mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-12 01:08:00 +00:00
Commit bc6c183
introduced a bunch of discrepancies between what files
look like in the repo and what clang-format says they should look like.
However, there were already a few discrepancies prior to that. Most of
these discrepancies seemed to be unintentional, but a few of them were
load-bearing (e.g., a #include that violated header ordering needing
something to have been #defined by a 'later' #include.)
I opted to take what I hope is a relatively smooth-brained approach: I
reverted the .clang-format change, ran clang-format on the whole repo,
reapplied the .clang-format change, reran clang-format again, and then
reverted the commit that contained the first run. Thus the full effect
of this PR should only be to apply the changed formatting rules to the
repo, and from skimming the results, this seems to be the case.
My work can be checked by applying the short, manual commits, and then
rerunning the command listed in the autogenerated commits (those whose
messages I have prefixed auto:) and seeing if your results agree.
It might be that the other diffs should be fixed at some point but I'm
leaving that aside for now.
fd '\.c(c|pp)?$' --print0| xargs -0 clang-format -i
268 lines
9.5 KiB
C
268 lines
9.5 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
|
||
╞══════════════════════════════════════════════════════════════════════════════╡
|
||
│ Copyright 2022 Justine Alexandra Roberts Tunney │
|
||
│ │
|
||
│ Permission to use, copy, modify, and/or distribute this software for │
|
||
│ any purpose with or without fee is hereby granted, provided that the │
|
||
│ above copyright notice and this permission notice appear in all copies. │
|
||
│ │
|
||
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
|
||
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
|
||
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
|
||
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
|
||
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
|
||
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
|
||
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
||
│ PERFORMANCE OF THIS SOFTWARE. │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include "tool/plinko/lib/tree.h"
|
||
#include "libc/log/check.h"
|
||
#include "tool/plinko/lib/index.h"
|
||
|
||
int Nod(int E, int L, int R, int C) {
|
||
#ifndef NDEBUG
|
||
DCHECK_LE(L, 0);
|
||
DCHECK_LE(R, 0);
|
||
DCHECK_EQ(0, C & ~1);
|
||
#endif
|
||
return Cons(Cons(E, (L | R) ? Cons(L, R) : 0), C);
|
||
}
|
||
|
||
static void CheckTreeImpl(int N) {
|
||
int p, L, R;
|
||
if (N >= 0)
|
||
Error("N is atom: %S", N);
|
||
if (Car(N) >= 0)
|
||
Error("Car(N) is an atom: %S", N);
|
||
if (Cdr(N) & ~1)
|
||
Error("Cdr(N) is non-bool: %S", N);
|
||
if ((L = Lit(N))) {
|
||
if ((p = Cmp(Key(Ent(L)), Key(Ent(N)))) != -1) {
|
||
Error("Cmp(Key(L), Key(N)) != -1%n"
|
||
"Result = %d%n"
|
||
"Key(L) = %p%n"
|
||
"Key(N) = %p",
|
||
p, Key(Ent(L)), Key(Ent(N)));
|
||
}
|
||
if (Red(N) && Red(L)) {
|
||
Error("left node and its parent are both red%n%T", N);
|
||
}
|
||
CheckTreeImpl(L);
|
||
}
|
||
if ((R = Rit(N))) {
|
||
if ((p = Cmp(Key(Ent(R)), Key(Ent(N)))) != +1) {
|
||
Error("Cmp(Key(R), Key(N)) != +1%n"
|
||
"Result = %d%n"
|
||
"Key(R) = %p%n"
|
||
"Key(N) = %p",
|
||
p, Key(Ent(R)), Key(Ent(N)));
|
||
}
|
||
if (Red(N) && Red(R)) {
|
||
Error("right node and its parent are both red%n%T", N);
|
||
}
|
||
CheckTreeImpl(R);
|
||
}
|
||
}
|
||
|
||
static int CheckTree(int N) {
|
||
#if DEBUG_TREE
|
||
if (N) {
|
||
if (Red(N))
|
||
Error("tree root is red%n%T", N);
|
||
CheckTreeImpl(N);
|
||
}
|
||
#endif
|
||
return N;
|
||
}
|
||
|
||
static int BalTree(int E, int L, int R, int C) {
|
||
// Chris Okasaki "Red-Black Trees in a Functional Setting";
|
||
// Functional Pearls, Cambridge University Press, Jan 1993.
|
||
int LL, LR, RL, RR;
|
||
if (!C) {
|
||
LL = Lit(L);
|
||
LR = Rit(L);
|
||
RL = Lit(R);
|
||
RR = Rit(R);
|
||
if (Red(L) && Red(LR)) {
|
||
// Degenerate Case No. 1
|
||
// Complete the Triforce
|
||
//
|
||
// Z
|
||
// ╱ ╲ 𝐘
|
||
// 𝐗 d ╱ ╲
|
||
// ╱ ╲ → X Z
|
||
// a 𝐘 ╱ ╲ ╱ ╲
|
||
// ╱ ╲ a b c d
|
||
// b c
|
||
//
|
||
// ((Z ((X a (Y b . c) . t) . t) . d)) →
|
||
// ((Y ((X a . b)) (Z c . d)) . t)
|
||
L = Nod(Ent(L), LL, Lit(LR), 0);
|
||
R = Nod(E, Rit(LR), R, 0);
|
||
E = Ent(LR);
|
||
C = 1;
|
||
} else if (Red(L) && Red(LL)) {
|
||
// Degenerate Case No. 2
|
||
// Complete the Triforce
|
||
//
|
||
// Z
|
||
// ╱ ╲ 𝐘
|
||
// 𝐘 d ╱ ╲
|
||
// ╱ ╲ → X Z
|
||
// 𝐗 c ╱ ╲ ╱ ╲
|
||
// ╱ ╲ a b c d
|
||
// a b
|
||
//
|
||
// ((Z ((Y ((X a . b) . t) . c) . t) . d)) →
|
||
// ((Y ((X a . b)) (Z c . d)) . t)
|
||
R = Nod(E, LR, R, 0);
|
||
E = Ent(L);
|
||
L = Bkn(LL);
|
||
C = 1;
|
||
} else if (Red(R) && Red(RR)) {
|
||
// Degenerate Case No. 3
|
||
// Complete the Triforce
|
||
//
|
||
// X
|
||
// ╱ ╲ 𝐘
|
||
// a 𝐘 ╱ ╲
|
||
// ╱ ╲ → X Z
|
||
// b 𝐙 ╱ ╲ ╱ ╲
|
||
// ╱ ╲ a b c d
|
||
// c d
|
||
//
|
||
// ((X a (Y b (Z c . d) . t) . t)) →
|
||
// ((Y ((X a . b)) (Z c . d)) . t)
|
||
L = Nod(E, L, RL, 0);
|
||
E = Ent(R);
|
||
R = Bkn(RR);
|
||
C = 1;
|
||
} else if (Red(R) && Red(RL)) {
|
||
// Degenerate Case No. 4
|
||
// Complete the Triforce
|
||
//
|
||
// X
|
||
// ╱ ╲ 𝐘
|
||
// a 𝐙 ╱ ╲
|
||
// ╱ ╲ → X Z
|
||
// 𝐘 d ╱ ╲ ╱ ╲
|
||
// ╱ ╲ a b c d
|
||
// b c
|
||
//
|
||
// ((X a (Z ((Y b . c) . t) . d) . t)) →
|
||
// ((Y ((X a . b)) (Z c . d)) . t)
|
||
L = Nod(E, L, Lit(RL), 0);
|
||
R = Nod(Ent(R), Rit(RL), RR, 0);
|
||
E = Ent(RL);
|
||
C = 1;
|
||
}
|
||
}
|
||
return Nod(E, L, R, C);
|
||
}
|
||
|
||
static int InsTree(int E, int N, int KEEP) {
|
||
int P, L, R;
|
||
if (N) {
|
||
P = Cmp(Key(E), Key(Ent(N)));
|
||
if (P < 0) {
|
||
if ((L = InsTree(E, Lit(N), KEEP)) > 0)
|
||
return L; // rethrow
|
||
if (L != Lit(N))
|
||
N = BalTree(Ent(N), L, Rit(N), Tail(N));
|
||
} else if (P > 0) {
|
||
if ((R = InsTree(E, Rit(N), KEEP)) > 0)
|
||
return R; // rethrow
|
||
if (R != Rit(N))
|
||
N = BalTree(Ent(N), Lit(N), R, Tail(N));
|
||
} else if (KEEP < 0 || (!KEEP && !Equal(Val(E), Val(Ent(N))))) {
|
||
N = Cons(Cons(E, Chl(N)), Red(N));
|
||
} else if (KEEP > 1) {
|
||
N = KEEP; // throw
|
||
}
|
||
} else {
|
||
N = Cons(Cons(E, 0), 1);
|
||
}
|
||
return N;
|
||
}
|
||
|
||
/**
|
||
* Inserts entry into red-black tree.
|
||
*
|
||
* DICTIONARY NODE SET NODE ATOM SET NODE
|
||
*
|
||
* ┌───┬───┐ ┌───┬───┐ ┌───┬───┐
|
||
* │ ┬ │ 𝑐 │ │ ┬ │ 𝑐 │ │ ┬ │ 𝑐 │
|
||
* └─│─┴───┘ └─│─┴───┘ └─│─┴───┘
|
||
* ┌─┴─┬───┐ ┌─┴─┬───┐ ┌─┴─┬───┐
|
||
* │ ┬ │ ┬ │ │ ┬ │ ┬ │ │ 𝑣 │ ┬ │
|
||
* └─│─┴─│─┘ └─│─┴─│─┘ └───┴─│─┘
|
||
* ┌───┬──┴┐ ┌┴──┬───┐ ┌───┬──┴┐ ┌┴──┬───┐ ┌─┴─┬───┐
|
||
* │ 𝑥 │ 𝑦 │ │ L │ R │ │ 𝑥 │ ⊥ │ │ L │ R │ │ L │ R │
|
||
* └───┴───┘ └───┴───┘ └───┴───┘ └───┴───┘ └───┴───┘
|
||
*
|
||
* @param E is entry which may be
|
||
* - (𝑥 . 𝑦) where 𝑥 is the key and 𝑦 is arbitrary tag-along content
|
||
* - 𝑣 for memory-efficient sets of atoms
|
||
* @param N is red-black tree node which should look like
|
||
* - ⊥ is an tree or atom set with zero elements
|
||
* - (((𝑥 ⋯) . (𝑙 . 𝑟)) . ⊥) is a black node a.k.a. (((𝑥 ⋯) 𝑙 . 𝑟))
|
||
* - (((𝑥 ⋯) . (𝑙 . 𝑟)) . ⊤) is a red node a.k.a. (((𝑥 ⋯) 𝑙 . 𝑟) . ⊤)
|
||
* - ((𝑣 𝑙 . 𝑟)) a memory-efficient black node for an atom set
|
||
* - ((𝑣 𝑙 . 𝑟)) is functionally equivalent to (((𝑣) 𝑙 . 𝑟))
|
||
* - ((𝑣 ⊥ . ⊥)) is an atom set with a single element
|
||
* - ((𝑣)) is functionally equivalent to ((𝑣 ⊥ . ⊥)) or ((𝑣 . (⊥ . ⊥)) . ⊥)
|
||
* - 𝑣 is crash therefore (((⋯) 𝑣)) and ⊥(((⋯) ⊥ . 𝑣)) are crash
|
||
* - (𝑣) is crash, first element must be a cons cell
|
||
* - ((⋯) . 𝑥) is crash if 𝑥 isn't ⊤ or ⊥
|
||
* @param KEEP may be
|
||
* - -1 to replace existing entries always
|
||
* - 0 to replace existing entries if values are non-equal
|
||
* - 1 to return N if
|
||
* - >1 specifies arbitrary tombstone to return if key exists
|
||
* @return ((𝑒 𝑙 . 𝑟) . 𝑐) if found where 𝑒 can be 𝑣 or (𝑥 . 𝑦)
|
||
* - or KEEP if not found and KEEP > 1
|
||
* - or ⊥ if not found
|
||
*/
|
||
int PutTree(int E, int N, int KEEP) {
|
||
DCHECK_LE(N, 0);
|
||
DCHECK_LE(Car(N), 0);
|
||
DCHECK_GE(KEEP, -1);
|
||
return CheckTree(Bkn(InsTree(E, N, KEEP)));
|
||
}
|
||
|
||
/**
|
||
* Finds node in binary tree.
|
||
* @return ((𝑒 𝑙 . 𝑟) . 𝑐) if found, otherwise 0
|
||
*/
|
||
int GetTree(int k, int N) {
|
||
int p;
|
||
while (N) {
|
||
p = Cmp(k, Key(Ent(N)));
|
||
if (p < 0) {
|
||
N = Lit(N);
|
||
} else if (p > 0) {
|
||
N = Rit(N);
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
return N;
|
||
}
|
||
|
||
int GetTreeCount(int k, int N, int *c) {
|
||
int p;
|
||
while (N) {
|
||
++*c;
|
||
p = Cmp(k, Key(Ent(N)));
|
||
if (p < 0) {
|
||
N = Lit(N);
|
||
} else if (p > 0) {
|
||
N = Rit(N);
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
return N;
|
||
}
|