cosmopolitan/third_party/ggml/ggjt.v2.q8_0.c
Justine Tunney 8fdb31681a
Introduce support for GGJT v3 file format
llama.com can now load weights that use the new file format which was
introduced a few weeks ago. Note that, unlike llama.cpp, we will keep
support for old file formats in our tool so you don't need to convert
your weights when the upstream project makes breaking changes. Please
note that using ggjt v3 does make avx2 inference go 5% faster for me.
2023-06-03 15:46:21 -07:00

332 lines
13 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
╚──────────────────────────────────────────────────────────────────────────────╝
│ │
│ GGML │
│ Copyright (c) 2023 Georgi Gerganov │
│ │
│ Permission is hereby granted, free of charge, to any person obtaining │
│ a copy of this software and associated documentation files (the │
│ "Software"), to deal in the Software without restriction, including │
│ without limitation the rights to use, copy, modify, merge, publish, │
│ distribute, sublicense, and/or sell copies of the Software, and to │
│ permit persons to whom the Software is furnished to do so, subject to │
│ the following conditions: │
│ │
│ The above copyright notice and this permission notice shall be │
│ included in all copies or substantial portions of the Software. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
│ │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/ggml/ggjt.v2.q8_0.h"
#include "libc/assert.h"
#include "libc/macros.internal.h"
#include "libc/math.h"
#include "third_party/ggml/ggjt.v2.internal.h"
// clang-format off
static_assert(sizeof(block_v2_q8_0) == sizeof(float) + V2_QK8_0,
"wrong q8_0 block size/padding");
void dequantize_row_v2_q8_0(const void * restrict vx, float * restrict y, int k) {
static const int qk = V2_QK8_0;
assert(k % qk == 0);
const int nb = k / qk;
const block_v2_q8_0 * restrict x = vx;
for (int i = 0; i < nb; i++) {
const float d = x[i].d;
for (int j = 0; j < qk; ++j) {
y[i*qk + j] = x[i].qs[j]*d;
}
}
}
void quantize_row_v2_q8_0(const float * restrict x, void * restrict vy, int k) {
assert(V2_QK8_0 == 32);
assert(k % V2_QK8_0 == 0);
const int nb = k / V2_QK8_0;
block_v2_q8_0 * restrict y = vy;
#if defined(__ARM_NEON)
for (int i = 0; i < nb; i++) {
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
const float amax = vmaxvq_f32(amaxv[0]);
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = d;
for (int j = 0; j < 8; j++) {
const float32x4_t v = vmulq_n_f32(srcv[j], id);
const int32x4_t vi = vcvtnq_s32_f32(v);
y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
}
}
#elif defined(__AVX2__) || defined(__AVX__)
for (int i = 0; i < nb; i++) {
// Load elements into 4 AVX vectors
__m256 v0 = _mm256_loadu_ps( x );
__m256 v1 = _mm256_loadu_ps( x + 8 );
__m256 v2 = _mm256_loadu_ps( x + 16 );
__m256 v3 = _mm256_loadu_ps( x + 24 );
x += 32;
// Compute max(abs(e)) for the block
const __m256 signBit = _mm256_set1_ps( -0.0f );
__m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
const float maxScalar = _mm_cvtss_f32( max4 );
// Quantize these floats
const float d = maxScalar / 127.f;
y[i].d = d;
const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
const __m256 mul = _mm256_set1_ps( id );
// Apply the multiplier
v0 = _mm256_mul_ps( v0, mul );
v1 = _mm256_mul_ps( v1, mul );
v2 = _mm256_mul_ps( v2, mul );
v3 = _mm256_mul_ps( v3, mul );
// Round to nearest integer
v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
// Convert floats to integers
__m256i i0 = _mm256_cvtps_epi32( v0 );
__m256i i1 = _mm256_cvtps_epi32( v1 );
__m256i i2 = _mm256_cvtps_epi32( v2 );
__m256i i3 = _mm256_cvtps_epi32( v3 );
#if defined(__AVX2__)
// Convert int32 to int16
i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
// Convert int16 to int8
i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
// We got our precious signed bytes, but the order is now wrong
// These AVX2 pack instructions process 16-byte pieces independently
// The following instruction is fixing the order
const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
i0 = _mm256_permutevar8x32_epi32( i0, perm );
_mm256_storeu_si256((__m256i *)y[i].qs, i0);
#else
// Since we don't have in AVX some necessary functions,
// we split the registers in half and call AVX2 analogs from SSE
__m128i ni0 = _mm256_castsi256_si128( i0 );
__m128i ni1 = _mm256_extractf128_si256( i0, 1);
__m128i ni2 = _mm256_castsi256_si128( i1 );
__m128i ni3 = _mm256_extractf128_si256( i1, 1);
__m128i ni4 = _mm256_castsi256_si128( i2 );
__m128i ni5 = _mm256_extractf128_si256( i2, 1);
__m128i ni6 = _mm256_castsi256_si128( i3 );
__m128i ni7 = _mm256_extractf128_si256( i3, 1);
// Convert int32 to int16
ni0 = _mm_packs_epi32( ni0, ni1 );
ni2 = _mm_packs_epi32( ni2, ni3 );
ni4 = _mm_packs_epi32( ni4, ni5 );
ni6 = _mm_packs_epi32( ni6, ni7 );
// Convert int16 to int8
ni0 = _mm_packs_epi16( ni0, ni2 );
ni4 = _mm_packs_epi16( ni4, ni6 );
_mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
}
#else
// scalar
quantize_row_q8_0_reference(x, y, k);
#endif
}
size_t ggml_quantize_v2_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % V2_QK8_0 == 0);
const int nb = k / V2_QK8_0;
for (int b = 0; b < n; b += k) {
block_v2_q8_0 * restrict y = (block_v2_q8_0 *)dst + b/V2_QK8_0;
quantize_row_v2_q8_0_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
for (int j = 0; j < V2_QK8_0; ++j) {
const int8_t vi = y[i].qs[j];
hist[vi/16 + 8]++;
}
}
}
return (n/V2_QK8_0*sizeof(block_v2_q8_0));
}
void ggml_vec_dot_v2_q8_0_q8_0(const int n,
float * restrict s,
const void * restrict vx,
const void * restrict vy) {
const int qk = V2_QK8_0;
const int nb = n / qk;
assert(n % qk == 0);
assert(nb % 2 == 0);
const block_v2_q8_0 * restrict x = vx;
const block_v2_q8_0 * restrict y = vy;
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
for (int i = 0; i < nb; i += 2) {
const block_v2_q8_0 * restrict x0 = &x[i + 0];
const block_v2_q8_0 * restrict x1 = &x[i + 1];
const block_v2_q8_0 * restrict y0 = &y[i + 0];
const block_v2_q8_0 * restrict y1 = &y[i + 1];
const int8x16_t x0_0 = vld1q_s8(x0->qs);
const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
const int8x16_t x1_0 = vld1q_s8(x1->qs);
const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
// load y
const int8x16_t y0_0 = vld1q_s8(y0->qs);
const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
const int8x16_t y1_0 = vld1q_s8(y1->qs);
const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
#else
const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
#endif
}
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
#elif defined(__AVX2__) || defined(__AVX__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
// Main loop
for (int i = 0; i < nb; ++i) {
// Compute combined scale for the block
const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
__m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_i8_pairs_float(bx, by);
// Multiply q with scale and accumulate
#if defined(__AVX2__)
acc = _mm256_fmadd_ps( d, q, acc );
#else
acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
#endif
}
*s = hsum_float_8(acc);
#else
// scalar
float sumf = 0.0;
for (int i = 0; i < nb; i++) {
int sumi = 0;
for (int j = 0; j < qk; j++) {
sumi += x[i].qs[j]*y[i].qs[j];
}
sumf += (x[i].d*y[i].d)*sumi;
}
*s = sumf;
#endif
}
void quantize_row_v2_q8_0_reference(const float * restrict x, block_v2_q8_0 * restrict y, int k) {
assert(k % V2_QK8_0 == 0);
const int nb = k / V2_QK8_0;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < V2_QK8_0; j++) {
const float v = x[i*V2_QK8_0 + j];
amax = MAX(amax, fabsf(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = d;
for (int j = 0; j < V2_QK8_0; ++j) {
const float x0 = x[i*V2_QK8_0 + j]*id;
y[i].qs[j] = roundf(x0);
}
}
}