cosmopolitan/third_party/nsync/mu_semaphore.c
Justine Tunney 957c61cbbf
Release Cosmopolitan v3.3
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.

This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.

Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.

OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().

This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.

We no longer use hex constants to define math.h symbols like M_PI.
2024-02-20 13:27:59 -08:00

85 lines
4.1 KiB
C

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
│ vi: set noet ft=c ts=8 sw=8 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2016 Google Inc. │
│ │
│ Licensed under the Apache License, Version 2.0 (the "License"); │
│ you may not use this file except in compliance with the License. │
│ You may obtain a copy of the License at │
│ │
│ http://www.apache.org/licenses/LICENSE-2.0 │
│ │
│ Unless required by applicable law or agreed to in writing, software │
│ distributed under the License is distributed on an "AS IS" BASIS, │
│ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. │
│ See the License for the specific language governing permissions and │
│ limitations under the License. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/nsync/mu_semaphore.h"
#include "libc/calls/cp.internal.h"
#include "libc/dce.h"
#include "third_party/nsync/mu_semaphore.internal.h"
__static_yoink("nsync_notice");
/* Apple's ulock (part by Cosmo futexes) is an internal API, but:
1. Unlike GCD it's cancellable, i.e. can be EINTR'd by signals
2. We currently always use ulock anyway for joining threads */
#define PREFER_GCD_OVER_ULOCK 1
/* Initialize *s; the initial value is 0. */
void nsync_mu_semaphore_init (nsync_semaphore *s) {
if (PREFER_GCD_OVER_ULOCK && IsXnuSilicon ()) {
return nsync_mu_semaphore_init_gcd (s);
} else if (IsNetbsd ()) {
return nsync_mu_semaphore_init_sem (s);
} else {
return nsync_mu_semaphore_init_futex (s);
}
}
/* Wait until the count of *s exceeds 0, and decrement it. If POSIX cancellations
are currently disabled by the thread, then this function always succeeds. When
they're enabled in MASKED mode, this function may return ECANCELED. Otherwise,
cancellation will occur by unwinding cleanup handlers pushed to the stack. */
errno_t nsync_mu_semaphore_p (nsync_semaphore *s) {
errno_t err;
BEGIN_CANCELATION_POINT;
if (PREFER_GCD_OVER_ULOCK && IsXnuSilicon ()) {
err = nsync_mu_semaphore_p_gcd (s);
} else if (IsNetbsd ()) {
err = nsync_mu_semaphore_p_sem (s);
} else {
err = nsync_mu_semaphore_p_futex (s);
}
END_CANCELATION_POINT;
return err;
}
/* Like nsync_mu_semaphore_p() this waits for the count of *s to exceed 0,
while additionally supporting a time parameter specifying at what point
in the future ETIMEDOUT should be returned, if neither cancelation, or
semaphore release happens. */
errno_t nsync_mu_semaphore_p_with_deadline (nsync_semaphore *s, nsync_time abs_deadline) {
errno_t err;
BEGIN_CANCELATION_POINT;
if (PREFER_GCD_OVER_ULOCK && IsXnuSilicon ()) {
err = nsync_mu_semaphore_p_with_deadline_gcd (s, abs_deadline);
} else if (IsNetbsd ()) {
err = nsync_mu_semaphore_p_with_deadline_sem (s, abs_deadline);
} else {
err = nsync_mu_semaphore_p_with_deadline_futex (s, abs_deadline);
}
END_CANCELATION_POINT;
return err;
}
/* Ensure that the count of *s is at least 1. */
void nsync_mu_semaphore_v (nsync_semaphore *s) {
if (PREFER_GCD_OVER_ULOCK && IsXnuSilicon ()) {
return nsync_mu_semaphore_v_gcd (s);
} else if (IsNetbsd ()) {
return nsync_mu_semaphore_v_sem (s);
} else {
return nsync_mu_semaphore_v_futex (s);
}
}