mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 19:43:32 +00:00
112 lines
4.9 KiB
C
112 lines
4.9 KiB
C
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│
|
|
╚──────────────────────────────────────────────────────────────────────────────╝
|
|
│ │
|
|
│ Musl Libc │
|
|
│ Copyright © 2005-2014 Rich Felker, et al. │
|
|
│ │
|
|
│ Permission is hereby granted, free of charge, to any person obtaining │
|
|
│ a copy of this software and associated documentation files (the │
|
|
│ "Software"), to deal in the Software without restriction, including │
|
|
│ without limitation the rights to use, copy, modify, merge, publish, │
|
|
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
|
│ permit persons to whom the Software is furnished to do so, subject to │
|
|
│ the following conditions: │
|
|
│ │
|
|
│ The above copyright notice and this permission notice shall be │
|
|
│ included in all copies or substantial portions of the Software. │
|
|
│ │
|
|
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
|
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
|
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
|
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
|
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
|
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
|
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
|
│ │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "libc/math.h"
|
|
#include "libc/tinymath/feval.internal.h"
|
|
#include "libc/tinymath/kernel.internal.h"
|
|
|
|
asm(".ident\t\"\\n\\n\
|
|
fdlibm (fdlibm license)\\n\
|
|
Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.\"");
|
|
asm(".ident\t\"\\n\\n\
|
|
Musl libc (MIT License)\\n\
|
|
Copyright 2005-2014 Rich Felker, et. al.\"");
|
|
asm(".include \"libc/disclaimer.inc\"");
|
|
/* clang-format off */
|
|
|
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#define asuint64(f) ((union{double _f; uint64_t _i;}){f})._i
|
|
#define gethighw(hi,d) (hi) = asuint64(d) >> 32
|
|
|
|
/* tan(x)
|
|
* Return tangent function of x.
|
|
*
|
|
* kernel function:
|
|
* __tan ... tangent function on [-pi/4,pi/4]
|
|
* __rem_pio2 ... argument reduction routine
|
|
*
|
|
* Method.
|
|
* Let S,C and T denote the sin, cos and tan respectively on
|
|
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
* We have
|
|
*
|
|
* n sin(x) cos(x) tan(x)
|
|
* ----------------------------------------------------------
|
|
* 0 S C T
|
|
* 1 C -S -1/T
|
|
* 2 -S -C T
|
|
* 3 -C S -1/T
|
|
* ----------------------------------------------------------
|
|
*
|
|
* Special cases:
|
|
* Let trig be any of sin, cos, or tan.
|
|
* trig(+-INF) is NaN, with signals;
|
|
* trig(NaN) is that NaN;
|
|
*
|
|
* Accuracy:
|
|
* TRIG(x) returns trig(x) nearly rounded
|
|
*/
|
|
|
|
double tan(double x)
|
|
{
|
|
double y[2];
|
|
uint32_t ix;
|
|
unsigned n;
|
|
|
|
gethighw(ix, x);
|
|
ix &= 0x7fffffff;
|
|
|
|
/* |x| ~< pi/4 */
|
|
if (ix <= 0x3fe921fb) {
|
|
if (ix < 0x3e400000) { /* |x| < 2**-27 */
|
|
/* raise inexact if x!=0 and underflow if subnormal */
|
|
feval(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
|
|
return x;
|
|
}
|
|
return __tan(x, 0.0, 0);
|
|
}
|
|
|
|
/* tan(Inf or NaN) is NaN */
|
|
if (ix >= 0x7ff00000)
|
|
return x - x;
|
|
|
|
/* argument reduction */
|
|
n = __rem_pio2(x, y);
|
|
return __tan(y[0], y[1], n&1);
|
|
}
|