cosmopolitan/third_party/mbedtls/test/test_suite_aes.ofb.c
Justine Tunney fa20edc44d
Reduce header complexity
- Remove most __ASSEMBLER__ __LINKER__ ifdefs
- Rename libc/intrin/bits.h to libc/serialize.h
- Block pthread cancelation in fchmodat() polyfill
- Remove `clang-format off` statements in third_party
2023-11-28 14:39:42 -08:00

1109 lines
37 KiB
C

/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "third_party/mbedtls/test/test.inc"
/*
* *** THIS FILE WAS MACHINE GENERATED ***
*
* This file has been machine generated using the script:
* generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh
*
* Test file : ./test_suite_aes.ofb.c
*
* The following files were used to create this file.
*
* Main code file : suites/main_test.function
* Platform code file : suites/host_test.function
* Helper file : suites/helpers.function
* Test suite file : suites/test_suite_aes.function
* Test suite data : suites/test_suite_aes.ofb.data
*
*/
#define TEST_SUITE_ACTIVE
#if defined(MBEDTLS_AES_C)
#include "third_party/mbedtls/aes.h"
void test_aes_encrypt_ecb( data_t * key_str, data_t * src_str,
data_t * dst, int setkey_result )
{
unsigned char output[100];
mbedtls_aes_context ctx;
memset(output, 0x00, 100);
mbedtls_aes_init( &ctx );
TEST_ASSERT( mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 ) == setkey_result );
if( setkey_result == 0 )
{
TEST_ASSERT( mbedtls_aes_crypt_ecb( &ctx, MBEDTLS_AES_ENCRYPT, src_str->x, output ) == 0 );
TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, 16, dst->len ) == 0 );
}
exit:
mbedtls_aes_free( &ctx );
}
void test_aes_encrypt_ecb_wrapper( void ** params )
{
data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )};
data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )};
data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )};
test_aes_encrypt_ecb( &data0, &data2, &data4, *( (int *) params[6] ) );
}
void test_aes_decrypt_ecb( data_t * key_str, data_t * src_str,
data_t * dst, int setkey_result )
{
unsigned char output[100];
mbedtls_aes_context ctx;
memset(output, 0x00, 100);
mbedtls_aes_init( &ctx );
TEST_ASSERT( mbedtls_aes_setkey_dec( &ctx, key_str->x, key_str->len * 8 ) == setkey_result );
if( setkey_result == 0 )
{
TEST_ASSERT( mbedtls_aes_crypt_ecb( &ctx, MBEDTLS_AES_DECRYPT, src_str->x, output ) == 0 );
TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, 16, dst->len ) == 0 );
}
exit:
mbedtls_aes_free( &ctx );
}
void test_aes_decrypt_ecb_wrapper( void ** params )
{
data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )};
data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )};
data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )};
test_aes_decrypt_ecb( &data0, &data2, &data4, *( (int *) params[6] ) );
}
#if defined(MBEDTLS_CIPHER_MODE_CBC)
void test_aes_encrypt_cbc( data_t * key_str, data_t * iv_str,
data_t * src_str, data_t * dst,
int cbc_result )
{
unsigned char output[100];
mbedtls_aes_context ctx;
memset(output, 0x00, 100);
mbedtls_aes_init( &ctx );
mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 );
TEST_ASSERT( mbedtls_aes_crypt_cbc( &ctx, MBEDTLS_AES_ENCRYPT, src_str->len, iv_str->x, src_str->x, output ) == cbc_result );
if( cbc_result == 0 )
{
TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x,
src_str->len, dst->len ) == 0 );
}
exit:
mbedtls_aes_free( &ctx );
}
void test_aes_encrypt_cbc_wrapper( void ** params )
{
data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )};
data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )};
data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )};
data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )};
test_aes_encrypt_cbc( &data0, &data2, &data4, &data6, *( (int *) params[8] ) );
}
#endif /* MBEDTLS_CIPHER_MODE_CBC */
#if defined(MBEDTLS_CIPHER_MODE_CBC)
void test_aes_decrypt_cbc( data_t * key_str, data_t * iv_str,
data_t * src_str, data_t * dst,
int cbc_result )
{
unsigned char output[100];
mbedtls_aes_context ctx;
memset(output, 0x00, 100);
mbedtls_aes_init( &ctx );
mbedtls_aes_setkey_dec( &ctx, key_str->x, key_str->len * 8 );
TEST_ASSERT( mbedtls_aes_crypt_cbc( &ctx, MBEDTLS_AES_DECRYPT, src_str->len, iv_str->x, src_str->x, output ) == cbc_result );
if( cbc_result == 0)
{
TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x,
src_str->len, dst->len ) == 0 );
}
exit:
mbedtls_aes_free( &ctx );
}
void test_aes_decrypt_cbc_wrapper( void ** params )
{
data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )};
data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )};
data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )};
data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )};
test_aes_decrypt_cbc( &data0, &data2, &data4, &data6, *( (int *) params[8] ) );
}
#endif /* MBEDTLS_CIPHER_MODE_CBC */
#if defined(MBEDTLS_CIPHER_MODE_XTS)
void test_aes_encrypt_xts( char *hex_key_string, char *hex_data_unit_string,
char *hex_src_string, char *hex_dst_string )
{
enum { AES_BLOCK_SIZE = 16 };
unsigned char *data_unit = NULL;
unsigned char *key = NULL;
unsigned char *src = NULL;
unsigned char *dst = NULL;
unsigned char *output = NULL;
mbedtls_aes_xts_context ctx;
size_t key_len, src_len, dst_len, data_unit_len;
mbedtls_aes_xts_init( &ctx );
data_unit = mbedtls_test_unhexify_alloc( hex_data_unit_string,
&data_unit_len );
TEST_ASSERT( data_unit_len == AES_BLOCK_SIZE );
key = mbedtls_test_unhexify_alloc( hex_key_string, &key_len );
TEST_ASSERT( key_len % 2 == 0 );
src = mbedtls_test_unhexify_alloc( hex_src_string, &src_len );
dst = mbedtls_test_unhexify_alloc( hex_dst_string, &dst_len );
TEST_ASSERT( src_len == dst_len );
output = mbedtls_test_zero_alloc( dst_len );
TEST_ASSERT( mbedtls_aes_xts_setkey_enc( &ctx, key, key_len * 8 ) == 0 );
TEST_ASSERT( mbedtls_aes_crypt_xts( &ctx, MBEDTLS_AES_ENCRYPT, src_len,
data_unit, src, output ) == 0 );
TEST_ASSERT( memcmp( output, dst, dst_len ) == 0 );
exit:
mbedtls_aes_xts_free( &ctx );
mbedtls_free( data_unit );
mbedtls_free( key );
mbedtls_free( src );
mbedtls_free( dst );
mbedtls_free( output );
}
void test_aes_encrypt_xts_wrapper( void ** params )
{
test_aes_encrypt_xts( (char *) params[0], (char *) params[1], (char *) params[2], (char *) params[3] );
}
#endif /* MBEDTLS_CIPHER_MODE_XTS */
#if defined(MBEDTLS_CIPHER_MODE_XTS)
void test_aes_decrypt_xts( char *hex_key_string, char *hex_data_unit_string,
char *hex_dst_string, char *hex_src_string )
{
enum { AES_BLOCK_SIZE = 16 };
unsigned char *data_unit = NULL;
unsigned char *key = NULL;
unsigned char *src = NULL;
unsigned char *dst = NULL;
unsigned char *output = NULL;
mbedtls_aes_xts_context ctx;
size_t key_len, src_len, dst_len, data_unit_len;
mbedtls_aes_xts_init( &ctx );
data_unit = mbedtls_test_unhexify_alloc( hex_data_unit_string,
&data_unit_len );
TEST_ASSERT( data_unit_len == AES_BLOCK_SIZE );
key = mbedtls_test_unhexify_alloc( hex_key_string, &key_len );
TEST_ASSERT( key_len % 2 == 0 );
src = mbedtls_test_unhexify_alloc( hex_src_string, &src_len );
dst = mbedtls_test_unhexify_alloc( hex_dst_string, &dst_len );
TEST_ASSERT( src_len == dst_len );
output = mbedtls_test_zero_alloc( dst_len );
TEST_ASSERT( mbedtls_aes_xts_setkey_dec( &ctx, key, key_len * 8 ) == 0 );
TEST_ASSERT( mbedtls_aes_crypt_xts( &ctx, MBEDTLS_AES_DECRYPT, src_len,
data_unit, src, output ) == 0 );
TEST_ASSERT( memcmp( output, dst, dst_len ) == 0 );
exit:
mbedtls_aes_xts_free( &ctx );
mbedtls_free( data_unit );
mbedtls_free( key );
mbedtls_free( src );
mbedtls_free( dst );
mbedtls_free( output );
}
void test_aes_decrypt_xts_wrapper( void ** params )
{
test_aes_decrypt_xts( (char *) params[0], (char *) params[1], (char *) params[2], (char *) params[3] );
}
#endif /* MBEDTLS_CIPHER_MODE_XTS */
#if defined(MBEDTLS_CIPHER_MODE_XTS)
void test_aes_crypt_xts_size( int size, int retval )
{
mbedtls_aes_xts_context ctx;
const unsigned char src[16] = { 0 };
unsigned char output[16];
unsigned char data_unit[16];
size_t length = size;
mbedtls_aes_xts_init( &ctx );
memset( data_unit, 0x00, sizeof( data_unit ) );
/* Valid pointers are passed for builds with MBEDTLS_CHECK_PARAMS, as
* otherwise we wouldn't get to the size check we're interested in. */
TEST_ASSERT( mbedtls_aes_crypt_xts( &ctx, MBEDTLS_AES_ENCRYPT, length, data_unit, src, output ) == retval );
exit:
;
}
void test_aes_crypt_xts_size_wrapper( void ** params )
{
test_aes_crypt_xts_size( *( (int *) params[0] ), *( (int *) params[1] ) );
}
#endif /* MBEDTLS_CIPHER_MODE_XTS */
#if defined(MBEDTLS_CIPHER_MODE_XTS)
void test_aes_crypt_xts_keysize( int size, int retval )
{
mbedtls_aes_xts_context ctx;
const unsigned char key[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 };
size_t key_len = size;
mbedtls_aes_xts_init( &ctx );
TEST_ASSERT( mbedtls_aes_xts_setkey_enc( &ctx, key, key_len * 8 ) == retval );
TEST_ASSERT( mbedtls_aes_xts_setkey_dec( &ctx, key, key_len * 8 ) == retval );
exit:
mbedtls_aes_xts_free( &ctx );
}
void test_aes_crypt_xts_keysize_wrapper( void ** params )
{
test_aes_crypt_xts_keysize( *( (int *) params[0] ), *( (int *) params[1] ) );
}
#endif /* MBEDTLS_CIPHER_MODE_XTS */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
void test_aes_encrypt_cfb128( data_t * key_str, data_t * iv_str,
data_t * src_str, data_t * dst )
{
unsigned char output[100];
mbedtls_aes_context ctx;
size_t iv_offset = 0;
memset(output, 0x00, 100);
mbedtls_aes_init( &ctx );
mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 );
TEST_ASSERT( mbedtls_aes_crypt_cfb128( &ctx, MBEDTLS_AES_ENCRYPT, 16, &iv_offset, iv_str->x, src_str->x, output ) == 0 );
TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, 16, dst->len ) == 0 );
exit:
mbedtls_aes_free( &ctx );
}
void test_aes_encrypt_cfb128_wrapper( void ** params )
{
data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )};
data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )};
data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )};
data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )};
test_aes_encrypt_cfb128( &data0, &data2, &data4, &data6 );
}
#endif /* MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
void test_aes_decrypt_cfb128( data_t * key_str, data_t * iv_str,
data_t * src_str, data_t * dst )
{
unsigned char output[100];
mbedtls_aes_context ctx;
size_t iv_offset = 0;
memset(output, 0x00, 100);
mbedtls_aes_init( &ctx );
mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 );
TEST_ASSERT( mbedtls_aes_crypt_cfb128( &ctx, MBEDTLS_AES_DECRYPT, 16, &iv_offset, iv_str->x, src_str->x, output ) == 0 );
TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x, 16, dst->len ) == 0 );
exit:
mbedtls_aes_free( &ctx );
}
void test_aes_decrypt_cfb128_wrapper( void ** params )
{
data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )};
data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )};
data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )};
data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )};
test_aes_decrypt_cfb128( &data0, &data2, &data4, &data6 );
}
#endif /* MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
void test_aes_encrypt_cfb8( data_t * key_str, data_t * iv_str,
data_t * src_str, data_t * dst )
{
unsigned char output[100];
mbedtls_aes_context ctx;
memset(output, 0x00, 100);
mbedtls_aes_init( &ctx );
mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 );
TEST_ASSERT( mbedtls_aes_crypt_cfb8( &ctx, MBEDTLS_AES_ENCRYPT, src_str->len, iv_str->x, src_str->x, output ) == 0 );
TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x,
src_str->len, dst->len ) == 0 );
exit:
mbedtls_aes_free( &ctx );
}
void test_aes_encrypt_cfb8_wrapper( void ** params )
{
data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )};
data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )};
data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )};
data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )};
test_aes_encrypt_cfb8( &data0, &data2, &data4, &data6 );
}
#endif /* MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
void test_aes_decrypt_cfb8( data_t * key_str, data_t * iv_str,
data_t * src_str, data_t * dst )
{
unsigned char output[100];
mbedtls_aes_context ctx;
memset(output, 0x00, 100);
mbedtls_aes_init( &ctx );
mbedtls_aes_setkey_enc( &ctx, key_str->x, key_str->len * 8 );
TEST_ASSERT( mbedtls_aes_crypt_cfb8( &ctx, MBEDTLS_AES_DECRYPT, src_str->len, iv_str->x, src_str->x, output ) == 0 );
TEST_ASSERT( mbedtls_test_hexcmp( output, dst->x,
src_str->len, dst->len ) == 0 );
exit:
mbedtls_aes_free( &ctx );
}
void test_aes_decrypt_cfb8_wrapper( void ** params )
{
data_t data0 = {(uint8_t *) params[0], *( (uint32_t *) params[1] )};
data_t data2 = {(uint8_t *) params[2], *( (uint32_t *) params[3] )};
data_t data4 = {(uint8_t *) params[4], *( (uint32_t *) params[5] )};
data_t data6 = {(uint8_t *) params[6], *( (uint32_t *) params[7] )};
test_aes_decrypt_cfb8( &data0, &data2, &data4, &data6 );
}
#endif /* MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_OFB)
void test_aes_encrypt_ofb( int fragment_size, data_t *key_str,
data_t *iv_str, data_t *src_str,
data_t *expected_output )
{
unsigned char output[32];
mbedtls_aes_context ctx;
size_t iv_offset = 0;
int in_buffer_len;
unsigned char* src_str_next;
memset( output, 0x00, sizeof( output ) );
mbedtls_aes_init( &ctx );
TEST_ASSERT( (size_t)fragment_size < sizeof( output ) );
TEST_ASSERT( mbedtls_aes_setkey_enc( &ctx, key_str->x,
key_str->len * 8 ) == 0 );
in_buffer_len = src_str->len;
src_str_next = src_str->x;
while( in_buffer_len > 0 )
{
TEST_ASSERT( mbedtls_aes_crypt_ofb( &ctx, fragment_size, &iv_offset,
iv_str->x, src_str_next, output ) == 0 );
TEST_ASSERT( memcmp( output, expected_output->x, fragment_size ) == 0 );
in_buffer_len -= fragment_size;
expected_output->x += fragment_size;
src_str_next += fragment_size;
if( in_buffer_len < fragment_size )
fragment_size = in_buffer_len;
}
exit:
mbedtls_aes_free( &ctx );
}
void test_aes_encrypt_ofb_wrapper( void ** params )
{
data_t data1 = {(uint8_t *) params[1], *( (uint32_t *) params[2] )};
data_t data3 = {(uint8_t *) params[3], *( (uint32_t *) params[4] )};
data_t data5 = {(uint8_t *) params[5], *( (uint32_t *) params[6] )};
data_t data7 = {(uint8_t *) params[7], *( (uint32_t *) params[8] )};
test_aes_encrypt_ofb( *( (int *) params[0] ), &data1, &data3, &data5, &data7 );
}
#endif /* MBEDTLS_CIPHER_MODE_OFB */
#if defined(MBEDTLS_CHECK_PARAMS)
#if !defined(MBEDTLS_PARAM_FAILED_ALT)
void test_aes_check_params( )
{
mbedtls_aes_context aes_ctx;
#if defined(MBEDTLS_CIPHER_MODE_XTS)
mbedtls_aes_xts_context xts_ctx;
#endif
const unsigned char key[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 };
const unsigned char in[16] = { 0 };
unsigned char out[16];
size_t size;
const int valid_mode = MBEDTLS_AES_ENCRYPT;
const int invalid_mode = 42;
(void)size;
TEST_INVALID_PARAM( mbedtls_aes_init( NULL ) );
#if defined(MBEDTLS_CIPHER_MODE_XTS)
TEST_INVALID_PARAM( mbedtls_aes_xts_init( NULL ) );
#endif
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_setkey_enc( NULL, key, 128 ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_setkey_enc( &aes_ctx, NULL, 128 ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_setkey_dec( NULL, key, 128 ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_setkey_dec( &aes_ctx, NULL, 128 ) );
#if defined(MBEDTLS_CIPHER_MODE_XTS)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_xts_setkey_enc( NULL, key, 128 ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_xts_setkey_enc( &xts_ctx, NULL, 128 ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_xts_setkey_dec( NULL, key, 128 ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_xts_setkey_dec( &xts_ctx, NULL, 128 ) );
#endif
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ecb( NULL,
valid_mode, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ecb( &aes_ctx,
invalid_mode, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ecb( &aes_ctx,
valid_mode, NULL, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ecb( &aes_ctx,
valid_mode, in, NULL ) );
#if defined(MBEDTLS_CIPHER_MODE_CBC)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cbc( NULL,
valid_mode, 16,
out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cbc( &aes_ctx,
invalid_mode, 16,
out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cbc( &aes_ctx,
valid_mode, 16,
NULL, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cbc( &aes_ctx,
valid_mode, 16,
out, NULL, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cbc( &aes_ctx,
valid_mode, 16,
out, in, NULL ) );
#endif /* MBEDTLS_CIPHER_MODE_CBC */
#if defined(MBEDTLS_CIPHER_MODE_XTS)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_xts( NULL,
valid_mode, 16,
in, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_xts( &xts_ctx,
invalid_mode, 16,
in, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_xts( &xts_ctx,
valid_mode, 16,
NULL, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_xts( &xts_ctx,
valid_mode, 16,
in, NULL, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_xts( &xts_ctx,
valid_mode, 16,
in, in, NULL ) );
#endif /* MBEDTLS_CIPHER_MODE_XTS */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb128( NULL,
valid_mode, 16,
&size, out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb128( &aes_ctx,
invalid_mode, 16,
&size, out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb128( &aes_ctx,
valid_mode, 16,
NULL, out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb128( &aes_ctx,
valid_mode, 16,
&size, NULL, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb128( &aes_ctx,
valid_mode, 16,
&size, out, NULL, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb128( &aes_ctx,
valid_mode, 16,
&size, out, in, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb8( NULL,
valid_mode, 16,
out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb8( &aes_ctx,
invalid_mode, 16,
out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb8( &aes_ctx,
valid_mode, 16,
NULL, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb8( &aes_ctx,
valid_mode, 16,
out, NULL, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_cfb8( &aes_ctx,
valid_mode, 16,
out, in, NULL ) );
#endif /* MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_OFB)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ofb( NULL, 16,
&size, out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ofb( &aes_ctx, 16,
NULL, out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ofb( &aes_ctx, 16,
&size, NULL, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ofb( &aes_ctx, 16,
&size, out, NULL, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ofb( &aes_ctx, 16,
&size, out, in, NULL ) );
#endif /* MBEDTLS_CIPHER_MODE_OFB */
#if defined(MBEDTLS_CIPHER_MODE_CTR)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ctr( NULL, 16, &size, out,
out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ctr( &aes_ctx, 16, NULL, out,
out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ctr( &aes_ctx, 16, &size, NULL,
out, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ctr( &aes_ctx, 16, &size, out,
NULL, in, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ctr( &aes_ctx, 16, &size, out,
out, NULL, out ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_AES_BAD_INPUT_DATA,
mbedtls_aes_crypt_ctr( &aes_ctx, 16, &size, out,
out, in, NULL ) );
#endif /* MBEDTLS_CIPHER_MODE_CTR */
exit:
;
}
void test_aes_check_params_wrapper( void ** params )
{
(void)params;
test_aes_check_params( );
}
#endif /* !MBEDTLS_PARAM_FAILED_ALT */
#endif /* MBEDTLS_CHECK_PARAMS */
void test_aes_misc_params( )
{
#if defined(MBEDTLS_CIPHER_MODE_CBC) || \
defined(MBEDTLS_CIPHER_MODE_XTS) || \
defined(MBEDTLS_CIPHER_MODE_CFB) || \
defined(MBEDTLS_CIPHER_MODE_OFB)
mbedtls_aes_context aes_ctx;
const unsigned char in[16] = { 0 };
unsigned char out[16];
#endif
#if defined(MBEDTLS_CIPHER_MODE_XTS)
mbedtls_aes_xts_context xts_ctx;
#endif
#if defined(MBEDTLS_CIPHER_MODE_CFB) || \
defined(MBEDTLS_CIPHER_MODE_OFB)
size_t size;
#endif
/* These calls accept NULL */
TEST_VALID_PARAM( mbedtls_aes_free( NULL ) );
#if defined(MBEDTLS_CIPHER_MODE_XTS)
TEST_VALID_PARAM( mbedtls_aes_xts_free( NULL ) );
#endif
#if defined(MBEDTLS_CIPHER_MODE_CBC)
TEST_ASSERT( mbedtls_aes_crypt_cbc( &aes_ctx, MBEDTLS_AES_ENCRYPT,
15,
out, in, out )
== MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH );
TEST_ASSERT( mbedtls_aes_crypt_cbc( &aes_ctx, MBEDTLS_AES_ENCRYPT,
17,
out, in, out )
== MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH );
#endif
#if defined(MBEDTLS_CIPHER_MODE_XTS)
TEST_ASSERT( mbedtls_aes_crypt_xts( &xts_ctx, MBEDTLS_AES_ENCRYPT,
15,
in, in, out )
== MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH );
TEST_ASSERT( mbedtls_aes_crypt_xts( &xts_ctx, MBEDTLS_AES_ENCRYPT,
(1 << 24) + 1,
in, in, out )
== MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH );
#endif
#if defined(MBEDTLS_CIPHER_MODE_CFB)
size = 16;
TEST_ASSERT( mbedtls_aes_crypt_cfb128( &aes_ctx, MBEDTLS_AES_ENCRYPT, 16,
&size, out, in, out )
== MBEDTLS_ERR_AES_BAD_INPUT_DATA );
#endif
#if defined(MBEDTLS_CIPHER_MODE_OFB)
size = 16;
TEST_ASSERT( mbedtls_aes_crypt_ofb( &aes_ctx, 16, &size, out, in, out )
== MBEDTLS_ERR_AES_BAD_INPUT_DATA );
#endif
exit:
;
}
void test_aes_misc_params_wrapper( void ** params )
{
(void)params;
test_aes_misc_params( );
}
#if defined(MBEDTLS_SELF_TEST)
void test_aes_selftest( )
{
TEST_ASSERT( mbedtls_aes_self_test( 1 ) == 0 );
exit:
;
}
void test_aes_selftest_wrapper( void ** params )
{
(void)params;
test_aes_selftest( );
}
#endif /* MBEDTLS_SELF_TEST */
#endif /* MBEDTLS_AES_C */
/*----------------------------------------------------------------------------*/
/* Test dispatch code */
/**
* \brief Evaluates an expression/macro into its literal integer value.
* For optimizing space for embedded targets each expression/macro
* is identified by a unique identifier instead of string literals.
* Identifiers and evaluation code is generated by script:
* generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh
*
* \param exp_id Expression identifier.
* \param out_value Pointer to int to hold the integer.
*
* \return 0 if exp_id is found. 1 otherwise.
*/
int get_expression( int32_t exp_id, int32_t * out_value )
{
int ret = KEY_VALUE_MAPPING_FOUND;
(void) exp_id;
(void) out_value;
switch( exp_id )
{
#if defined(MBEDTLS_AES_C)
#endif
default:
{
ret = KEY_VALUE_MAPPING_NOT_FOUND;
}
break;
}
return( ret );
}
/**
* \brief Checks if the dependency i.e. the compile flag is set.
* For optimizing space for embedded targets each dependency
* is identified by a unique identifier instead of string literals.
* Identifiers and check code is generated by script:
* generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh
*
* \param dep_id Dependency identifier.
*
* \return DEPENDENCY_SUPPORTED if set else DEPENDENCY_NOT_SUPPORTED
*/
int dep_check( int dep_id )
{
int ret = DEPENDENCY_NOT_SUPPORTED;
(void) dep_id;
switch( dep_id )
{
#if defined(MBEDTLS_AES_C)
case 0:
{
#if defined(MBEDTLS_CIPHER_MODE_OFB)
ret = DEPENDENCY_SUPPORTED;
#else
ret = DEPENDENCY_NOT_SUPPORTED;
#endif
}
break;
#endif
default:
break;
}
return( ret );
}
/**
* \brief Function pointer type for test function wrappers.
*
* A test function wrapper decodes the parameters and passes them to the
* underlying test function. Both the wrapper and the underlying function
* return void. Test wrappers assume that they are passed a suitable
* parameter array and do not perform any error detection.
*
* \param param_array The array of parameters. Each element is a `void *`
* which the wrapper casts to the correct type and
* dereferences. Each wrapper function hard-codes the
* number and types of the parameters.
*/
typedef void (*TestWrapper_t)( void **param_array );
/**
* \brief Table of test function wrappers. Used by dispatch_test().
* This table is populated by script:
* generate_test_code.py and then mbedtls_test_suite.sh and then mbedtls_test_suite.sh
*
*/
TestWrapper_t test_funcs[] =
{
/* Function Id: 0 */
#if defined(MBEDTLS_AES_C)
test_aes_encrypt_ecb_wrapper,
#else
NULL,
#endif
/* Function Id: 1 */
#if defined(MBEDTLS_AES_C)
test_aes_decrypt_ecb_wrapper,
#else
NULL,
#endif
/* Function Id: 2 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CBC)
test_aes_encrypt_cbc_wrapper,
#else
NULL,
#endif
/* Function Id: 3 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CBC)
test_aes_decrypt_cbc_wrapper,
#else
NULL,
#endif
/* Function Id: 4 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_XTS)
test_aes_encrypt_xts_wrapper,
#else
NULL,
#endif
/* Function Id: 5 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_XTS)
test_aes_decrypt_xts_wrapper,
#else
NULL,
#endif
/* Function Id: 6 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_XTS)
test_aes_crypt_xts_size_wrapper,
#else
NULL,
#endif
/* Function Id: 7 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_XTS)
test_aes_crypt_xts_keysize_wrapper,
#else
NULL,
#endif
/* Function Id: 8 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CFB)
test_aes_encrypt_cfb128_wrapper,
#else
NULL,
#endif
/* Function Id: 9 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CFB)
test_aes_decrypt_cfb128_wrapper,
#else
NULL,
#endif
/* Function Id: 10 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CFB)
test_aes_encrypt_cfb8_wrapper,
#else
NULL,
#endif
/* Function Id: 11 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_CFB)
test_aes_decrypt_cfb8_wrapper,
#else
NULL,
#endif
/* Function Id: 12 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CIPHER_MODE_OFB)
test_aes_encrypt_ofb_wrapper,
#else
NULL,
#endif
/* Function Id: 13 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_CHECK_PARAMS) && !defined(MBEDTLS_PARAM_FAILED_ALT)
test_aes_check_params_wrapper,
#else
NULL,
#endif
/* Function Id: 14 */
#if defined(MBEDTLS_AES_C)
test_aes_misc_params_wrapper,
#else
NULL,
#endif
/* Function Id: 15 */
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_SELF_TEST)
test_aes_selftest_wrapper,
#else
NULL,
#endif
};
/**
* \brief Execute the test function.
*
* This is a wrapper function around the test function execution
* to allow the setjmp() call used to catch any calls to the
* parameter failure callback, to be used. Calls to setjmp()
* can invalidate the state of any local auto variables.
*
* \param fp Function pointer to the test function.
* \param params Parameters to pass to the #TestWrapper_t wrapper function.
*
*/
void execute_function_ptr(TestWrapper_t fp, void **params)
{
#if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
mbedtls_test_enable_insecure_external_rng( );
#endif
#if defined(MBEDTLS_CHECK_PARAMS)
mbedtls_test_param_failed_location_record_t location_record;
if ( setjmp( mbedtls_test_param_failed_get_state_buf( ) ) == 0 )
{
fp( params );
}
else
{
/* Unexpected parameter validation error */
mbedtls_test_param_failed_get_location_record( &location_record );
mbedtls_test_fail( location_record.failure_condition,
location_record.line,
location_record.file );
}
mbedtls_test_param_failed_reset_state( );
#else
fp( params );
#endif
#if defined(MBEDTLS_TEST_MUTEX_USAGE)
mbedtls_test_mutex_usage_check( );
#endif /* MBEDTLS_TEST_MUTEX_USAGE */
}
/**
* \brief Dispatches test functions based on function index.
*
* \param func_idx Test function index.
* \param params The array of parameters to pass to the test function.
* It will be decoded by the #TestWrapper_t wrapper function.
*
* \return DISPATCH_TEST_SUCCESS if found
* DISPATCH_TEST_FN_NOT_FOUND if not found
* DISPATCH_UNSUPPORTED_SUITE if not compile time enabled.
*/
int dispatch_test( size_t func_idx, void ** params )
{
int ret = DISPATCH_TEST_SUCCESS;
TestWrapper_t fp = NULL;
if ( func_idx < (int)( sizeof( test_funcs ) / sizeof( TestWrapper_t ) ) )
{
fp = test_funcs[func_idx];
if ( fp )
execute_function_ptr(fp, params);
else
ret = DISPATCH_UNSUPPORTED_SUITE;
}
else
{
ret = DISPATCH_TEST_FN_NOT_FOUND;
}
return( ret );
}
/**
* \brief Checks if test function is supported in this build-time
* configuration.
*
* \param func_idx Test function index.
*
* \return DISPATCH_TEST_SUCCESS if found
* DISPATCH_TEST_FN_NOT_FOUND if not found
* DISPATCH_UNSUPPORTED_SUITE if not compile time enabled.
*/
int check_test( size_t func_idx )
{
int ret = DISPATCH_TEST_SUCCESS;
TestWrapper_t fp = NULL;
if ( func_idx < (int)( sizeof(test_funcs)/sizeof( TestWrapper_t ) ) )
{
fp = test_funcs[func_idx];
if ( fp == NULL )
ret = DISPATCH_UNSUPPORTED_SUITE;
}
else
{
ret = DISPATCH_TEST_FN_NOT_FOUND;
}
return( ret );
}
int main( int argc, const char *argv[] )
{
int ret;
mbedtls_test_platform_setup();
ret = execute_tests( argc, argv, "/zip/third_party/mbedtls/test/test_suite_aes.ofb.datax" );
mbedtls_test_platform_teardown();
return( ret );
}