mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 03:27:39 +00:00
2052 lines
62 KiB
C
2052 lines
62 KiB
C
/*
|
|
** 2004 May 26
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains code use to implement APIs that are part of the
|
|
** VDBE.
|
|
*/
|
|
#include "third_party/sqlite3/sqliteInt.inc"
|
|
#include "third_party/sqlite3/vdbeInt.inc"
|
|
/* clang-format off */
|
|
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
/*
|
|
** Return TRUE (non-zero) of the statement supplied as an argument needs
|
|
** to be recompiled. A statement needs to be recompiled whenever the
|
|
** execution environment changes in a way that would alter the program
|
|
** that sqlite3_prepare() generates. For example, if new functions or
|
|
** collating sequences are registered or if an authorizer function is
|
|
** added or changed.
|
|
*/
|
|
int sqlite3_expired(sqlite3_stmt *pStmt){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
return p==0 || p->expired;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Check on a Vdbe to make sure it has not been finalized. Log
|
|
** an error and return true if it has been finalized (or is otherwise
|
|
** invalid). Return false if it is ok.
|
|
*/
|
|
static int vdbeSafety(Vdbe *p){
|
|
if( p->db==0 ){
|
|
sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
|
|
return 1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
static int vdbeSafetyNotNull(Vdbe *p){
|
|
if( p==0 ){
|
|
sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
|
|
return 1;
|
|
}else{
|
|
return vdbeSafety(p);
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/*
|
|
** Invoke the profile callback. This routine is only called if we already
|
|
** know that the profile callback is defined and needs to be invoked.
|
|
*/
|
|
static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
|
|
sqlite3_int64 iNow;
|
|
sqlite3_int64 iElapse;
|
|
assert( p->startTime>0 );
|
|
assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
|
|
assert( db->init.busy==0 );
|
|
assert( p->zSql!=0 );
|
|
sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
|
|
iElapse = (iNow - p->startTime)*1000000;
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
if( db->xProfile ){
|
|
db->xProfile(db->pProfileArg, p->zSql, iElapse);
|
|
}
|
|
#endif
|
|
if( db->mTrace & SQLITE_TRACE_PROFILE ){
|
|
db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
|
|
}
|
|
p->startTime = 0;
|
|
}
|
|
/*
|
|
** The checkProfileCallback(DB,P) macro checks to see if a profile callback
|
|
** is needed, and it invokes the callback if it is needed.
|
|
*/
|
|
# define checkProfileCallback(DB,P) \
|
|
if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
|
|
#else
|
|
# define checkProfileCallback(DB,P) /*no-op*/
|
|
#endif
|
|
|
|
/*
|
|
** The following routine destroys a virtual machine that is created by
|
|
** the sqlite3_compile() routine. The integer returned is an SQLITE_
|
|
** success/failure code that describes the result of executing the virtual
|
|
** machine.
|
|
**
|
|
** This routine sets the error code and string returned by
|
|
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
|
*/
|
|
int sqlite3_finalize(sqlite3_stmt *pStmt){
|
|
int rc;
|
|
if( pStmt==0 ){
|
|
/* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
|
|
** pointer is a harmless no-op. */
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
sqlite3 *db = v->db;
|
|
if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
checkProfileCallback(db, v);
|
|
rc = sqlite3VdbeFinalize(v);
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3LeaveMutexAndCloseZombie(db);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Terminate the current execution of an SQL statement and reset it
|
|
** back to its starting state so that it can be reused. A success code from
|
|
** the prior execution is returned.
|
|
**
|
|
** This routine sets the error code and string returned by
|
|
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
|
*/
|
|
int sqlite3_reset(sqlite3_stmt *pStmt){
|
|
int rc;
|
|
if( pStmt==0 ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
sqlite3 *db = v->db;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
checkProfileCallback(db, v);
|
|
rc = sqlite3VdbeReset(v);
|
|
sqlite3VdbeRewind(v);
|
|
assert( (rc & (db->errMask))==rc );
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Set all the parameters in the compiled SQL statement to NULL.
|
|
*/
|
|
int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
|
|
int i;
|
|
int rc = SQLITE_OK;
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
#if SQLITE_THREADSAFE
|
|
sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
|
|
#endif
|
|
sqlite3_mutex_enter(mutex);
|
|
for(i=0; i<p->nVar; i++){
|
|
sqlite3VdbeMemRelease(&p->aVar[i]);
|
|
p->aVar[i].flags = MEM_Null;
|
|
}
|
|
assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
|
|
if( p->expmask ){
|
|
p->expired = 1;
|
|
}
|
|
sqlite3_mutex_leave(mutex);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/**************************** sqlite3_value_ *******************************
|
|
** The following routines extract information from a Mem or sqlite3_value
|
|
** structure.
|
|
*/
|
|
const void *sqlite3_value_blob(sqlite3_value *pVal){
|
|
Mem *p = (Mem*)pVal;
|
|
if( p->flags & (MEM_Blob|MEM_Str) ){
|
|
if( ExpandBlob(p)!=SQLITE_OK ){
|
|
assert( p->flags==MEM_Null && p->z==0 );
|
|
return 0;
|
|
}
|
|
p->flags |= MEM_Blob;
|
|
return p->n ? p->z : 0;
|
|
}else{
|
|
return sqlite3_value_text(pVal);
|
|
}
|
|
}
|
|
int sqlite3_value_bytes(sqlite3_value *pVal){
|
|
return sqlite3ValueBytes(pVal, SQLITE_UTF8);
|
|
}
|
|
int sqlite3_value_bytes16(sqlite3_value *pVal){
|
|
return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
|
|
}
|
|
double sqlite3_value_double(sqlite3_value *pVal){
|
|
return sqlite3VdbeRealValue((Mem*)pVal);
|
|
}
|
|
int sqlite3_value_int(sqlite3_value *pVal){
|
|
return (int)sqlite3VdbeIntValue((Mem*)pVal);
|
|
}
|
|
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
|
|
return sqlite3VdbeIntValue((Mem*)pVal);
|
|
}
|
|
unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
|
|
Mem *pMem = (Mem*)pVal;
|
|
return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
|
|
}
|
|
void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
|
|
Mem *p = (Mem*)pVal;
|
|
if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
|
|
(MEM_Null|MEM_Term|MEM_Subtype)
|
|
&& zPType!=0
|
|
&& p->eSubtype=='p'
|
|
&& strcmp(p->u.zPType, zPType)==0
|
|
){
|
|
return (void*)p->z;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
|
|
return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_value_text16(sqlite3_value* pVal){
|
|
return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
|
|
}
|
|
const void *sqlite3_value_text16be(sqlite3_value *pVal){
|
|
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
|
|
}
|
|
const void *sqlite3_value_text16le(sqlite3_value *pVal){
|
|
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
/* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
|
|
** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
|
|
** point number string BLOB NULL
|
|
*/
|
|
int sqlite3_value_type(sqlite3_value* pVal){
|
|
static const u8 aType[] = {
|
|
SQLITE_BLOB, /* 0x00 (not possible) */
|
|
SQLITE_NULL, /* 0x01 NULL */
|
|
SQLITE_TEXT, /* 0x02 TEXT */
|
|
SQLITE_NULL, /* 0x03 (not possible) */
|
|
SQLITE_INTEGER, /* 0x04 INTEGER */
|
|
SQLITE_NULL, /* 0x05 (not possible) */
|
|
SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */
|
|
SQLITE_NULL, /* 0x07 (not possible) */
|
|
SQLITE_FLOAT, /* 0x08 FLOAT */
|
|
SQLITE_NULL, /* 0x09 (not possible) */
|
|
SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */
|
|
SQLITE_NULL, /* 0x0b (not possible) */
|
|
SQLITE_INTEGER, /* 0x0c (not possible) */
|
|
SQLITE_NULL, /* 0x0d (not possible) */
|
|
SQLITE_INTEGER, /* 0x0e (not possible) */
|
|
SQLITE_NULL, /* 0x0f (not possible) */
|
|
SQLITE_BLOB, /* 0x10 BLOB */
|
|
SQLITE_NULL, /* 0x11 (not possible) */
|
|
SQLITE_TEXT, /* 0x12 (not possible) */
|
|
SQLITE_NULL, /* 0x13 (not possible) */
|
|
SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */
|
|
SQLITE_NULL, /* 0x15 (not possible) */
|
|
SQLITE_INTEGER, /* 0x16 (not possible) */
|
|
SQLITE_NULL, /* 0x17 (not possible) */
|
|
SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */
|
|
SQLITE_NULL, /* 0x19 (not possible) */
|
|
SQLITE_FLOAT, /* 0x1a (not possible) */
|
|
SQLITE_NULL, /* 0x1b (not possible) */
|
|
SQLITE_INTEGER, /* 0x1c (not possible) */
|
|
SQLITE_NULL, /* 0x1d (not possible) */
|
|
SQLITE_INTEGER, /* 0x1e (not possible) */
|
|
SQLITE_NULL, /* 0x1f (not possible) */
|
|
SQLITE_FLOAT, /* 0x20 INTREAL */
|
|
SQLITE_NULL, /* 0x21 (not possible) */
|
|
SQLITE_TEXT, /* 0x22 INTREAL + TEXT */
|
|
SQLITE_NULL, /* 0x23 (not possible) */
|
|
SQLITE_FLOAT, /* 0x24 (not possible) */
|
|
SQLITE_NULL, /* 0x25 (not possible) */
|
|
SQLITE_FLOAT, /* 0x26 (not possible) */
|
|
SQLITE_NULL, /* 0x27 (not possible) */
|
|
SQLITE_FLOAT, /* 0x28 (not possible) */
|
|
SQLITE_NULL, /* 0x29 (not possible) */
|
|
SQLITE_FLOAT, /* 0x2a (not possible) */
|
|
SQLITE_NULL, /* 0x2b (not possible) */
|
|
SQLITE_FLOAT, /* 0x2c (not possible) */
|
|
SQLITE_NULL, /* 0x2d (not possible) */
|
|
SQLITE_FLOAT, /* 0x2e (not possible) */
|
|
SQLITE_NULL, /* 0x2f (not possible) */
|
|
SQLITE_BLOB, /* 0x30 (not possible) */
|
|
SQLITE_NULL, /* 0x31 (not possible) */
|
|
SQLITE_TEXT, /* 0x32 (not possible) */
|
|
SQLITE_NULL, /* 0x33 (not possible) */
|
|
SQLITE_FLOAT, /* 0x34 (not possible) */
|
|
SQLITE_NULL, /* 0x35 (not possible) */
|
|
SQLITE_FLOAT, /* 0x36 (not possible) */
|
|
SQLITE_NULL, /* 0x37 (not possible) */
|
|
SQLITE_FLOAT, /* 0x38 (not possible) */
|
|
SQLITE_NULL, /* 0x39 (not possible) */
|
|
SQLITE_FLOAT, /* 0x3a (not possible) */
|
|
SQLITE_NULL, /* 0x3b (not possible) */
|
|
SQLITE_FLOAT, /* 0x3c (not possible) */
|
|
SQLITE_NULL, /* 0x3d (not possible) */
|
|
SQLITE_FLOAT, /* 0x3e (not possible) */
|
|
SQLITE_NULL, /* 0x3f (not possible) */
|
|
};
|
|
#ifdef SQLITE_DEBUG
|
|
{
|
|
int eType = SQLITE_BLOB;
|
|
if( pVal->flags & MEM_Null ){
|
|
eType = SQLITE_NULL;
|
|
}else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
|
|
eType = SQLITE_FLOAT;
|
|
}else if( pVal->flags & MEM_Int ){
|
|
eType = SQLITE_INTEGER;
|
|
}else if( pVal->flags & MEM_Str ){
|
|
eType = SQLITE_TEXT;
|
|
}
|
|
assert( eType == aType[pVal->flags&MEM_AffMask] );
|
|
}
|
|
#endif
|
|
return aType[pVal->flags&MEM_AffMask];
|
|
}
|
|
|
|
/* Return true if a parameter to xUpdate represents an unchanged column */
|
|
int sqlite3_value_nochange(sqlite3_value *pVal){
|
|
return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
|
|
}
|
|
|
|
/* Return true if a parameter value originated from an sqlite3_bind() */
|
|
int sqlite3_value_frombind(sqlite3_value *pVal){
|
|
return (pVal->flags&MEM_FromBind)!=0;
|
|
}
|
|
|
|
/* Make a copy of an sqlite3_value object
|
|
*/
|
|
sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
|
|
sqlite3_value *pNew;
|
|
if( pOrig==0 ) return 0;
|
|
pNew = sqlite3_malloc( sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
memset(pNew, 0, sizeof(*pNew));
|
|
memcpy(pNew, pOrig, MEMCELLSIZE);
|
|
pNew->flags &= ~MEM_Dyn;
|
|
pNew->db = 0;
|
|
if( pNew->flags&(MEM_Str|MEM_Blob) ){
|
|
pNew->flags &= ~(MEM_Static|MEM_Dyn);
|
|
pNew->flags |= MEM_Ephem;
|
|
if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
|
|
sqlite3ValueFree(pNew);
|
|
pNew = 0;
|
|
}
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/* Destroy an sqlite3_value object previously obtained from
|
|
** sqlite3_value_dup().
|
|
*/
|
|
void sqlite3_value_free(sqlite3_value *pOld){
|
|
sqlite3ValueFree(pOld);
|
|
}
|
|
|
|
|
|
/**************************** sqlite3_result_ *******************************
|
|
** The following routines are used by user-defined functions to specify
|
|
** the function result.
|
|
**
|
|
** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
|
|
** result as a string or blob but if the string or blob is too large, it
|
|
** then sets the error code to SQLITE_TOOBIG
|
|
**
|
|
** The invokeValueDestructor(P,X) routine invokes destructor function X()
|
|
** on value P is not going to be used and need to be destroyed.
|
|
*/
|
|
static void setResultStrOrError(
|
|
sqlite3_context *pCtx, /* Function context */
|
|
const char *z, /* String pointer */
|
|
int n, /* Bytes in string, or negative */
|
|
u8 enc, /* Encoding of z. 0 for BLOBs */
|
|
void (*xDel)(void*) /* Destructor function */
|
|
){
|
|
if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
|
|
sqlite3_result_error_toobig(pCtx);
|
|
}
|
|
}
|
|
static int invokeValueDestructor(
|
|
const void *p, /* Value to destroy */
|
|
void (*xDel)(void*), /* The destructor */
|
|
sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
|
|
){
|
|
assert( xDel!=SQLITE_DYNAMIC );
|
|
if( xDel==0 ){
|
|
/* noop */
|
|
}else if( xDel==SQLITE_TRANSIENT ){
|
|
/* noop */
|
|
}else{
|
|
xDel((void*)p);
|
|
}
|
|
if( pCtx ) sqlite3_result_error_toobig(pCtx);
|
|
return SQLITE_TOOBIG;
|
|
}
|
|
void sqlite3_result_blob(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( n>=0 );
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
setResultStrOrError(pCtx, z, n, 0, xDel);
|
|
}
|
|
void sqlite3_result_blob64(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
sqlite3_uint64 n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
assert( xDel!=SQLITE_DYNAMIC );
|
|
if( n>0x7fffffff ){
|
|
(void)invokeValueDestructor(z, xDel, pCtx);
|
|
}else{
|
|
setResultStrOrError(pCtx, z, (int)n, 0, xDel);
|
|
}
|
|
}
|
|
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
|
|
}
|
|
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
pCtx->isError = SQLITE_ERROR;
|
|
sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
pCtx->isError = SQLITE_ERROR;
|
|
sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
|
|
}
|
|
#endif
|
|
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
|
|
}
|
|
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
|
|
}
|
|
void sqlite3_result_null(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
sqlite3VdbeMemSetNull(pCtx->pOut);
|
|
}
|
|
void sqlite3_result_pointer(
|
|
sqlite3_context *pCtx,
|
|
void *pPtr,
|
|
const char *zPType,
|
|
void (*xDestructor)(void*)
|
|
){
|
|
Mem *pOut = pCtx->pOut;
|
|
assert( sqlite3_mutex_held(pOut->db->mutex) );
|
|
sqlite3VdbeMemRelease(pOut);
|
|
pOut->flags = MEM_Null;
|
|
sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
|
|
}
|
|
void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
|
|
Mem *pOut = pCtx->pOut;
|
|
assert( sqlite3_mutex_held(pOut->db->mutex) );
|
|
pOut->eSubtype = eSubtype & 0xff;
|
|
pOut->flags |= MEM_Subtype;
|
|
}
|
|
void sqlite3_result_text(
|
|
sqlite3_context *pCtx,
|
|
const char *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
|
|
}
|
|
void sqlite3_result_text64(
|
|
sqlite3_context *pCtx,
|
|
const char *z,
|
|
sqlite3_uint64 n,
|
|
void (*xDel)(void *),
|
|
unsigned char enc
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
assert( xDel!=SQLITE_DYNAMIC );
|
|
if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
|
|
if( n>0x7fffffff ){
|
|
(void)invokeValueDestructor(z, xDel, pCtx);
|
|
}else{
|
|
setResultStrOrError(pCtx, z, (int)n, enc, xDel);
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
void sqlite3_result_text16(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
|
|
}
|
|
void sqlite3_result_text16be(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
|
|
}
|
|
void sqlite3_result_text16le(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
sqlite3VdbeMemCopy(pCtx->pOut, pValue);
|
|
}
|
|
void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
|
|
}
|
|
int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
|
|
Mem *pOut = pCtx->pOut;
|
|
assert( sqlite3_mutex_held(pOut->db->mutex) );
|
|
if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
return SQLITE_TOOBIG;
|
|
}
|
|
sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
|
|
return SQLITE_OK;
|
|
}
|
|
void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
|
|
pCtx->isError = errCode ? errCode : -1;
|
|
#ifdef SQLITE_DEBUG
|
|
if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
|
|
#endif
|
|
if( pCtx->pOut->flags & MEM_Null ){
|
|
sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
|
|
SQLITE_UTF8, SQLITE_STATIC);
|
|
}
|
|
}
|
|
|
|
/* Force an SQLITE_TOOBIG error. */
|
|
void sqlite3_result_error_toobig(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
pCtx->isError = SQLITE_TOOBIG;
|
|
sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
|
|
SQLITE_UTF8, SQLITE_STATIC);
|
|
}
|
|
|
|
/* An SQLITE_NOMEM error. */
|
|
void sqlite3_result_error_nomem(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
sqlite3VdbeMemSetNull(pCtx->pOut);
|
|
pCtx->isError = SQLITE_NOMEM_BKPT;
|
|
sqlite3OomFault(pCtx->pOut->db);
|
|
}
|
|
|
|
#ifndef SQLITE_UNTESTABLE
|
|
/* Force the INT64 value currently stored as the result to be
|
|
** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL
|
|
** test-control.
|
|
*/
|
|
void sqlite3ResultIntReal(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
if( pCtx->pOut->flags & MEM_Int ){
|
|
pCtx->pOut->flags &= ~MEM_Int;
|
|
pCtx->pOut->flags |= MEM_IntReal;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** This function is called after a transaction has been committed. It
|
|
** invokes callbacks registered with sqlite3_wal_hook() as required.
|
|
*/
|
|
static int doWalCallbacks(sqlite3 *db){
|
|
int rc = SQLITE_OK;
|
|
#ifndef SQLITE_OMIT_WAL
|
|
int i;
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( pBt ){
|
|
int nEntry;
|
|
sqlite3BtreeEnter(pBt);
|
|
nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
|
|
sqlite3BtreeLeave(pBt);
|
|
if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
|
|
rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Execute the statement pStmt, either until a row of data is ready, the
|
|
** statement is completely executed or an error occurs.
|
|
**
|
|
** This routine implements the bulk of the logic behind the sqlite_step()
|
|
** API. The only thing omitted is the automatic recompile if a
|
|
** schema change has occurred. That detail is handled by the
|
|
** outer sqlite3_step() wrapper procedure.
|
|
*/
|
|
static int sqlite3Step(Vdbe *p){
|
|
sqlite3 *db;
|
|
int rc;
|
|
|
|
assert(p);
|
|
if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
|
|
/* We used to require that sqlite3_reset() be called before retrying
|
|
** sqlite3_step() after any error or after SQLITE_DONE. But beginning
|
|
** with version 3.7.0, we changed this so that sqlite3_reset() would
|
|
** be called automatically instead of throwing the SQLITE_MISUSE error.
|
|
** This "automatic-reset" change is not technically an incompatibility,
|
|
** since any application that receives an SQLITE_MISUSE is broken by
|
|
** definition.
|
|
**
|
|
** Nevertheless, some published applications that were originally written
|
|
** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
|
|
** returns, and those were broken by the automatic-reset change. As a
|
|
** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
|
|
** legacy behavior of returning SQLITE_MISUSE for cases where the
|
|
** previous sqlite3_step() returned something other than a SQLITE_LOCKED
|
|
** or SQLITE_BUSY error.
|
|
*/
|
|
#ifdef SQLITE_OMIT_AUTORESET
|
|
if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
|
|
sqlite3_reset((sqlite3_stmt*)p);
|
|
}else{
|
|
return SQLITE_MISUSE_BKPT;
|
|
}
|
|
#else
|
|
sqlite3_reset((sqlite3_stmt*)p);
|
|
#endif
|
|
}
|
|
|
|
/* Check that malloc() has not failed. If it has, return early. */
|
|
db = p->db;
|
|
if( db->mallocFailed ){
|
|
p->rc = SQLITE_NOMEM;
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
|
|
if( p->pc<0 && p->expired ){
|
|
p->rc = SQLITE_SCHEMA;
|
|
rc = SQLITE_ERROR;
|
|
if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
|
|
/* If this statement was prepared using saved SQL and an
|
|
** error has occurred, then return the error code in p->rc to the
|
|
** caller. Set the error code in the database handle to the same value.
|
|
*/
|
|
rc = sqlite3VdbeTransferError(p);
|
|
}
|
|
goto end_of_step;
|
|
}
|
|
if( p->pc<0 ){
|
|
/* If there are no other statements currently running, then
|
|
** reset the interrupt flag. This prevents a call to sqlite3_interrupt
|
|
** from interrupting a statement that has not yet started.
|
|
*/
|
|
if( db->nVdbeActive==0 ){
|
|
AtomicStore(&db->u1.isInterrupted, 0);
|
|
}
|
|
|
|
assert( db->nVdbeWrite>0 || db->autoCommit==0
|
|
|| (db->nDeferredCons==0 && db->nDeferredImmCons==0)
|
|
);
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
|
|
&& !db->init.busy && p->zSql ){
|
|
sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
|
|
}else{
|
|
assert( p->startTime==0 );
|
|
}
|
|
#endif
|
|
|
|
db->nVdbeActive++;
|
|
if( p->readOnly==0 ) db->nVdbeWrite++;
|
|
if( p->bIsReader ) db->nVdbeRead++;
|
|
p->pc = 0;
|
|
}
|
|
#ifdef SQLITE_DEBUG
|
|
p->rcApp = SQLITE_OK;
|
|
#endif
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
if( p->explain ){
|
|
rc = sqlite3VdbeList(p);
|
|
}else
|
|
#endif /* SQLITE_OMIT_EXPLAIN */
|
|
{
|
|
db->nVdbeExec++;
|
|
rc = sqlite3VdbeExec(p);
|
|
db->nVdbeExec--;
|
|
}
|
|
|
|
if( rc!=SQLITE_ROW ){
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/* If the statement completed successfully, invoke the profile callback */
|
|
checkProfileCallback(db, p);
|
|
#endif
|
|
|
|
if( rc==SQLITE_DONE && db->autoCommit ){
|
|
assert( p->rc==SQLITE_OK );
|
|
p->rc = doWalCallbacks(db);
|
|
if( p->rc!=SQLITE_OK ){
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
}else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
|
|
/* If this statement was prepared using saved SQL and an
|
|
** error has occurred, then return the error code in p->rc to the
|
|
** caller. Set the error code in the database handle to the same value.
|
|
*/
|
|
rc = sqlite3VdbeTransferError(p);
|
|
}
|
|
}
|
|
|
|
db->errCode = rc;
|
|
if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
|
|
p->rc = SQLITE_NOMEM_BKPT;
|
|
if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
|
|
}
|
|
end_of_step:
|
|
/* There are only a limited number of result codes allowed from the
|
|
** statements prepared using the legacy sqlite3_prepare() interface */
|
|
assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
|
|
|| rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
|
|
|| (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
|
|
);
|
|
return (rc&db->errMask);
|
|
}
|
|
|
|
/*
|
|
** This is the top-level implementation of sqlite3_step(). Call
|
|
** sqlite3Step() to do most of the work. If a schema error occurs,
|
|
** call sqlite3Reprepare() and try again.
|
|
*/
|
|
int sqlite3_step(sqlite3_stmt *pStmt){
|
|
int rc = SQLITE_OK; /* Result from sqlite3Step() */
|
|
Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
|
|
int cnt = 0; /* Counter to prevent infinite loop of reprepares */
|
|
sqlite3 *db; /* The database connection */
|
|
|
|
if( vdbeSafetyNotNull(v) ){
|
|
return SQLITE_MISUSE_BKPT;
|
|
}
|
|
db = v->db;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
v->doingRerun = 0;
|
|
while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
|
|
&& cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
|
|
int savedPc = v->pc;
|
|
rc = sqlite3Reprepare(v);
|
|
if( rc!=SQLITE_OK ){
|
|
/* This case occurs after failing to recompile an sql statement.
|
|
** The error message from the SQL compiler has already been loaded
|
|
** into the database handle. This block copies the error message
|
|
** from the database handle into the statement and sets the statement
|
|
** program counter to 0 to ensure that when the statement is
|
|
** finalized or reset the parser error message is available via
|
|
** sqlite3_errmsg() and sqlite3_errcode().
|
|
*/
|
|
const char *zErr = (const char *)sqlite3_value_text(db->pErr);
|
|
sqlite3DbFree(db, v->zErrMsg);
|
|
if( !db->mallocFailed ){
|
|
v->zErrMsg = sqlite3DbStrDup(db, zErr);
|
|
v->rc = rc = sqlite3ApiExit(db, rc);
|
|
} else {
|
|
v->zErrMsg = 0;
|
|
v->rc = rc = SQLITE_NOMEM_BKPT;
|
|
}
|
|
break;
|
|
}
|
|
sqlite3_reset(pStmt);
|
|
if( savedPc>=0 ) v->doingRerun = 1;
|
|
assert( v->expired==0 );
|
|
}
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Extract the user data from a sqlite3_context structure and return a
|
|
** pointer to it.
|
|
*/
|
|
void *sqlite3_user_data(sqlite3_context *p){
|
|
assert( p && p->pFunc );
|
|
return p->pFunc->pUserData;
|
|
}
|
|
|
|
/*
|
|
** Extract the user data from a sqlite3_context structure and return a
|
|
** pointer to it.
|
|
**
|
|
** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
|
|
** returns a copy of the pointer to the database connection (the 1st
|
|
** parameter) of the sqlite3_create_function() and
|
|
** sqlite3_create_function16() routines that originally registered the
|
|
** application defined function.
|
|
*/
|
|
sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
|
|
assert( p && p->pOut );
|
|
return p->pOut->db;
|
|
}
|
|
|
|
/*
|
|
** If this routine is invoked from within an xColumn method of a virtual
|
|
** table, then it returns true if and only if the the call is during an
|
|
** UPDATE operation and the value of the column will not be modified
|
|
** by the UPDATE.
|
|
**
|
|
** If this routine is called from any context other than within the
|
|
** xColumn method of a virtual table, then the return value is meaningless
|
|
** and arbitrary.
|
|
**
|
|
** Virtual table implements might use this routine to optimize their
|
|
** performance by substituting a NULL result, or some other light-weight
|
|
** value, as a signal to the xUpdate routine that the column is unchanged.
|
|
*/
|
|
int sqlite3_vtab_nochange(sqlite3_context *p){
|
|
assert( p );
|
|
return sqlite3_value_nochange(p->pOut);
|
|
}
|
|
|
|
/*
|
|
** Return the current time for a statement. If the current time
|
|
** is requested more than once within the same run of a single prepared
|
|
** statement, the exact same time is returned for each invocation regardless
|
|
** of the amount of time that elapses between invocations. In other words,
|
|
** the time returned is always the time of the first call.
|
|
*/
|
|
sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
|
|
int rc;
|
|
#ifndef SQLITE_ENABLE_STAT4
|
|
sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
|
|
assert( p->pVdbe!=0 );
|
|
#else
|
|
sqlite3_int64 iTime = 0;
|
|
sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
|
|
#endif
|
|
if( *piTime==0 ){
|
|
rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
|
|
if( rc ) *piTime = 0;
|
|
}
|
|
return *piTime;
|
|
}
|
|
|
|
/*
|
|
** Create a new aggregate context for p and return a pointer to
|
|
** its pMem->z element.
|
|
*/
|
|
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
|
|
Mem *pMem = p->pMem;
|
|
assert( (pMem->flags & MEM_Agg)==0 );
|
|
if( nByte<=0 ){
|
|
sqlite3VdbeMemSetNull(pMem);
|
|
pMem->z = 0;
|
|
}else{
|
|
sqlite3VdbeMemClearAndResize(pMem, nByte);
|
|
pMem->flags = MEM_Agg;
|
|
pMem->u.pDef = p->pFunc;
|
|
if( pMem->z ){
|
|
memset(pMem->z, 0, nByte);
|
|
}
|
|
}
|
|
return (void*)pMem->z;
|
|
}
|
|
|
|
/*
|
|
** Allocate or return the aggregate context for a user function. A new
|
|
** context is allocated on the first call. Subsequent calls return the
|
|
** same context that was returned on prior calls.
|
|
*/
|
|
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
|
|
assert( p && p->pFunc && p->pFunc->xFinalize );
|
|
assert( sqlite3_mutex_held(p->pOut->db->mutex) );
|
|
testcase( nByte<0 );
|
|
if( (p->pMem->flags & MEM_Agg)==0 ){
|
|
return createAggContext(p, nByte);
|
|
}else{
|
|
return (void*)p->pMem->z;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the auxiliary data pointer, if any, for the iArg'th argument to
|
|
** the user-function defined by pCtx.
|
|
**
|
|
** The left-most argument is 0.
|
|
**
|
|
** Undocumented behavior: If iArg is negative then access a cache of
|
|
** auxiliary data pointers that is available to all functions within a
|
|
** single prepared statement. The iArg values must match.
|
|
*/
|
|
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
|
|
AuxData *pAuxData;
|
|
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
#if SQLITE_ENABLE_STAT4
|
|
if( pCtx->pVdbe==0 ) return 0;
|
|
#else
|
|
assert( pCtx->pVdbe!=0 );
|
|
#endif
|
|
for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
|
|
if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
|
|
return pAuxData->pAux;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Set the auxiliary data pointer and delete function, for the iArg'th
|
|
** argument to the user-function defined by pCtx. Any previous value is
|
|
** deleted by calling the delete function specified when it was set.
|
|
**
|
|
** The left-most argument is 0.
|
|
**
|
|
** Undocumented behavior: If iArg is negative then make the data available
|
|
** to all functions within the current prepared statement using iArg as an
|
|
** access code.
|
|
*/
|
|
void sqlite3_set_auxdata(
|
|
sqlite3_context *pCtx,
|
|
int iArg,
|
|
void *pAux,
|
|
void (*xDelete)(void*)
|
|
){
|
|
AuxData *pAuxData;
|
|
Vdbe *pVdbe = pCtx->pVdbe;
|
|
|
|
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( pVdbe==0 ) goto failed;
|
|
#else
|
|
assert( pVdbe!=0 );
|
|
#endif
|
|
|
|
for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
|
|
if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
|
|
break;
|
|
}
|
|
}
|
|
if( pAuxData==0 ){
|
|
pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
|
|
if( !pAuxData ) goto failed;
|
|
pAuxData->iAuxOp = pCtx->iOp;
|
|
pAuxData->iAuxArg = iArg;
|
|
pAuxData->pNextAux = pVdbe->pAuxData;
|
|
pVdbe->pAuxData = pAuxData;
|
|
if( pCtx->isError==0 ) pCtx->isError = -1;
|
|
}else if( pAuxData->xDeleteAux ){
|
|
pAuxData->xDeleteAux(pAuxData->pAux);
|
|
}
|
|
|
|
pAuxData->pAux = pAux;
|
|
pAuxData->xDeleteAux = xDelete;
|
|
return;
|
|
|
|
failed:
|
|
if( xDelete ){
|
|
xDelete(pAux);
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
/*
|
|
** Return the number of times the Step function of an aggregate has been
|
|
** called.
|
|
**
|
|
** This function is deprecated. Do not use it for new code. It is
|
|
** provide only to avoid breaking legacy code. New aggregate function
|
|
** implementations should keep their own counts within their aggregate
|
|
** context.
|
|
*/
|
|
int sqlite3_aggregate_count(sqlite3_context *p){
|
|
assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
|
|
return p->pMem->n;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return the number of columns in the result set for the statement pStmt.
|
|
*/
|
|
int sqlite3_column_count(sqlite3_stmt *pStmt){
|
|
Vdbe *pVm = (Vdbe *)pStmt;
|
|
return pVm ? pVm->nResColumn : 0;
|
|
}
|
|
|
|
/*
|
|
** Return the number of values available from the current row of the
|
|
** currently executing statement pStmt.
|
|
*/
|
|
int sqlite3_data_count(sqlite3_stmt *pStmt){
|
|
Vdbe *pVm = (Vdbe *)pStmt;
|
|
if( pVm==0 || pVm->pResultSet==0 ) return 0;
|
|
return pVm->nResColumn;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to static memory containing an SQL NULL value.
|
|
*/
|
|
static const Mem *columnNullValue(void){
|
|
/* Even though the Mem structure contains an element
|
|
** of type i64, on certain architectures (x86) with certain compiler
|
|
** switches (-Os), gcc may align this Mem object on a 4-byte boundary
|
|
** instead of an 8-byte one. This all works fine, except that when
|
|
** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
|
|
** that a Mem structure is located on an 8-byte boundary. To prevent
|
|
** these assert()s from failing, when building with SQLITE_DEBUG defined
|
|
** using gcc, we force nullMem to be 8-byte aligned using the magical
|
|
** __attribute__((aligned(8))) macro. */
|
|
static const Mem nullMem
|
|
#if defined(SQLITE_DEBUG) && defined(__GNUC__)
|
|
__attribute__((aligned(8)))
|
|
#endif
|
|
= {
|
|
/* .u = */ {0},
|
|
/* .flags = */ (u16)MEM_Null,
|
|
/* .enc = */ (u8)0,
|
|
/* .eSubtype = */ (u8)0,
|
|
/* .n = */ (int)0,
|
|
/* .z = */ (char*)0,
|
|
/* .zMalloc = */ (char*)0,
|
|
/* .szMalloc = */ (int)0,
|
|
/* .uTemp = */ (u32)0,
|
|
/* .db = */ (sqlite3*)0,
|
|
/* .xDel = */ (void(*)(void*))0,
|
|
#ifdef SQLITE_DEBUG
|
|
/* .pScopyFrom = */ (Mem*)0,
|
|
/* .mScopyFlags= */ 0,
|
|
#endif
|
|
};
|
|
return &nullMem;
|
|
}
|
|
|
|
/*
|
|
** Check to see if column iCol of the given statement is valid. If
|
|
** it is, return a pointer to the Mem for the value of that column.
|
|
** If iCol is not valid, return a pointer to a Mem which has a value
|
|
** of NULL.
|
|
*/
|
|
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
|
|
Vdbe *pVm;
|
|
Mem *pOut;
|
|
|
|
pVm = (Vdbe *)pStmt;
|
|
if( pVm==0 ) return (Mem*)columnNullValue();
|
|
assert( pVm->db );
|
|
sqlite3_mutex_enter(pVm->db->mutex);
|
|
if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
|
|
pOut = &pVm->pResultSet[i];
|
|
}else{
|
|
sqlite3Error(pVm->db, SQLITE_RANGE);
|
|
pOut = (Mem*)columnNullValue();
|
|
}
|
|
return pOut;
|
|
}
|
|
|
|
/*
|
|
** This function is called after invoking an sqlite3_value_XXX function on a
|
|
** column value (i.e. a value returned by evaluating an SQL expression in the
|
|
** select list of a SELECT statement) that may cause a malloc() failure. If
|
|
** malloc() has failed, the threads mallocFailed flag is cleared and the result
|
|
** code of statement pStmt set to SQLITE_NOMEM.
|
|
**
|
|
** Specifically, this is called from within:
|
|
**
|
|
** sqlite3_column_int()
|
|
** sqlite3_column_int64()
|
|
** sqlite3_column_text()
|
|
** sqlite3_column_text16()
|
|
** sqlite3_column_real()
|
|
** sqlite3_column_bytes()
|
|
** sqlite3_column_bytes16()
|
|
** sqiite3_column_blob()
|
|
*/
|
|
static void columnMallocFailure(sqlite3_stmt *pStmt)
|
|
{
|
|
/* If malloc() failed during an encoding conversion within an
|
|
** sqlite3_column_XXX API, then set the return code of the statement to
|
|
** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
|
|
** and _finalize() will return NOMEM.
|
|
*/
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
if( p ){
|
|
assert( p->db!=0 );
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
p->rc = sqlite3ApiExit(p->db, p->rc);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
}
|
|
|
|
/**************************** sqlite3_column_ *******************************
|
|
** The following routines are used to access elements of the current row
|
|
** in the result set.
|
|
*/
|
|
const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
|
|
const void *val;
|
|
val = sqlite3_value_blob( columnMem(pStmt,i) );
|
|
/* Even though there is no encoding conversion, value_blob() might
|
|
** need to call malloc() to expand the result of a zeroblob()
|
|
** expression.
|
|
*/
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
|
|
int val = sqlite3_value_bytes( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
|
|
int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
|
|
double val = sqlite3_value_double( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
|
|
int val = sqlite3_value_int( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
|
|
sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
|
|
const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
|
|
Mem *pOut = columnMem(pStmt, i);
|
|
if( pOut->flags&MEM_Static ){
|
|
pOut->flags &= ~MEM_Static;
|
|
pOut->flags |= MEM_Ephem;
|
|
}
|
|
columnMallocFailure(pStmt);
|
|
return (sqlite3_value *)pOut;
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
|
|
const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
|
|
int iType = sqlite3_value_type( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return iType;
|
|
}
|
|
|
|
/*
|
|
** Convert the N-th element of pStmt->pColName[] into a string using
|
|
** xFunc() then return that string. If N is out of range, return 0.
|
|
**
|
|
** There are up to 5 names for each column. useType determines which
|
|
** name is returned. Here are the names:
|
|
**
|
|
** 0 The column name as it should be displayed for output
|
|
** 1 The datatype name for the column
|
|
** 2 The name of the database that the column derives from
|
|
** 3 The name of the table that the column derives from
|
|
** 4 The name of the table column that the result column derives from
|
|
**
|
|
** If the result is not a simple column reference (if it is an expression
|
|
** or a constant) then useTypes 2, 3, and 4 return NULL.
|
|
*/
|
|
static const void *columnName(
|
|
sqlite3_stmt *pStmt, /* The statement */
|
|
int N, /* Which column to get the name for */
|
|
int useUtf16, /* True to return the name as UTF16 */
|
|
int useType /* What type of name */
|
|
){
|
|
const void *ret;
|
|
Vdbe *p;
|
|
int n;
|
|
sqlite3 *db;
|
|
#ifdef SQLITE_ENABLE_API_ARMOR
|
|
if( pStmt==0 ){
|
|
(void)SQLITE_MISUSE_BKPT;
|
|
return 0;
|
|
}
|
|
#endif
|
|
ret = 0;
|
|
p = (Vdbe *)pStmt;
|
|
db = p->db;
|
|
assert( db!=0 );
|
|
n = sqlite3_column_count(pStmt);
|
|
if( N<n && N>=0 ){
|
|
N += useType*n;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
assert( db->mallocFailed==0 );
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
if( useUtf16 ){
|
|
ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
|
|
}else
|
|
#endif
|
|
{
|
|
ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
|
|
}
|
|
/* A malloc may have failed inside of the _text() call. If this
|
|
** is the case, clear the mallocFailed flag and return NULL.
|
|
*/
|
|
if( db->mallocFailed ){
|
|
sqlite3OomClear(db);
|
|
ret = 0;
|
|
}
|
|
sqlite3_mutex_leave(db->mutex);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
** Return the name of the Nth column of the result set returned by SQL
|
|
** statement pStmt.
|
|
*/
|
|
const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 0, COLNAME_NAME);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 1, COLNAME_NAME);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Constraint: If you have ENABLE_COLUMN_METADATA then you must
|
|
** not define OMIT_DECLTYPE.
|
|
*/
|
|
#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
|
|
# error "Must not define both SQLITE_OMIT_DECLTYPE \
|
|
and SQLITE_ENABLE_COLUMN_METADATA"
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_DECLTYPE
|
|
/*
|
|
** Return the column declaration type (if applicable) of the 'i'th column
|
|
** of the result set of SQL statement pStmt.
|
|
*/
|
|
const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
#endif /* SQLITE_OMIT_DECLTYPE */
|
|
|
|
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
/*
|
|
** Return the name of the database from which a result column derives.
|
|
** NULL is returned if the result column is an expression or constant or
|
|
** anything else which is not an unambiguous reference to a database column.
|
|
*/
|
|
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 0, COLNAME_DATABASE);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 1, COLNAME_DATABASE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** Return the name of the table from which a result column derives.
|
|
** NULL is returned if the result column is an expression or constant or
|
|
** anything else which is not an unambiguous reference to a database column.
|
|
*/
|
|
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 0, COLNAME_TABLE);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 1, COLNAME_TABLE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** Return the name of the table column from which a result column derives.
|
|
** NULL is returned if the result column is an expression or constant or
|
|
** anything else which is not an unambiguous reference to a database column.
|
|
*/
|
|
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 0, COLNAME_COLUMN);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(pStmt, N, 1, COLNAME_COLUMN);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
#endif /* SQLITE_ENABLE_COLUMN_METADATA */
|
|
|
|
|
|
/******************************* sqlite3_bind_ ***************************
|
|
**
|
|
** Routines used to attach values to wildcards in a compiled SQL statement.
|
|
*/
|
|
/*
|
|
** Unbind the value bound to variable i in virtual machine p. This is the
|
|
** the same as binding a NULL value to the column. If the "i" parameter is
|
|
** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
|
|
**
|
|
** A successful evaluation of this routine acquires the mutex on p.
|
|
** the mutex is released if any kind of error occurs.
|
|
**
|
|
** The error code stored in database p->db is overwritten with the return
|
|
** value in any case.
|
|
*/
|
|
static int vdbeUnbind(Vdbe *p, int i){
|
|
Mem *pVar;
|
|
if( vdbeSafetyNotNull(p) ){
|
|
return SQLITE_MISUSE_BKPT;
|
|
}
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){
|
|
sqlite3Error(p->db, SQLITE_MISUSE);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
sqlite3_log(SQLITE_MISUSE,
|
|
"bind on a busy prepared statement: [%s]", p->zSql);
|
|
return SQLITE_MISUSE_BKPT;
|
|
}
|
|
if( i<1 || i>p->nVar ){
|
|
sqlite3Error(p->db, SQLITE_RANGE);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return SQLITE_RANGE;
|
|
}
|
|
i--;
|
|
pVar = &p->aVar[i];
|
|
sqlite3VdbeMemRelease(pVar);
|
|
pVar->flags = MEM_Null;
|
|
p->db->errCode = SQLITE_OK;
|
|
|
|
/* If the bit corresponding to this variable in Vdbe.expmask is set, then
|
|
** binding a new value to this variable invalidates the current query plan.
|
|
**
|
|
** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
|
|
** parameter in the WHERE clause might influence the choice of query plan
|
|
** for a statement, then the statement will be automatically recompiled,
|
|
** as if there had been a schema change, on the first sqlite3_step() call
|
|
** following any change to the bindings of that parameter.
|
|
*/
|
|
assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
|
|
if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
|
|
p->expired = 1;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Bind a text or BLOB value.
|
|
*/
|
|
static int bindText(
|
|
sqlite3_stmt *pStmt, /* The statement to bind against */
|
|
int i, /* Index of the parameter to bind */
|
|
const void *zData, /* Pointer to the data to be bound */
|
|
int nData, /* Number of bytes of data to be bound */
|
|
void (*xDel)(void*), /* Destructor for the data */
|
|
u8 encoding /* Encoding for the data */
|
|
){
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
Mem *pVar;
|
|
int rc;
|
|
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
if( zData!=0 ){
|
|
pVar = &p->aVar[i-1];
|
|
rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
|
|
if( rc==SQLITE_OK && encoding!=0 ){
|
|
rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
|
|
}
|
|
if( rc ){
|
|
sqlite3Error(p->db, rc);
|
|
rc = sqlite3ApiExit(p->db, rc);
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
|
|
xDel((void*)zData);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Bind a blob value to an SQL statement variable.
|
|
*/
|
|
int sqlite3_bind_blob(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const void *zData,
|
|
int nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
#ifdef SQLITE_ENABLE_API_ARMOR
|
|
if( nData<0 ) return SQLITE_MISUSE_BKPT;
|
|
#endif
|
|
return bindText(pStmt, i, zData, nData, xDel, 0);
|
|
}
|
|
int sqlite3_bind_blob64(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const void *zData,
|
|
sqlite3_uint64 nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
assert( xDel!=SQLITE_DYNAMIC );
|
|
if( nData>0x7fffffff ){
|
|
return invokeValueDestructor(zData, xDel, 0);
|
|
}else{
|
|
return bindText(pStmt, i, zData, (int)nData, xDel, 0);
|
|
}
|
|
}
|
|
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
|
|
return sqlite3_bind_int64(p, i, (i64)iValue);
|
|
}
|
|
int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
|
|
int rc;
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_pointer(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
void *pPtr,
|
|
const char *zPTtype,
|
|
void (*xDestructor)(void*)
|
|
){
|
|
int rc;
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}else if( xDestructor ){
|
|
xDestructor(pPtr);
|
|
}
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_text(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const char *zData,
|
|
int nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
|
|
}
|
|
int sqlite3_bind_text64(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const char *zData,
|
|
sqlite3_uint64 nData,
|
|
void (*xDel)(void*),
|
|
unsigned char enc
|
|
){
|
|
assert( xDel!=SQLITE_DYNAMIC );
|
|
if( nData>0x7fffffff ){
|
|
return invokeValueDestructor(zData, xDel, 0);
|
|
}else{
|
|
if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
|
|
return bindText(pStmt, i, zData, (int)nData, xDel, enc);
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
int sqlite3_bind_text16(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const void *zData,
|
|
int nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
|
|
int rc;
|
|
switch( sqlite3_value_type((sqlite3_value*)pValue) ){
|
|
case SQLITE_INTEGER: {
|
|
rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
|
|
break;
|
|
}
|
|
case SQLITE_FLOAT: {
|
|
rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
|
|
break;
|
|
}
|
|
case SQLITE_BLOB: {
|
|
if( pValue->flags & MEM_Zero ){
|
|
rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
|
|
}else{
|
|
rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
|
|
pValue->enc);
|
|
break;
|
|
}
|
|
default: {
|
|
rc = sqlite3_bind_null(pStmt, i);
|
|
break;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
rc = SQLITE_TOOBIG;
|
|
}else{
|
|
assert( (n & 0x7FFFFFFF)==n );
|
|
rc = sqlite3_bind_zeroblob(pStmt, i, n);
|
|
}
|
|
rc = sqlite3ApiExit(p->db, rc);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the number of wildcards that can be potentially bound to.
|
|
** This routine is added to support DBD::SQLite.
|
|
*/
|
|
int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
return p ? p->nVar : 0;
|
|
}
|
|
|
|
/*
|
|
** Return the name of a wildcard parameter. Return NULL if the index
|
|
** is out of range or if the wildcard is unnamed.
|
|
**
|
|
** The result is always UTF-8.
|
|
*/
|
|
const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
if( p==0 ) return 0;
|
|
return sqlite3VListNumToName(p->pVList, i);
|
|
}
|
|
|
|
/*
|
|
** Given a wildcard parameter name, return the index of the variable
|
|
** with that name. If there is no variable with the given name,
|
|
** return 0.
|
|
*/
|
|
int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
|
|
if( p==0 || zName==0 ) return 0;
|
|
return sqlite3VListNameToNum(p->pVList, zName, nName);
|
|
}
|
|
int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
|
|
return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
|
|
}
|
|
|
|
/*
|
|
** Transfer all bindings from the first statement over to the second.
|
|
*/
|
|
int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
|
Vdbe *pFrom = (Vdbe*)pFromStmt;
|
|
Vdbe *pTo = (Vdbe*)pToStmt;
|
|
int i;
|
|
assert( pTo->db==pFrom->db );
|
|
assert( pTo->nVar==pFrom->nVar );
|
|
sqlite3_mutex_enter(pTo->db->mutex);
|
|
for(i=0; i<pFrom->nVar; i++){
|
|
sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
|
|
}
|
|
sqlite3_mutex_leave(pTo->db->mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
/*
|
|
** Deprecated external interface. Internal/core SQLite code
|
|
** should call sqlite3TransferBindings.
|
|
**
|
|
** It is misuse to call this routine with statements from different
|
|
** database connections. But as this is a deprecated interface, we
|
|
** will not bother to check for that condition.
|
|
**
|
|
** If the two statements contain a different number of bindings, then
|
|
** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
|
|
** SQLITE_OK is returned.
|
|
*/
|
|
int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
|
Vdbe *pFrom = (Vdbe*)pFromStmt;
|
|
Vdbe *pTo = (Vdbe*)pToStmt;
|
|
if( pFrom->nVar!=pTo->nVar ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
|
|
if( pTo->expmask ){
|
|
pTo->expired = 1;
|
|
}
|
|
assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
|
|
if( pFrom->expmask ){
|
|
pFrom->expired = 1;
|
|
}
|
|
return sqlite3TransferBindings(pFromStmt, pToStmt);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return the sqlite3* database handle to which the prepared statement given
|
|
** in the argument belongs. This is the same database handle that was
|
|
** the first argument to the sqlite3_prepare() that was used to create
|
|
** the statement in the first place.
|
|
*/
|
|
sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
|
|
return pStmt ? ((Vdbe*)pStmt)->db : 0;
|
|
}
|
|
|
|
/*
|
|
** Return true if the prepared statement is guaranteed to not modify the
|
|
** database.
|
|
*/
|
|
int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
|
|
return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
|
|
}
|
|
|
|
/*
|
|
** Return 1 if the statement is an EXPLAIN and return 2 if the
|
|
** statement is an EXPLAIN QUERY PLAN
|
|
*/
|
|
int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
|
|
return pStmt ? ((Vdbe*)pStmt)->explain : 0;
|
|
}
|
|
|
|
/*
|
|
** Return true if the prepared statement is in need of being reset.
|
|
*/
|
|
int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the next prepared statement after pStmt associated
|
|
** with database connection pDb. If pStmt is NULL, return the first
|
|
** prepared statement for the database connection. Return NULL if there
|
|
** are no more.
|
|
*/
|
|
sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
|
|
sqlite3_stmt *pNext;
|
|
#ifdef SQLITE_ENABLE_API_ARMOR
|
|
if( !sqlite3SafetyCheckOk(pDb) ){
|
|
(void)SQLITE_MISUSE_BKPT;
|
|
return 0;
|
|
}
|
|
#endif
|
|
sqlite3_mutex_enter(pDb->mutex);
|
|
if( pStmt==0 ){
|
|
pNext = (sqlite3_stmt*)pDb->pVdbe;
|
|
}else{
|
|
pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
|
|
}
|
|
sqlite3_mutex_leave(pDb->mutex);
|
|
return pNext;
|
|
}
|
|
|
|
/*
|
|
** Return the value of a status counter for a prepared statement
|
|
*/
|
|
int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
|
|
Vdbe *pVdbe = (Vdbe*)pStmt;
|
|
u32 v;
|
|
#ifdef SQLITE_ENABLE_API_ARMOR
|
|
if( !pStmt
|
|
|| (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
|
|
){
|
|
(void)SQLITE_MISUSE_BKPT;
|
|
return 0;
|
|
}
|
|
#endif
|
|
if( op==SQLITE_STMTSTATUS_MEMUSED ){
|
|
sqlite3 *db = pVdbe->db;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
v = 0;
|
|
db->pnBytesFreed = (int*)&v;
|
|
sqlite3VdbeClearObject(db, pVdbe);
|
|
sqlite3DbFree(db, pVdbe);
|
|
db->pnBytesFreed = 0;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
}else{
|
|
v = pVdbe->aCounter[op];
|
|
if( resetFlag ) pVdbe->aCounter[op] = 0;
|
|
}
|
|
return (int)v;
|
|
}
|
|
|
|
/*
|
|
** Return the SQL associated with a prepared statement
|
|
*/
|
|
const char *sqlite3_sql(sqlite3_stmt *pStmt){
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
return p ? p->zSql : 0;
|
|
}
|
|
|
|
/*
|
|
** Return the SQL associated with a prepared statement with
|
|
** bound parameters expanded. Space to hold the returned string is
|
|
** obtained from sqlite3_malloc(). The caller is responsible for
|
|
** freeing the returned string by passing it to sqlite3_free().
|
|
**
|
|
** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
|
|
** expanded bound parameters.
|
|
*/
|
|
char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
|
|
#ifdef SQLITE_OMIT_TRACE
|
|
return 0;
|
|
#else
|
|
char *z = 0;
|
|
const char *zSql = sqlite3_sql(pStmt);
|
|
if( zSql ){
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
z = sqlite3VdbeExpandSql(p, zSql);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
return z;
|
|
#endif
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_NORMALIZE
|
|
/*
|
|
** Return the normalized SQL associated with a prepared statement.
|
|
*/
|
|
const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
if( p==0 ) return 0;
|
|
if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
p->zNormSql = sqlite3Normalize(p, p->zSql);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
return p->zNormSql;
|
|
}
|
|
#endif /* SQLITE_ENABLE_NORMALIZE */
|
|
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
/*
|
|
** Allocate and populate an UnpackedRecord structure based on the serialized
|
|
** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
|
|
** if successful, or a NULL pointer if an OOM error is encountered.
|
|
*/
|
|
static UnpackedRecord *vdbeUnpackRecord(
|
|
KeyInfo *pKeyInfo,
|
|
int nKey,
|
|
const void *pKey
|
|
){
|
|
UnpackedRecord *pRet; /* Return value */
|
|
|
|
pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
|
|
if( pRet ){
|
|
memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
|
|
sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
|
|
}
|
|
return pRet;
|
|
}
|
|
|
|
/*
|
|
** This function is called from within a pre-update callback to retrieve
|
|
** a field of the row currently being updated or deleted.
|
|
*/
|
|
int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
|
|
PreUpdate *p = db->pPreUpdate;
|
|
Mem *pMem;
|
|
int rc = SQLITE_OK;
|
|
|
|
/* Test that this call is being made from within an SQLITE_DELETE or
|
|
** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
|
|
if( !p || p->op==SQLITE_INSERT ){
|
|
rc = SQLITE_MISUSE_BKPT;
|
|
goto preupdate_old_out;
|
|
}
|
|
if( p->pPk ){
|
|
iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
|
|
}
|
|
if( iIdx>=p->pCsr->nField || iIdx<0 ){
|
|
rc = SQLITE_RANGE;
|
|
goto preupdate_old_out;
|
|
}
|
|
|
|
/* If the old.* record has not yet been loaded into memory, do so now. */
|
|
if( p->pUnpacked==0 ){
|
|
u32 nRec;
|
|
u8 *aRec;
|
|
|
|
nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
|
|
aRec = sqlite3DbMallocRaw(db, nRec);
|
|
if( !aRec ) goto preupdate_old_out;
|
|
rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
|
|
if( rc==SQLITE_OK ){
|
|
p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
|
|
if( !p->pUnpacked ) rc = SQLITE_NOMEM;
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3DbFree(db, aRec);
|
|
goto preupdate_old_out;
|
|
}
|
|
p->aRecord = aRec;
|
|
}
|
|
|
|
pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
|
|
if( iIdx==p->pTab->iPKey ){
|
|
sqlite3VdbeMemSetInt64(pMem, p->iKey1);
|
|
}else if( iIdx>=p->pUnpacked->nField ){
|
|
*ppValue = (sqlite3_value *)columnNullValue();
|
|
}else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
|
|
if( pMem->flags & (MEM_Int|MEM_IntReal) ){
|
|
testcase( pMem->flags & MEM_Int );
|
|
testcase( pMem->flags & MEM_IntReal );
|
|
sqlite3VdbeMemRealify(pMem);
|
|
}
|
|
}
|
|
|
|
preupdate_old_out:
|
|
sqlite3Error(db, rc);
|
|
return sqlite3ApiExit(db, rc);
|
|
}
|
|
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
|
|
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
/*
|
|
** This function is called from within a pre-update callback to retrieve
|
|
** the number of columns in the row being updated, deleted or inserted.
|
|
*/
|
|
int sqlite3_preupdate_count(sqlite3 *db){
|
|
PreUpdate *p = db->pPreUpdate;
|
|
return (p ? p->keyinfo.nKeyField : 0);
|
|
}
|
|
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
|
|
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
/*
|
|
** This function is designed to be called from within a pre-update callback
|
|
** only. It returns zero if the change that caused the callback was made
|
|
** immediately by a user SQL statement. Or, if the change was made by a
|
|
** trigger program, it returns the number of trigger programs currently
|
|
** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
|
|
** top-level trigger etc.).
|
|
**
|
|
** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
|
|
** or SET DEFAULT action is considered a trigger.
|
|
*/
|
|
int sqlite3_preupdate_depth(sqlite3 *db){
|
|
PreUpdate *p = db->pPreUpdate;
|
|
return (p ? p->v->nFrame : 0);
|
|
}
|
|
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
|
|
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
/*
|
|
** This function is called from within a pre-update callback to retrieve
|
|
** a field of the row currently being updated or inserted.
|
|
*/
|
|
int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
|
|
PreUpdate *p = db->pPreUpdate;
|
|
int rc = SQLITE_OK;
|
|
Mem *pMem;
|
|
|
|
if( !p || p->op==SQLITE_DELETE ){
|
|
rc = SQLITE_MISUSE_BKPT;
|
|
goto preupdate_new_out;
|
|
}
|
|
if( p->pPk && p->op!=SQLITE_UPDATE ){
|
|
iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
|
|
}
|
|
if( iIdx>=p->pCsr->nField || iIdx<0 ){
|
|
rc = SQLITE_RANGE;
|
|
goto preupdate_new_out;
|
|
}
|
|
|
|
if( p->op==SQLITE_INSERT ){
|
|
/* For an INSERT, memory cell p->iNewReg contains the serialized record
|
|
** that is being inserted. Deserialize it. */
|
|
UnpackedRecord *pUnpack = p->pNewUnpacked;
|
|
if( !pUnpack ){
|
|
Mem *pData = &p->v->aMem[p->iNewReg];
|
|
rc = ExpandBlob(pData);
|
|
if( rc!=SQLITE_OK ) goto preupdate_new_out;
|
|
pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
|
|
if( !pUnpack ){
|
|
rc = SQLITE_NOMEM;
|
|
goto preupdate_new_out;
|
|
}
|
|
p->pNewUnpacked = pUnpack;
|
|
}
|
|
pMem = &pUnpack->aMem[iIdx];
|
|
if( iIdx==p->pTab->iPKey ){
|
|
sqlite3VdbeMemSetInt64(pMem, p->iKey2);
|
|
}else if( iIdx>=pUnpack->nField ){
|
|
pMem = (sqlite3_value *)columnNullValue();
|
|
}
|
|
}else{
|
|
/* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
|
|
** value. Make a copy of the cell contents and return a pointer to it.
|
|
** It is not safe to return a pointer to the memory cell itself as the
|
|
** caller may modify the value text encoding.
|
|
*/
|
|
assert( p->op==SQLITE_UPDATE );
|
|
if( !p->aNew ){
|
|
p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
|
|
if( !p->aNew ){
|
|
rc = SQLITE_NOMEM;
|
|
goto preupdate_new_out;
|
|
}
|
|
}
|
|
assert( iIdx>=0 && iIdx<p->pCsr->nField );
|
|
pMem = &p->aNew[iIdx];
|
|
if( pMem->flags==0 ){
|
|
if( iIdx==p->pTab->iPKey ){
|
|
sqlite3VdbeMemSetInt64(pMem, p->iKey2);
|
|
}else{
|
|
rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
|
|
if( rc!=SQLITE_OK ) goto preupdate_new_out;
|
|
}
|
|
}
|
|
}
|
|
*ppValue = pMem;
|
|
|
|
preupdate_new_out:
|
|
sqlite3Error(db, rc);
|
|
return sqlite3ApiExit(db, rc);
|
|
}
|
|
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
|
|
|
|
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
|
|
/*
|
|
** Return status data for a single loop within query pStmt.
|
|
*/
|
|
int sqlite3_stmt_scanstatus(
|
|
sqlite3_stmt *pStmt, /* Prepared statement being queried */
|
|
int idx, /* Index of loop to report on */
|
|
int iScanStatusOp, /* Which metric to return */
|
|
void *pOut /* OUT: Write the answer here */
|
|
){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
ScanStatus *pScan;
|
|
if( idx<0 || idx>=p->nScan ) return 1;
|
|
pScan = &p->aScan[idx];
|
|
switch( iScanStatusOp ){
|
|
case SQLITE_SCANSTAT_NLOOP: {
|
|
*(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
|
|
break;
|
|
}
|
|
case SQLITE_SCANSTAT_NVISIT: {
|
|
*(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
|
|
break;
|
|
}
|
|
case SQLITE_SCANSTAT_EST: {
|
|
double r = 1.0;
|
|
LogEst x = pScan->nEst;
|
|
while( x<100 ){
|
|
x += 10;
|
|
r *= 0.5;
|
|
}
|
|
*(double*)pOut = r*sqlite3LogEstToInt(x);
|
|
break;
|
|
}
|
|
case SQLITE_SCANSTAT_NAME: {
|
|
*(const char**)pOut = pScan->zName;
|
|
break;
|
|
}
|
|
case SQLITE_SCANSTAT_EXPLAIN: {
|
|
if( pScan->addrExplain ){
|
|
*(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
|
|
}else{
|
|
*(const char**)pOut = 0;
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_SCANSTAT_SELECTID: {
|
|
if( pScan->addrExplain ){
|
|
*(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
|
|
}else{
|
|
*(int*)pOut = -1;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
|
|
*/
|
|
void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
memset(p->anExec, 0, p->nOp * sizeof(i64));
|
|
}
|
|
#endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
|