIGXCPU) return 24;
|
|
if (x == SIGXFSZ) return 25;
|
|
if (x == SIGVTALRM) return 26;
|
|
if (x == SIGPROF) return 27;
|
|
if (x == SIGWINCH) return 28;
|
|
if (x == SIGIO) return 29;
|
|
if (x == SIGSTOP) return 19;
|
|
if (x == SIGSYS) return 31;
|
|
if (x == SIGTSTP) return 20;
|
|
if (x == SIGURG) return 23;
|
|
return 15;
|
|
}
|
|
|
|
int UnXlatSicode(int sig, int code) {
|
|
if (code == SI_USER) return 0;
|
|
if (code == SI_QUEUE) return -1;
|
|
if (code == SI_TIMER) return -2;
|
|
if (code == SI_TKILL) return -6;
|
|
if (code == SI_MESGQ) return -3;
|
|
if (code == SI_ASYNCIO) return -4;
|
|
if (code == SI_ASYNCNL) return -60;
|
|
if (code == SI_KERNEL) return 0x80;
|
|
if (sig == SIGCHLD) {
|
|
if (code == CLD_EXITED) return 1;
|
|
if (code == CLD_KILLED) return 2;
|
|
if (code == CLD_DUMPED) return 3;
|
|
if (code == CLD_TRAPPED) return 4;
|
|
if (code == CLD_STOPPED) return 5;
|
|
if (code == CLD_CONTINUED) return 6;
|
|
return -1;
|
|
}
|
|
if (sig == SIGTRAP) {
|
|
if (code == TRAP_BRKPT) return 1;
|
|
if (code == TRAP_TRACE) return 2;
|
|
return -1;
|
|
}
|
|
if (sig == SIGSEGV) {
|
|
if (code == SEGV_MAPERR) return 1;
|
|
if (code == SEGV_ACCERR) return 2;
|
|
return -1;
|
|
}
|
|
if (sig == SIGFPE) {
|
|
if (code == FPE_INTDIV) return 1;
|
|
if (code == FPE_INTOVF) return 2;
|
|
if (code == FPE_FLTDIV) return 3;
|
|
if (code == FPE_FLTOVF) return 4;
|
|
if (code == FPE_FLTUND) return 5;
|
|
if (code == FPE_FLTRES) return 6;
|
|
if (code == FPE_FLTINV) return 7;
|
|
if (code == FPE_FLTSUB) return 8;
|
|
return -1;
|
|
}
|
|
if (sig == SIGILL) {
|
|
if (code == ILL_ILLOPC) return 1;
|
|
if (code == ILL_ILLOPN) return 2;
|
|
if (code == ILL_ILLADR) return 3;
|
|
if (code == ILL_ILLTRP) return 4;
|
|
if (code == ILL_PRVOPC) return 5;
|
|
if (code == ILL_PRVREG) return 6;
|
|
if (code == ILL_COPROC) return 7;
|
|
if (code == ILL_BADSTK) return 8;
|
|
return -1;
|
|
}
|
|
if (sig == SIGBUS) {
|
|
if (code == BUS_ADRALN) return 1;
|
|
if (code == BUS_ADRERR) return 2;
|
|
if (code == BUS_OBJERR) return 3;
|
|
if (code == BUS_MCEERR_AR) return 4;
|
|
if (code == BUS_MCEERR_AO) return 5;
|
|
return -1;
|
|
}
|
|
if (sig == SIGIO) {
|
|
if (code == POLL_IN) return 1;
|
|
if (code == POLL_OUT) return 2;
|
|
if (code == POLL_MSG) return 3;
|
|
if (code == POLL_ERR) return 4;
|
|
if (code == POLL_PRI) return 5;
|
|
if (code == POLL_HUP) return 6;
|
|
return -1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int XlatSig(int x) {
|
|
switch (x) {
|
|
XLAT(0, SIG_BLOCK);
|
|
XLAT(1, SIG_UNBLOCK);
|
|
XLAT(2, SIG_SETMASK);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
|
|
int XlatRusage(int x) {
|
|
switch (x) {
|
|
XLAT(0, RUSAGE_SELF);
|
|
XLAT(-1, RUSAGE_CHILDREN);
|
|
XLAT(1, RUSAGE_THREAD);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
|
|
int XlatSocketFamily(int x) {
|
|
switch (x) {
|
|
XLAT(0, AF_UNSPEC);
|
|
XLAT(1, AF_UNIX);
|
|
XLAT(2, AF_INET);
|
|
default:
|
|
errno = EPFNOSUPPORT;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int UnXlatSocketFamily(int x) {
|
|
switch (x) {
|
|
XLAT(AF_UNSPEC, 0);
|
|
XLAT(AF_UNIX, 1);
|
|
XLAT(AF_INET, 2);
|
|
default:
|
|
return x;
|
|
}
|
|
}
|
|
|
|
int XlatSocketType(int x) {
|
|
switch (x) {
|
|
XLAT(1, SOCK_STREAM);
|
|
XLAT(2, SOCK_DGRAM);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
|
|
int XlatSocketFlags(int flags) {
|
|
unsigned res = 0;
|
|
if (flags & 0x080000) res |= SOCK_CLOEXEC;
|
|
if (flags & 0x000800) res |= SOCK_NONBLOCK;
|
|
return res;
|
|
}
|
|
|
|
int XlatSocketProtocol(int x) {
|
|
switch (x) {
|
|
XLAT(0, 0);
|
|
XLAT(6, IPPROTO_TCP);
|
|
XLAT(17, IPPROTO_UDP);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
|
|
int XlatSocketLevel(int level) {
|
|
switch (level) {
|
|
XLAT(0, SOL_IP);
|
|
XLAT(1, SOL_SOCKET);
|
|
XLAT(6, SOL_TCP);
|
|
XLAT(17, SOL_UDP);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
|
|
int XlatSocketOptname(int level, int optname) {
|
|
if (level == SOL_SOCKET) {
|
|
switch (optname) {
|
|
XLAT(1, SO_DEBUG);
|
|
XLAT(2, SO_REUSEADDR);
|
|
XLAT(3, SO_TYPE);
|
|
XLAT(4, SO_ERROR);
|
|
XLAT(5, SO_DONTROUTE);
|
|
XLAT(6, SO_BROADCAST);
|
|
XLAT(7, SO_SNDBUF);
|
|
XLAT(8, SO_RCVBUF);
|
|
XLAT(9, SO_KEEPALIVE);
|
|
XLAT(13, SO_LINGER);
|
|
XLAT(15, SO_REUSEPORT);
|
|
XLAT(18, SO_RCVLOWAT);
|
|
XLAT(19, SO_SNDLOWAT);
|
|
XLAT(30, SO_ACCEPTCONN);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
if (level == SOL_TCP) {
|
|
switch (optname) {
|
|
XLAT(1, TCP_NODELAY);
|
|
XLAT(2, TCP_MAXSEG);
|
|
#if defined(TCP_CORK)
|
|
XLAT(3, TCP_CORK);
|
|
#elif defined(TCP_NOPUSH)
|
|
XLAT(3, TCP_NOPUSH);
|
|
#endif
|
|
#ifdef TCP_KEEPIDLE
|
|
XLAT(4, TCP_KEEPIDLE);
|
|
#endif
|
|
#ifdef TCP_KEEPINTVL
|
|
XLAT(5, TCP_KEEPINTVL);
|
|
#endif
|
|
#ifdef TCP_KEEPCNT
|
|
XLAT(6, TCP_KEEPCNT);
|
|
#endif
|
|
#ifdef TCP_SYNCNT
|
|
XLAT(7, TCP_SYNCNT);
|
|
#endif
|
|
#ifdef TCP_WINDOW_CLAMP
|
|
XLAT(10, TCP_WINDOW_CLAMP);
|
|
#endif
|
|
#ifdef TCP_FASTOPEN
|
|
XLAT(23, TCP_FASTOPEN);
|
|
#endif
|
|
#ifdef TCP_QUICKACK
|
|
XLAT(12, TCP_QUICKACK);
|
|
#endif
|
|
#ifdef TCP_NOTSENT_LOWAT
|
|
XLAT(25, TCP_NOTSENT_LOWAT);
|
|
#endif
|
|
#ifdef TCP_SAVE_SYN
|
|
XLAT(27, TCP_SAVE_SYN);
|
|
#endif
|
|
#ifdef TCP_FASTOPEN_CONNECT
|
|
XLAT(30, TCP_FASTOPEN_CONNECT);
|
|
#endif
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
if (level == SOL_IP) {
|
|
switch (optname) {
|
|
XLAT(1, IP_TOS);
|
|
XLAT(2, IP_TTL);
|
|
XLAT(3, IP_HDRINCL);
|
|
XLAT(14, IP_MTU);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
return einval();
|
|
}
|
|
|
|
int XlatAccess(int x) {
|
|
int r = F_OK;
|
|
if (x & 1) r |= X_OK;
|
|
if (x & 2) r |= W_OK;
|
|
if (x & 4) r |= R_OK;
|
|
return r;
|
|
}
|
|
|
|
int XlatLock(int x) {
|
|
int r = 0;
|
|
if (x & 1) r |= LOCK_SH;
|
|
if (x & 2) r |= LOCK_EX;
|
|
if (x & 4) r |= LOCK_NB;
|
|
if (x & 8) r |= LOCK_UN;
|
|
return r;
|
|
}
|
|
|
|
int XlatWait(int x) {
|
|
int r = 0;
|
|
if (x & 1) r |= WNOHANG;
|
|
if (x & 2) r |= WUNTRACED;
|
|
if (x & 8) r |= WCONTINUED;
|
|
return r;
|
|
}
|
|
|
|
int XlatMapFlags(int x) {
|
|
int r = 0;
|
|
if (x & 1) r |= MAP_SHARED;
|
|
if (x & 2) r |= MAP_PRIVATE;
|
|
if (x & 16) r |= MAP_FIXED;
|
|
if (x & 32) r |= MAP_ANONYMOUS;
|
|
if (x & 256) r |= MAP_GROWSDOWN;
|
|
return r;
|
|
}
|
|
|
|
int XlatMsyncFlags(int x) {
|
|
unsigned res = 0;
|
|
if (x & 1) res |= MS_ASYNC;
|
|
if (x & 2) res |= MS_INVALIDATE;
|
|
if (x & 4) res |= MS_SYNC;
|
|
return res;
|
|
}
|
|
|
|
int XlatClock(int x) {
|
|
switch (x) {
|
|
XLAT(0, CLOCK_REALTIME);
|
|
XLAT(1, CLOCK_MONOTONIC);
|
|
XLAT(2, CLOCK_PROCESS_CPUTIME_ID);
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
XLAT(4, CLOCK_MONOTONIC_RAW);
|
|
#endif
|
|
default:
|
|
return x;
|
|
}
|
|
}
|
|
|
|
int XlatAtf(int x) {
|
|
int res = 0;
|
|
if (x & 0x0100) res |= AT_SYMLINK_NOFOLLOW;
|
|
if (x & 0x0200) res |= AT_REMOVEDIR;
|
|
if (x & 0x0400) res |= AT_SYMLINK_FOLLOW;
|
|
if (x & 0x1000) res |= AT_EMPTY_PATH;
|
|
return res;
|
|
}
|
|
|
|
int XlatOpenMode(int flags) {
|
|
switch (flags & 3) {
|
|
case 0:
|
|
return O_RDONLY;
|
|
case 1:
|
|
return O_WRONLY;
|
|
case 2:
|
|
return O_RDWR;
|
|
default:
|
|
for (;;) (void)0;
|
|
}
|
|
}
|
|
|
|
int XlatOpenFlags(int flags) {
|
|
int res;
|
|
res = XlatOpenMode(flags);
|
|
if (flags & 0x00400) res |= O_APPEND;
|
|
if (flags & 0x00040) res |= O_CREAT;
|
|
if (flags & 0x00080) res |= O_EXCL;
|
|
if (flags & 0x00200) res |= O_TRUNC;
|
|
if (flags & 0x00800) res |= O_NDELAY;
|
|
if (flags & 0x04000) res |= O_DIRECT;
|
|
if (flags & 0x10000) res |= O_DIRECTORY;
|
|
if (flags & 0x20000) res |= O_NOFOLLOW;
|
|
if (flags & 0x80000) res |= O_CLOEXEC;
|
|
if (flags & 0x00100) res |= O_NOCTTY;
|
|
#ifdef O_ASYNC
|
|
if (flags & 0x02000) res |= O_ASYNC;
|
|
#endif
|
|
#ifdef O_NOATIME
|
|
if (flags & 0x40000) res |= O_NOATIME;
|
|
#endif
|
|
#ifdef O_DSYNC
|
|
if (flags & 0x000001000) res |= O_DSYNC;
|
|
#endif
|
|
#ifdef O_SYNC
|
|
if ((flags & 0x00101000) == 0x00101000) res |= O_SYNC;
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
int XlatFcntlCmd(int x) {
|
|
switch (x) {
|
|
XLAT(1, F_GETFD);
|
|
XLAT(2, F_SETFD);
|
|
XLAT(3, F_GETFL);
|
|
XLAT(4, F_SETFL);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
|
|
int XlatFcntlArg(int x) {
|
|
switch (x) {
|
|
XLAT(0, 0);
|
|
XLAT(1, FD_CLOEXEC);
|
|
XLAT(0x0800, O_NONBLOCK);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
|
|
int XlatAdvice(int x) {
|
|
switch (x) {
|
|
XLAT(0, MADV_NORMAL);
|
|
XLAT(1, MADV_RANDOM);
|
|
XLAT(2, MADV_SEQUENTIAL);
|
|
XLAT(3, MADV_WILLNEED);
|
|
XLAT(4, MADV_DONTNEED);
|
|
XLAT(8, MADV_FREE);
|
|
XLAT(12, MADV_MERGEABLE);
|
|
default:
|
|
return einval();
|
|
}
|
|
}
|
|
|
|
void XlatSockaddrToHost(struct sockaddr_in *dst,
|
|
const struct sockaddr_in_bits *src) {
|
|
memset(dst, 0, sizeof(*dst));
|
|
dst->sin_family = XlatSocketFamily(Read16(src->sin_family));
|
|
dst->sin_port = src->sin_port;
|
|
dst->sin_addr.s_addr = src->sin_addr;
|
|
}
|
|
|
|
void XlatSockaddrToLinux(struct sockaddr_in_bits *dst,
|
|
const struct sockaddr_in *src) {
|
|
memset(dst, 0, sizeof(*dst));
|
|
Write16(dst->sin_family, UnXlatSocketFamily(src->sin_family));
|
|
dst->sin_port = src->sin_port;
|
|
dst->sin_addr = src->sin_addr.s_addr;
|
|
}
|
|
|
|
void XlatStatToLinux(struct stat_bits *dst, const struct stat *src) {
|
|
Write64(dst->st_dev, src->st_dev);
|
|
Write64(dst->st_ino, src->st_ino);
|
|
Write64(dst->st_nlink, src->st_nlink);
|
|
Write32(dst->st_mode, src->st_mode);
|
|
Write32(dst->st_uid, src->st_uid);
|
|
Write32(dst->st_gid, src->st_gid);
|
|
Write32(dst->__pad, 0);
|
|
Write64(dst->st_rdev, src->st_rdev);
|
|
Write64(dst->st_size, src->st_size);
|
|
Write64(dst->st_blksize, src->st_blksize);
|
|
Write64(dst->st_blocks, src->st_blocks);
|
|
Write64(dst->st_dev, src->st_dev);
|
|
Write64(dst->st_atim.tv_sec, src->st_atim.tv_sec);
|
|
Write64(dst->st_atim.tv_nsec, src->st_atim.tv_nsec);
|
|
Write64(dst->st_mtim.tv_sec, src->st_mtim.tv_sec);
|
|
Write64(dst->st_mtim.tv_nsec, src->st_mtim.tv_nsec);
|
|
Write64(dst->st_ctim.tv_sec, src->st_ctim.tv_sec);
|
|
Write64(dst->st_ctim.tv_nsec, src->st_ctim.tv_nsec);
|
|
}
|
|
|
|
void XlatRusageToLinux(struct rusage_bits *dst, const struct rusage *src) {
|
|
Write64(dst->ru_utime.tv_sec, src->ru_utime.tv_sec);
|
|
Write64(dst->ru_utime.tv_usec, src->ru_utime.tv_usec);
|
|
Write64(dst->ru_stime.tv_sec, src->ru_stime.tv_sec);
|
|
Write64(dst->ru_stime.tv_usec, src->ru_stime.tv_usec);
|
|
Write64(dst->ru_maxrss, src->ru_maxrss);
|
|
Write64(dst->ru_ixrss, src->ru_ixrss);
|
|
Write64(dst->ru_idrss, src->ru_idrss);
|
|
Write64(dst->ru_isrss, src->ru_isrss);
|
|
Write64(dst->ru_minflt, src->ru_minflt);
|
|
Write64(dst->ru_majflt, src->ru_majflt);
|
|
Write64(dst->ru_nswap, src->ru_nswap);
|
|
Write64(dst->ru_inblock, src->ru_inblock);
|
|
Write64(dst->ru_oublock, src->ru_oublock);
|
|
Write64(dst->ru_msgsnd, src->ru_msgsnd);
|
|
Write64(dst->ru_msgrcv, src->ru_msgrcv);
|
|
Write64(dst->ru_nsignals, src->ru_nsignals);
|
|
Write64(dst->ru_nvcsw, src->ru_nvcsw);
|
|
Write64(dst->ru_nivcsw, src->ru_nivcsw);
|
|
}
|
|
|
|
void XlatItimervalToLinux(struct itimerval_bits *dst,
|
|
const struct itimerval *src) {
|
|
Write64(dst->it_interval.tv_sec, src->it_interval.tv_sec);
|
|
Write64(dst->it_interval.tv_usec, src->it_interval.tv_usec);
|
|
Write64(dst->it_value.tv_sec, src->it_value.tv_sec);
|
|
Write64(dst->it_value.tv_usec, src->it_value.tv_usec);
|
|
}
|
|
|
|
void XlatLinuxToItimerval(struct itimerval *dst,
|
|
const struct itimerval_bits *src) {
|
|
dst->it_interval.tv_sec = Read64(src->it_interval.tv_sec);
|
|
dst->it_interval.tv_usec = Read64(src->it_interval.tv_usec);
|
|
dst->it_value.tv_sec = Read64(src->it_value.tv_sec);
|
|
dst->it_value.tv_usec = Read64(src->it_value.tv_usec);
|
|
}
|
|
|
|
void XlatWinsizeToLinux(struct winsize_bits *dst, const struct winsize *src) {
|
|
memset(dst, 0, sizeof(*dst));
|
|
Write16(dst->ws_row, src->ws_row);
|
|
Write16(dst->ws_col, src->ws_col);
|
|
}
|
|
|
|
void XlatSigsetToLinux(uint8_t dst[8], const sigset_t *src) {
|
|
int i;
|
|
uint64_t x;
|
|
for (x = i = 0; i < 64; ++i) {
|
|
if (sigismember(src, i + 1)) {
|
|
x |= 1ull << i;
|
|
}
|
|
}
|
|
Write64(dst, x);
|
|
}
|
|
|
|
void XlatLinuxToSigset(sigset_t *dst, const uint8_t src[8]) {
|
|
int i;
|
|
uint64_t x;
|
|
x = Read64(src);
|
|
sigemptyset(dst);
|
|
for (i = 0; i < 64; ++i) {
|
|
if ((1ull << i) & x) {
|
|
sigaddset(dst, i + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int XlatTermiosCflag(int x) {
|
|
int r = 0;
|
|
if (x & 0x0001) r |= ISIG;
|
|
if (x & 0x0040) r |= CSTOPB;
|
|
if (x & 0x0080) r |= CREAD;
|
|
if (x & 0x0100) r |= PARENB;
|
|
if (x & 0x0200) r |= PARODD;
|
|
if (x & 0x0400) r |= HUPCL;
|
|
if (x & 0x0800) r |= CLOCAL;
|
|
if ((x & 0x0030) == 0x0010) {
|
|
r |= CS6;
|
|
} else if ((x & 0x0030) == 0x0020) {
|
|
r |= CS7;
|
|
} else if ((x & 0x0030) == 0x0030) {
|
|
r |= CS8;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int UnXlatTermiosCflag(int x) {
|
|
int r = 0;
|
|
if (x & ISIG) r |= 0x0001;
|
|
if (x & CSTOPB) r |= 0x0040;
|
|
if (x & CREAD) r |= 0x0080;
|
|
if (x & PARENB) r |= 0x0100;
|
|
if (x & PARODD) r |= 0x0200;
|
|
if (x & HUPCL) r |= 0x0400;
|
|
if (x & CLOCAL) r |= 0x0800;
|
|
if ((x & CSIZE) == CS5) {
|
|
r |= 0x0000;
|
|
} else if ((x & CSIZE) == CS6) {
|
|
r |= 0x0010;
|
|
} else if ((x & CSIZE) == CS7) {
|
|
r |= 0x0020;
|
|
} else if ((x & CSIZE) == CS8) {
|
|
r |= 0x0030;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int XlatTermiosLflag(int x) {
|
|
int r = 0;
|
|
if (x & 0x0001) r |= ISIG;
|
|
if (x & 0x0002) r |= ICANON;
|
|
if (x & 0x0008) r |= ECHO;
|
|
if (x & 0x0010) r |= ECHOE;
|
|
if (x & 0x0020) r |= ECHOK;
|
|
if (x & 0x0040) r |= ECHONL;
|
|
if (x & 0x0080) r |= NOFLSH;
|
|
if (x & 0x0100) r |= TOSTOP;
|
|
if (x & 0x8000) r |= IEXTEN;
|
|
#ifdef ECHOCTL
|
|
if (x & 0x0200) r |= ECHOCTL;
|
|
#endif
|
|
#ifdef ECHOPRT
|
|
if (x & 0x0400) r |= ECHOPRT;
|
|
#endif
|
|
#ifdef ECHOKE
|
|
if (x & 0x0800) r |= ECHOKE;
|
|
#endif
|
|
#ifdef FLUSHO
|
|
if (x & 0x1000) r |= FLUSHO;
|
|
#endif
|
|
#ifdef PENDIN
|
|
if (x & 0x4000) r |= PENDIN;
|
|
#endif
|
|
#ifdef XCASE
|
|
if (x & 0x0004) r |= XCASE;
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
static int UnXlatTermiosLflag(int x) {
|
|
int r = 0;
|
|
if (x & ISIG) r |= 0x0001;
|
|
if (x & ICANON) r |= 0x0002;
|
|
if (x & ECHO) r |= 0x0008;
|
|
if (x & ECHOE) r |= 0x0010;
|
|
if (x & ECHOK) r |= 0x0020;
|
|
if (x & ECHONL) r |= 0x0040;
|
|
if (x & NOFLSH) r |= 0x0080;
|
|
if (x & TOSTOP) r |= 0x0100;
|
|
if (x & IEXTEN) r |= 0x8000;
|
|
#ifdef ECHOCTL
|
|
if (x & ECHOCTL) r |= 0x0200;
|
|
#endif
|
|
#ifdef ECHOPRT
|
|
if (x & ECHOPRT) r |= 0x0400;
|
|
#endif
|
|
#ifdef ECHOKE
|
|
if (x & ECHOKE) r |= 0x0800;
|
|
#endif
|
|
#ifdef FLUSHO
|
|
if (x & FLUSHO) r |= 0x1000;
|
|
#endif
|
|
#ifdef PENDIN
|
|
if (x & PENDIN) r |= 0x4000;
|
|
#endif
|
|
#ifdef XCASE
|
|
if (x & XCASE) r |= 0x0004;
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
static int XlatTermiosIflag(int x) {
|
|
int r = 0;
|
|
if (x & 0x0001) r |= IGNBRK;
|
|
if (x & 0x0002) r |= BRKINT;
|
|
if (x & 0x0004) r |= IGNPAR;
|
|
if (x & 0x0008) r |= PARMRK;
|
|
if (x & 0x0010) r |= INPCK;
|
|
if (x & 0x0020) r |= ISTRIP;
|
|
if (x & 0x0040) r |= INLCR;
|
|
if (x & 0x0080) r |= IGNCR;
|
|
if (x & 0x0100) r |= ICRNL;
|
|
if (x & 0x0400) r |= IXON;
|
|
if (x & 0x0800) r |= IXANY;
|
|
if (x & 0x1000) r |= IXOFF;
|
|
#ifdef IMAXBEL
|
|
if (x & 0x2000) r |= IMAXBEL;
|
|
#endif
|
|
#ifdef IUTF8
|
|
if (x & 0x4000) r |= IUTF8;
|
|
#endif
|
|
#ifdef IUCLC
|
|
if (x & 0x0200) r |= IUCLC;
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
static int UnXlatTermiosIflag(int x) {
|
|
int r = 0;
|
|
if (x & IGNBRK) r |= 0x0001;
|
|
if (x & BRKINT) r |= 0x0002;
|
|
if (x & IGNPAR) r |= 0x0004;
|
|
if (x & PARMRK) r |= 0x0008;
|
|
if (x & INPCK) r |= 0x0010;
|
|
if (x & ISTRIP) r |= 0x0020;
|
|
if (x & INLCR) r |= 0x0040;
|
|
if (x & IGNCR) r |= 0x0080;
|
|
if (x & ICRNL) r |= 0x0100;
|
|
if (x & IXON) r |= 0x0400;
|
|
if (x & IXANY) r |= 0x0800;
|
|
if (x & IXOFF) r |= 0x1000;
|
|
#ifdef IMAXBEL
|
|
if (x & IMAXBEL) r |= 0x2000;
|
|
#endif
|
|
#ifdef IUTF8
|
|
if (x & IUTF8) r |= 0x4000;
|
|
#endif
|
|
#ifdef IUCLC
|
|
if (x & IUCLC) r |= 0x0200;
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
static int XlatTermiosOflag(int x) {
|
|
int r = 0;
|
|
if (x & 0x0001) r |= OPOST;
|
|
#ifdef ONLCR
|
|
if (x & 0x0004) r |= ONLCR;
|
|
#endif
|
|
#ifdef OCRNL
|
|
if (x & 0x0008) r |= OCRNL;
|
|
#endif
|
|
#ifdef ONOCR
|
|
if (x & 0x0010) r |= ONOCR;
|
|
#endif
|
|
#ifdef ONLRET
|
|
if (x & 0x0020) r |= ONLRET;
|
|
#endif
|
|
#ifdef OFILL
|
|
if (x & 0x0040) r |= OFILL;
|
|
#endif
|
|
#ifdef OFDEL
|
|
if (x & 0x0080) r |= OFDEL;
|
|
#endif
|
|
#ifdef NLDLY
|
|
if ((x & 0x0100) == 0x0000) {
|
|
r |= NL0;
|
|
} else if ((x & 0x0100) == 0x0100) {
|
|
r |= NL1;
|
|
#ifdef NL2
|
|
} else if ((x & 0x0100) == 0x0000) {
|
|
r |= NL2;
|
|
#endif
|
|
#ifdef NL3
|
|
} else if ((x & 0x0100) == 0x0000) {
|
|
r |= NL3;
|
|
#endif
|
|
}
|
|
#endif
|
|
#ifdef CRDLY
|
|
if ((x & 0x0600) == 0x0000) {
|
|
r |= CR0;
|
|
} else if ((x & 0x0600) == 0x0200) {
|
|
r |= CR1;
|
|
} else if ((x & 0x0600) == 0x0400) {
|
|
r |= CR2;
|
|
} else if ((x & 0x0600) == 0x0600) {
|
|
r |= CR3;
|
|
}
|
|
#endif
|
|
#ifdef TABDLY
|
|
if ((x & 0x1800) == 0x0000) {
|
|
r |= TAB0;
|
|
#ifdef TAB1
|
|
} else if ((x & 0x1800) == 0x0800) {
|
|
r |= TAB1;
|
|
#endif
|
|
#ifdef TAB1
|
|
} else if ((x & 0x1800) == 0x1000) {
|
|
r |= TAB2;
|
|
#endif
|
|
} else if ((x & 0x1800) == 0x1800) {
|
|
r |= TAB3;
|
|
}
|
|
#endif
|
|
#ifdef BSDLY
|
|
if ((x & 0x2000) == 0x0000) {
|
|
r |= BS0;
|
|
} else if ((x & 0x2000) == 0x2000) {
|
|
r |= BS1;
|
|
}
|
|
#endif
|
|
#ifdef VTBDLY
|
|
if ((x & 0x4000) == 0x0000) {
|
|
r |= VT0;
|
|
} else if ((x & 0x4000) == 0x4000) {
|
|
r |= VT1;
|
|
}
|
|
#endif
|
|
#ifdef FFBDLY
|
|
if ((x & 0x8000) == 0x0000) {
|
|
r |= FF0;
|
|
} else if ((x & 0x8000) == 0x8000) {
|
|
r |= FF1;
|
|
}
|
|
#endif
|
|
#ifdef OLCUC
|
|
if (x & 0x0002) r |= OLCUC;
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
static int UnXlatTermiosOflag(int x) {
|
|
int r = 0;
|
|
if (x & OPOST) r |= 0x0001;
|
|
#ifdef ONLCR
|
|
if (x & ONLCR) r |= 0x0004;
|
|
#endif
|
|
#ifdef OCRNL
|
|
if (x & OCRNL) r |= 0x0008;
|
|
#endif
|
|
#ifdef ONOCR
|
|
if (x & ONOCR) r |= 0x0010;
|
|
#endif
|
|
#ifdef ONLRET
|
|
if (x & ONLRET) r |= 0x0020;
|
|
#endif
|
|
#ifdef OFILL
|
|
if (x & OFILL) r |= 0x0040;
|
|
#endif
|
|
#ifdef OFDEL
|
|
if (x & OFDEL) r |= 0x0080;
|
|
#endif
|
|
#ifdef NLDLY
|
|
if ((x & NLDLY) == NL0) {
|
|
r |= 0x0000;
|
|
} else if ((x & NLDLY) == NL1) {
|
|
r |= 0x0100;
|
|
#ifdef NL2
|
|
} else if ((x & NLDLY) == NL2) {
|
|
r |= 0x0000;
|
|
#endif
|
|
#ifdef NL3
|
|
} else if ((x & NLDLY) == NL3) {
|
|
r |= 0x0000;
|
|
#endif
|
|
}
|
|
#endif
|
|
#ifdef CRDLY
|
|
if ((x & CRDLY) == CR0) {
|
|
r |= 0x0000;
|
|
} else if ((x & CRDLY) == CR1) {
|
|
r |= 0x0200;
|
|
} else if ((x & CRDLY) == CR2) {
|
|
r |= 0x0400;
|
|
} else if ((x & CRDLY) == CR3) {
|
|
r |= 0x0600;
|
|
}
|
|
#endif
|
|
#ifdef TABDLY
|
|
if ((x & TABDLY) == TAB0) {
|
|
r |= 0x0000;
|
|
#ifdef TAB1
|
|
} else if ((x & TABDLY) == TAB1) {
|
|
r |= 0x0800;
|
|
#endif
|
|
#ifdef TAB2
|
|
} else if ((x & TABDLY) == TAB2) {
|
|
r |= 0x1000;
|
|
#endif
|
|
} else if ((x & TABDLY) == TAB3) {
|
|
r |= 0x1800;
|
|
}
|
|
#endif
|
|
#ifdef BSDLY
|
|
if ((x & BSDLY) == BS0) {
|
|
r |= 0x0000;
|
|
} else if ((x & BSDLY) == BS1) {
|
|
r |= 0x2000;
|
|
}
|
|
#endif
|
|
#ifdef VTDLY
|
|
if ((x & VTDLY) == VT0) {
|
|
r |= 0x0000;
|
|
} else if ((x & VTDLY) == VT1) {
|
|
r |= 0x4000;
|
|
}
|
|
#endif
|
|
#ifdef FFDLY
|
|
if ((x & FFDLY) == FF0) {
|
|
r |= 0x0000;
|
|
} else if ((x & FFDLY) == FF1) {
|
|
r |= 0x8000;
|
|
}
|
|
#endif
|
|
#ifdef OLCUC
|
|
if (x & OLCUC) r |= 0x0002;
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
static void XlatTermiosCc(struct termios *dst, const struct termios_bits *src) {
|
|
dst->c_cc[VINTR] = src->c_cc[0];
|
|
dst->c_cc[VQUIT] = src->c_cc[1];
|
|
dst->c_cc[VERASE] = src->c_cc[2];
|
|
dst->c_cc[VKILL] = src->c_cc[3];
|
|
dst->c_cc[VEOF] = src->c_cc[4];
|
|
dst->c_cc[VTIME] = src->c_cc[5];
|
|
dst->c_cc[VMIN] = src->c_cc[6];
|
|
dst->c_cc[VSTART] = src->c_cc[8];
|
|
dst->c_cc[VSTOP] = src->c_cc[9];
|
|
dst->c_cc[VSUSP] = src->c_cc[10];
|
|
dst->c_cc[VEOL] = src->c_cc[11];
|
|
#ifdef VSWTC
|
|
dst->c_cc[VSWTC] = src->c_cc[7];
|
|
#endif
|
|
#ifdef VREPRINT
|
|
dst->c_cc[VREPRINT] = src->c_cc[12];
|
|
#endif
|
|
#ifdef VDISCARD
|
|
dst->c_cc[VDISCARD] = src->c_cc[13];
|
|
#endif
|
|
#ifdef VWERASE
|
|
dst->c_cc[VWERASE] = src->c_cc[14];
|
|
#endif
|
|
#ifdef VLNEXT
|
|
dst->c_cc[VLNEXT] = src->c_cc[15];
|
|
#endif
|
|
#ifdef VEOL2
|
|
dst->c_cc[VEOL2] = src->c_cc[16];
|
|
#endif
|
|
}
|
|
|
|
static void UnXlatTermiosCc(struct termios_bits *dst,
|
|
const struct termios *src) {
|
|
dst->c_cc[0] = src->c_cc[VINTR];
|
|
dst->c_cc[1] = src->c_cc[VQUIT];
|
|
dst->c_cc[2] = src->c_cc[VERASE];
|
|
dst->c_cc[3] = src->c_cc[VKILL];
|
|
dst->c_cc[4] = src->c_cc[VEOF];
|
|
dst->c_cc[5] = src->c_cc[VTIME];
|
|
dst->c_cc[6] = src->c_cc[VMIN];
|
|
dst->c_cc[8] = src->c_cc[VSTART];
|
|
dst->c_cc[9] = src->c_cc[VSTOP];
|
|
dst->c_cc[10] = src->c_cc[VSUSP];
|
|
dst->c_cc[11] = src->c_cc[VEOL];
|
|
#ifdef VSWTC
|
|
dst->c_cc[7] = src->c_cc[VSWTC];
|
|
#endif
|
|
#ifdef VREPRINT
|
|
dst->c_cc[12] = src->c_cc[VREPRINT];
|
|
#endif
|
|
#ifdef VDISCARD
|
|
dst->c_cc[13] = src->c_cc[VDISCARD];
|
|
#endif
|
|
#ifdef VWERASE
|
|
dst->c_cc[14] = src->c_cc[VWERASE];
|
|
#endif
|
|
#ifdef VLNEXT
|
|
dst->c_cc[15] = src->c_cc[VLNEXT];
|
|
#endif
|
|
#ifdef VEOL2
|
|
dst->c_cc[16] = src->c_cc[VEOL2];
|
|
#endif
|
|
}
|
|
|
|
void XlatLinuxToTermios(struct termios *dst, const struct termios_bits *src) {
|
|
memset(dst, 0, sizeof(*dst));
|
|
dst->c_iflag = XlatTermiosIflag(Read32(src->c_iflag));
|
|
dst->c_oflag = XlatTermiosOflag(Read32(src->c_oflag));
|
|
dst->c_cflag = XlatTermiosCflag(Read32(src->c_cflag));
|
|
dst->c_lflag = XlatTermiosLflag(Read32(src->c_lflag));
|
|
XlatTermiosCc(dst, src);
|
|
}
|
|
|
|
void XlatTermiosToLinux(struct termios_bits *dst, const struct termios *src) {
|
|
memset(dst, 0, sizeof(*dst));
|
|
Write32(dst->c_iflag, UnXlatTermiosIflag(src->c_iflag));
|
|
Write32(dst->c_oflag, UnXlatTermiosOflag(src->c_oflag));
|
|
Write32(dst->c_cflag, UnXlatTermiosCflag(src->c_cflag));
|
|
Write32(dst->c_lflag, UnXlatTermiosLflag(src->c_lflag));
|
|
UnXlatTermiosCc(dst, src);
|
|
}
|