mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
5660ec4741
This release is an atomic upgrade to GCC 14.1.0 with C23 and C++23
198 lines
6.3 KiB
C++
198 lines
6.3 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef _LIBCPP___RANDOM_BINOMIAL_DISTRIBUTION_H
|
|
#define _LIBCPP___RANDOM_BINOMIAL_DISTRIBUTION_H
|
|
|
|
#include <__config>
|
|
#include <__random/is_valid.h>
|
|
#include <__random/uniform_real_distribution.h>
|
|
#include <cmath>
|
|
#include <iosfwd>
|
|
|
|
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
|
|
# pragma GCC system_header
|
|
#endif
|
|
|
|
_LIBCPP_PUSH_MACROS
|
|
#include <__undef_macros>
|
|
|
|
_LIBCPP_BEGIN_NAMESPACE_STD
|
|
|
|
template <class _IntType = int>
|
|
class _LIBCPP_TEMPLATE_VIS binomial_distribution {
|
|
static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type");
|
|
|
|
public:
|
|
// types
|
|
typedef _IntType result_type;
|
|
|
|
class _LIBCPP_TEMPLATE_VIS param_type {
|
|
result_type __t_;
|
|
double __p_;
|
|
double __pr_;
|
|
double __odds_ratio_;
|
|
result_type __r0_;
|
|
|
|
public:
|
|
typedef binomial_distribution distribution_type;
|
|
|
|
_LIBCPP_HIDE_FROM_ABI explicit param_type(result_type __t = 1, double __p = 0.5);
|
|
|
|
_LIBCPP_HIDE_FROM_ABI result_type t() const { return __t_; }
|
|
_LIBCPP_HIDE_FROM_ABI double p() const { return __p_; }
|
|
|
|
friend _LIBCPP_HIDE_FROM_ABI bool operator==(const param_type& __x, const param_type& __y) {
|
|
return __x.__t_ == __y.__t_ && __x.__p_ == __y.__p_;
|
|
}
|
|
friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const param_type& __x, const param_type& __y) { return !(__x == __y); }
|
|
|
|
friend class binomial_distribution;
|
|
};
|
|
|
|
private:
|
|
param_type __p_;
|
|
|
|
public:
|
|
// constructors and reset functions
|
|
#ifndef _LIBCPP_CXX03_LANG
|
|
_LIBCPP_HIDE_FROM_ABI binomial_distribution() : binomial_distribution(1) {}
|
|
_LIBCPP_HIDE_FROM_ABI explicit binomial_distribution(result_type __t, double __p = 0.5)
|
|
: __p_(param_type(__t, __p)) {}
|
|
#else
|
|
_LIBCPP_HIDE_FROM_ABI explicit binomial_distribution(result_type __t = 1, double __p = 0.5)
|
|
: __p_(param_type(__t, __p)) {}
|
|
#endif
|
|
_LIBCPP_HIDE_FROM_ABI explicit binomial_distribution(const param_type& __p) : __p_(__p) {}
|
|
_LIBCPP_HIDE_FROM_ABI void reset() {}
|
|
|
|
// generating functions
|
|
template <class _URNG>
|
|
_LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g) {
|
|
return (*this)(__g, __p_);
|
|
}
|
|
template <class _URNG>
|
|
_LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g, const param_type& __p);
|
|
|
|
// property functions
|
|
_LIBCPP_HIDE_FROM_ABI result_type t() const { return __p_.t(); }
|
|
_LIBCPP_HIDE_FROM_ABI double p() const { return __p_.p(); }
|
|
|
|
_LIBCPP_HIDE_FROM_ABI param_type param() const { return __p_; }
|
|
_LIBCPP_HIDE_FROM_ABI void param(const param_type& __p) { __p_ = __p; }
|
|
|
|
_LIBCPP_HIDE_FROM_ABI result_type min() const { return 0; }
|
|
_LIBCPP_HIDE_FROM_ABI result_type max() const { return t(); }
|
|
|
|
friend _LIBCPP_HIDE_FROM_ABI bool operator==(const binomial_distribution& __x, const binomial_distribution& __y) {
|
|
return __x.__p_ == __y.__p_;
|
|
}
|
|
friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const binomial_distribution& __x, const binomial_distribution& __y) {
|
|
return !(__x == __y);
|
|
}
|
|
};
|
|
|
|
#ifndef _LIBCPP_MSVCRT_LIKE
|
|
extern "C" double lgamma_r(double, int*);
|
|
#endif
|
|
|
|
inline _LIBCPP_HIDE_FROM_ABI double __libcpp_lgamma(double __d) {
|
|
#if defined(_LIBCPP_MSVCRT_LIKE)
|
|
return lgamma(__d);
|
|
#else
|
|
int __sign;
|
|
return lgamma_r(__d, &__sign);
|
|
#endif
|
|
}
|
|
|
|
template <class _IntType>
|
|
binomial_distribution<_IntType>::param_type::param_type(result_type __t, double __p) : __t_(__t), __p_(__p) {
|
|
if (0 < __p_ && __p_ < 1) {
|
|
__r0_ = static_cast<result_type>((__t_ + 1) * __p_);
|
|
__pr_ = std::exp(
|
|
std::__libcpp_lgamma(__t_ + 1.) - std::__libcpp_lgamma(__r0_ + 1.) - std::__libcpp_lgamma(__t_ - __r0_ + 1.) +
|
|
__r0_ * std::log(__p_) + (__t_ - __r0_) * std::log(1 - __p_));
|
|
__odds_ratio_ = __p_ / (1 - __p_);
|
|
}
|
|
}
|
|
|
|
// Reference: Kemp, C.D. (1986). `A modal method for generating binomial
|
|
// variables', Commun. Statist. - Theor. Meth. 15(3), 805-813.
|
|
template <class _IntType>
|
|
template <class _URNG>
|
|
_IntType binomial_distribution<_IntType>::operator()(_URNG& __g, const param_type& __pr) {
|
|
static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "");
|
|
if (__pr.__t_ == 0 || __pr.__p_ == 0)
|
|
return 0;
|
|
if (__pr.__p_ == 1)
|
|
return __pr.__t_;
|
|
uniform_real_distribution<double> __gen;
|
|
double __u = __gen(__g) - __pr.__pr_;
|
|
if (__u < 0)
|
|
return __pr.__r0_;
|
|
double __pu = __pr.__pr_;
|
|
double __pd = __pu;
|
|
result_type __ru = __pr.__r0_;
|
|
result_type __rd = __ru;
|
|
while (true) {
|
|
bool __break = true;
|
|
if (__rd >= 1) {
|
|
__pd *= __rd / (__pr.__odds_ratio_ * (__pr.__t_ - __rd + 1));
|
|
__u -= __pd;
|
|
__break = false;
|
|
if (__u < 0)
|
|
return __rd - 1;
|
|
}
|
|
if (__rd != 0)
|
|
--__rd;
|
|
++__ru;
|
|
if (__ru <= __pr.__t_) {
|
|
__pu *= (__pr.__t_ - __ru + 1) * __pr.__odds_ratio_ / __ru;
|
|
__u -= __pu;
|
|
__break = false;
|
|
if (__u < 0)
|
|
return __ru;
|
|
}
|
|
if (__break)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
template <class _CharT, class _Traits, class _IntType>
|
|
_LIBCPP_HIDE_FROM_ABI basic_ostream<_CharT, _Traits>&
|
|
operator<<(basic_ostream<_CharT, _Traits>& __os, const binomial_distribution<_IntType>& __x) {
|
|
__save_flags<_CharT, _Traits> __lx(__os);
|
|
typedef basic_ostream<_CharT, _Traits> _OStream;
|
|
__os.flags(_OStream::dec | _OStream::left | _OStream::fixed | _OStream::scientific);
|
|
_CharT __sp = __os.widen(' ');
|
|
__os.fill(__sp);
|
|
return __os << __x.t() << __sp << __x.p();
|
|
}
|
|
|
|
template <class _CharT, class _Traits, class _IntType>
|
|
_LIBCPP_HIDE_FROM_ABI basic_istream<_CharT, _Traits>&
|
|
operator>>(basic_istream<_CharT, _Traits>& __is, binomial_distribution<_IntType>& __x) {
|
|
typedef binomial_distribution<_IntType> _Eng;
|
|
typedef typename _Eng::result_type result_type;
|
|
typedef typename _Eng::param_type param_type;
|
|
__save_flags<_CharT, _Traits> __lx(__is);
|
|
typedef basic_istream<_CharT, _Traits> _Istream;
|
|
__is.flags(_Istream::dec | _Istream::skipws);
|
|
result_type __t;
|
|
double __p;
|
|
__is >> __t >> __p;
|
|
if (!__is.fail())
|
|
__x.param(param_type(__t, __p));
|
|
return __is;
|
|
}
|
|
|
|
_LIBCPP_END_NAMESPACE_STD
|
|
|
|
_LIBCPP_POP_MACROS
|
|
|
|
#endif // _LIBCPP___RANDOM_BINOMIAL_DISTRIBUTION_H
|