cosmopolitan/third_party/python/Modules/_sqlite/connection.h
Justine Tunney b420ed8248 Undiamond Python headers
This change gets the Python codebase into a state where it conforms to
the conventions of this codebase. It's now possible to include headers
from Python, without worrying about ordering. Python has traditionally
solved that problem by "diamonding" everything in Python.h, but that's
problematic since it means any change to any Python header invalidates
all the build artifacts. Lastly it makes tooling not work. Since it is
hard to explain to Emacs when I press C-c C-h to add an import line it
shouldn't add the header that actually defines the symbol, and instead
do follow the nonstandard Python convention.

Progress has been made on letting Python load source code from the zip
executable structure via the standard C library APIs. System calss now
recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME
since Python uses colon as its delimiter.

Some progress has been made on embedding the notice license terms into
the Python object code. This is easier said than done since Python has
an extremely complicated ownership story.

- Some termios APIs have been added
- Implement rewinddir() dirstream API
- GetCpuCount() API added to Cosmopolitan Libc
- More bugs in Cosmopolitan Libc have been fixed
- zipobj.com now has flags for mangling the path
- Fixed bug a priori with sendfile() on certain BSDs
- Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms
- FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes
- APE now supports a hybrid solution to no-self-modify for builds
- Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
2021-08-12 14:07:40 -07:00

103 lines
3.8 KiB
C

#ifndef PYSQLITE_CONNECTION_H
#define PYSQLITE_CONNECTION_H
#include "third_party/python/Include/Python.h"
#include "third_party/python/Include/pythread.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Modules/_sqlite/cache.h"
#include "third_party/python/Modules/_sqlite/module.h"
#include "third_party/sqlite3/sqlite3.h"
/* clang-format off */
typedef struct
{
PyObject_HEAD
sqlite3* db;
/* the type detection mode. Only 0, PARSE_DECLTYPES, PARSE_COLNAMES or a
* bitwise combination thereof makes sense */
int detect_types;
/* the timeout value in seconds for database locks */
double timeout;
/* for internal use in the timeout handler: when did the timeout handler
* first get called with count=0? */
double timeout_started;
/* None for autocommit, otherwise a PyUnicode with the isolation level */
PyObject* isolation_level;
/* NULL for autocommit, otherwise a string with the BEGIN statement */
const char* begin_statement;
/* 1 if a check should be performed for each API call if the connection is
* used from the same thread it was created in */
int check_same_thread;
int initialized;
/* thread identification of the thread the connection was created in */
long thread_ident;
pysqlite_Cache* statement_cache;
/* Lists of weak references to statements and cursors used within this connection */
PyObject* statements;
PyObject* cursors;
/* Counters for how many statements/cursors were created in the connection. May be
* reset to 0 at certain intervals */
int created_statements;
int created_cursors;
PyObject* row_factory;
/* Determines how bytestrings from SQLite are converted to Python objects:
* - PyUnicode_Type: Python Unicode objects are constructed from UTF-8 bytestrings
* - PyBytes_Type: The bytestrings are returned as-is.
* - Any custom callable: Any object returned from the callable called with the bytestring
* as single parameter.
*/
PyObject* text_factory;
/* remember references to functions/classes used in
* create_function/create/aggregate, use these as dictionary keys, so we
* can keep the total system refcount constant by clearing that dictionary
* in connection_dealloc */
PyObject* function_pinboard;
/* a dictionary of registered collation name => collation callable mappings */
PyObject* collations;
/* Exception objects */
PyObject* Warning;
PyObject* Error;
PyObject* InterfaceError;
PyObject* DatabaseError;
PyObject* DataError;
PyObject* OperationalError;
PyObject* IntegrityError;
PyObject* InternalError;
PyObject* ProgrammingError;
PyObject* NotSupportedError;
} pysqlite_Connection;
extern PyTypeObject pysqlite_ConnectionType;
PyObject* pysqlite_connection_alloc(PyTypeObject* type, int aware);
void pysqlite_connection_dealloc(pysqlite_Connection* self);
PyObject* pysqlite_connection_cursor(pysqlite_Connection* self, PyObject* args, PyObject* kwargs);
PyObject* pysqlite_connection_close(pysqlite_Connection* self, PyObject* args);
PyObject* _pysqlite_connection_begin(pysqlite_Connection* self);
PyObject* pysqlite_connection_commit(pysqlite_Connection* self, PyObject* args);
PyObject* pysqlite_connection_rollback(pysqlite_Connection* self, PyObject* args);
PyObject* pysqlite_connection_new(PyTypeObject* type, PyObject* args, PyObject* kw);
int pysqlite_connection_init(pysqlite_Connection* self, PyObject* args, PyObject* kwargs);
int pysqlite_connection_register_cursor(pysqlite_Connection* connection, PyObject* cursor);
int pysqlite_check_thread(pysqlite_Connection* self);
int pysqlite_check_connection(pysqlite_Connection* con);
int pysqlite_connection_setup_types(void);
#endif