mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-12 17:27:56 +00:00
Status lines for Emacs and Vim have been added to Python sources so they'll be easier to edit using Python's preferred coding style. Some DNS helper functions have been broken up into multiple files. It's nice to have one function per file whenever possible, since that way we don't need -ffunction-sections. Another reason it's good to have small source files, is because the build will be enforcing resource limits on compilation and testing soon.
656 lines
18 KiB
C
656 lines
18 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
|
|
╞══════════════════════════════════════════════════════════════════════════════╡
|
|
│ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │
|
|
│ │
|
|
│ Redistribution and use in source and binary forms, with or without │
|
|
│ modification, are permitted provided that the following conditions │
|
|
│ are met: │
|
|
│ │
|
|
│ 1. Redistributions of source code must retain the above copyright │
|
|
│ notice, this list of conditions and the following disclaimer. │
|
|
│ │
|
|
│ 2. Redistributions in binary form must reproduce the above copyright │
|
|
│ notice, this list of conditions and the following disclaimer in │
|
|
│ the documentation and/or other materials provided with the │
|
|
│ distribution. │
|
|
│ │
|
|
│ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │
|
|
│ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │
|
|
│ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │
|
|
│ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │
|
|
│ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │
|
|
│ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │
|
|
│ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │
|
|
│ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │
|
|
│ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │
|
|
│ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │
|
|
│ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "third_party/python/Modules/_decimal/libmpdec/basearith.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/constants.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h"
|
|
#include "third_party/python/Modules/_decimal/libmpdec/typearith.h"
|
|
/* clang-format off */
|
|
|
|
asm(".ident\t\"\\n\\n\
|
|
libmpdec (BSD-2)\\n\
|
|
Copyright 2008-2016 Stefan Krah\"");
|
|
asm(".include \"libc/disclaimer.inc\"");
|
|
|
|
/*********************************************************************/
|
|
/* Calculations in base MPD_RADIX */
|
|
/*********************************************************************/
|
|
|
|
|
|
/*
|
|
* Knuth, TAOCP, Volume 2, 4.3.1:
|
|
* w := sum of u (len m) and v (len n)
|
|
* n > 0 and m >= n
|
|
* The calling function has to handle a possible final carry.
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_baseadd(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
|
|
mpd_size_t m, mpd_size_t n)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0 && m >= n);
|
|
|
|
/* add n members of u and v */
|
|
for (i = 0; i < n; i++) {
|
|
s = u[i] + (v[i] + carry);
|
|
carry = (s < u[i]) | (s >= MPD_RADIX);
|
|
w[i] = carry ? s-MPD_RADIX : s;
|
|
}
|
|
/* if there is a carry, propagate it */
|
|
for (; carry && i < m; i++) {
|
|
s = u[i] + carry;
|
|
carry = (s == MPD_RADIX);
|
|
w[i] = carry ? 0 : s;
|
|
}
|
|
/* copy the rest of u */
|
|
for (; i < m; i++) {
|
|
w[i] = u[i];
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/*
|
|
* Add the contents of u to w. Carries are propagated further. The caller
|
|
* has to make sure that w is big enough.
|
|
*/
|
|
void
|
|
_mpd_baseaddto(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry = 0;
|
|
mpd_size_t i;
|
|
|
|
if (n == 0) return;
|
|
|
|
/* add n members of u to w */
|
|
for (i = 0; i < n; i++) {
|
|
s = w[i] + (u[i] + carry);
|
|
carry = (s < w[i]) | (s >= MPD_RADIX);
|
|
w[i] = carry ? s-MPD_RADIX : s;
|
|
}
|
|
/* if there is a carry, propagate it */
|
|
for (; carry; i++) {
|
|
s = w[i] + carry;
|
|
carry = (s == MPD_RADIX);
|
|
w[i] = carry ? 0 : s;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add v to w (len m). The calling function has to handle a possible
|
|
* final carry. Assumption: m > 0.
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_shortadd(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry;
|
|
mpd_size_t i;
|
|
|
|
assert(m > 0);
|
|
|
|
/* add v to w */
|
|
s = w[0] + v;
|
|
carry = (s < v) | (s >= MPD_RADIX);
|
|
w[0] = carry ? s-MPD_RADIX : s;
|
|
|
|
/* if there is a carry, propagate it */
|
|
for (i = 1; carry && i < m; i++) {
|
|
s = w[i] + carry;
|
|
carry = (s == MPD_RADIX);
|
|
w[i] = carry ? 0 : s;
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/* Increment u. The calling function has to handle a possible carry. */
|
|
mpd_uint_t
|
|
_mpd_baseincr(mpd_uint_t *u, mpd_size_t n)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry = 1;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
/* if there is a carry, propagate it */
|
|
for (i = 0; carry && i < n; i++) {
|
|
s = u[i] + carry;
|
|
carry = (s == MPD_RADIX);
|
|
u[i] = carry ? 0 : s;
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP, Volume 2, 4.3.1:
|
|
* w := difference of u (len m) and v (len n).
|
|
* number in u >= number in v;
|
|
*/
|
|
void
|
|
_mpd_basesub(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
|
|
mpd_size_t m, mpd_size_t n)
|
|
{
|
|
mpd_uint_t d;
|
|
mpd_uint_t borrow = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(m > 0 && n > 0);
|
|
|
|
/* subtract n members of v from u */
|
|
for (i = 0; i < n; i++) {
|
|
d = u[i] - (v[i] + borrow);
|
|
borrow = (u[i] < d);
|
|
w[i] = borrow ? d + MPD_RADIX : d;
|
|
}
|
|
/* if there is a borrow, propagate it */
|
|
for (; borrow && i < m; i++) {
|
|
d = u[i] - borrow;
|
|
borrow = (u[i] == 0);
|
|
w[i] = borrow ? MPD_RADIX-1 : d;
|
|
}
|
|
/* copy the rest of u */
|
|
for (; i < m; i++) {
|
|
w[i] = u[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Subtract the contents of u from w. w is larger than u. Borrows are
|
|
* propagated further, but eventually w can absorb the final borrow.
|
|
*/
|
|
void
|
|
_mpd_basesubfrom(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
|
|
{
|
|
mpd_uint_t d;
|
|
mpd_uint_t borrow = 0;
|
|
mpd_size_t i;
|
|
|
|
if (n == 0) return;
|
|
|
|
/* subtract n members of u from w */
|
|
for (i = 0; i < n; i++) {
|
|
d = w[i] - (u[i] + borrow);
|
|
borrow = (w[i] < d);
|
|
w[i] = borrow ? d + MPD_RADIX : d;
|
|
}
|
|
/* if there is a borrow, propagate it */
|
|
for (; borrow; i++) {
|
|
d = w[i] - borrow;
|
|
borrow = (w[i] == 0);
|
|
w[i] = borrow ? MPD_RADIX-1 : d;
|
|
}
|
|
}
|
|
|
|
/* w := product of u (len n) and v (single word) */
|
|
void
|
|
_mpd_shortmul(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t carry = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
for (i=0; i < n; i++) {
|
|
|
|
_mpd_mul_words(&hi, &lo, u[i], v);
|
|
lo = carry + lo;
|
|
if (lo < carry) hi++;
|
|
|
|
_mpd_div_words_r(&carry, &w[i], hi, lo);
|
|
}
|
|
w[i] = carry;
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP, Volume 2, 4.3.1:
|
|
* w := product of u (len m) and v (len n)
|
|
* w must be initialized to zero
|
|
*/
|
|
void
|
|
_mpd_basemul(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
|
|
mpd_size_t m, mpd_size_t n)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t carry;
|
|
mpd_size_t i, j;
|
|
|
|
assert(m > 0 && n > 0);
|
|
|
|
for (j=0; j < n; j++) {
|
|
carry = 0;
|
|
for (i=0; i < m; i++) {
|
|
|
|
_mpd_mul_words(&hi, &lo, u[i], v[j]);
|
|
lo = w[i+j] + lo;
|
|
if (lo < w[i+j]) hi++;
|
|
lo = carry + lo;
|
|
if (lo < carry) hi++;
|
|
|
|
_mpd_div_words_r(&carry, &w[i+j], hi, lo);
|
|
}
|
|
w[j+m] = carry;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
|
|
* w := quotient of u (len n) divided by a single word v
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_shortdiv(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t rem = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
for (i=n-1; i != MPD_SIZE_MAX; i--) {
|
|
|
|
_mpd_mul_words(&hi, &lo, rem, MPD_RADIX);
|
|
lo = u[i] + lo;
|
|
if (lo < u[i]) hi++;
|
|
|
|
_mpd_div_words(&w[i], &rem, hi, lo, v);
|
|
}
|
|
|
|
return rem;
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP Volume 2, 4.3.1:
|
|
* q, r := quotient and remainder of uconst (len nplusm)
|
|
* divided by vconst (len n)
|
|
* nplusm >= n
|
|
*
|
|
* If r is not NULL, r will contain the remainder. If r is NULL, the
|
|
* return value indicates if there is a remainder: 1 for true, 0 for
|
|
* false. A return value of -1 indicates an error.
|
|
*/
|
|
int
|
|
_mpd_basedivmod(mpd_uint_t *q, mpd_uint_t *r,
|
|
const mpd_uint_t *uconst, const mpd_uint_t *vconst,
|
|
mpd_size_t nplusm, mpd_size_t n)
|
|
{
|
|
mpd_uint_t ustatic[MPD_MINALLOC_MAX];
|
|
mpd_uint_t vstatic[MPD_MINALLOC_MAX];
|
|
mpd_uint_t *u = ustatic;
|
|
mpd_uint_t *v = vstatic;
|
|
mpd_uint_t d, qhat, rhat, w2[2];
|
|
mpd_uint_t hi, lo, x;
|
|
mpd_uint_t carry;
|
|
mpd_size_t i, j, m;
|
|
int retval = 0;
|
|
|
|
assert(n > 1 && nplusm >= n);
|
|
m = sub_size_t(nplusm, n);
|
|
|
|
/* D1: normalize */
|
|
d = MPD_RADIX / (vconst[n-1] + 1);
|
|
|
|
if (nplusm >= MPD_MINALLOC_MAX) {
|
|
if ((u = mpd_alloc(nplusm+1, sizeof *u)) == NULL) {
|
|
return -1;
|
|
}
|
|
}
|
|
if (n >= MPD_MINALLOC_MAX) {
|
|
if ((v = mpd_alloc(n+1, sizeof *v)) == NULL) {
|
|
mpd_free(u);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
_mpd_shortmul(u, uconst, nplusm, d);
|
|
_mpd_shortmul(v, vconst, n, d);
|
|
|
|
/* D2: loop */
|
|
for (j=m; j != MPD_SIZE_MAX; j--) {
|
|
|
|
/* D3: calculate qhat and rhat */
|
|
rhat = _mpd_shortdiv(w2, u+j+n-1, 2, v[n-1]);
|
|
qhat = w2[1] * MPD_RADIX + w2[0];
|
|
|
|
while (1) {
|
|
if (qhat < MPD_RADIX) {
|
|
_mpd_singlemul(w2, qhat, v[n-2]);
|
|
if (w2[1] <= rhat) {
|
|
if (w2[1] != rhat || w2[0] <= u[j+n-2]) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
qhat -= 1;
|
|
rhat += v[n-1];
|
|
if (rhat < v[n-1] || rhat >= MPD_RADIX) {
|
|
break;
|
|
}
|
|
}
|
|
/* D4: multiply and subtract */
|
|
carry = 0;
|
|
for (i=0; i <= n; i++) {
|
|
|
|
_mpd_mul_words(&hi, &lo, qhat, v[i]);
|
|
|
|
lo = carry + lo;
|
|
if (lo < carry) hi++;
|
|
|
|
_mpd_div_words_r(&hi, &lo, hi, lo);
|
|
|
|
x = u[i+j] - lo;
|
|
carry = (u[i+j] < x);
|
|
u[i+j] = carry ? x+MPD_RADIX : x;
|
|
carry += hi;
|
|
}
|
|
q[j] = qhat;
|
|
/* D5: test remainder */
|
|
if (carry) {
|
|
q[j] -= 1;
|
|
/* D6: add back */
|
|
(void)_mpd_baseadd(u+j, u+j, v, n+1, n);
|
|
}
|
|
}
|
|
|
|
/* D8: unnormalize */
|
|
if (r != NULL) {
|
|
_mpd_shortdiv(r, u, n, d);
|
|
/* we are not interested in the return value here */
|
|
retval = 0;
|
|
}
|
|
else {
|
|
retval = !_mpd_isallzero(u, n);
|
|
}
|
|
|
|
|
|
if (u != ustatic) mpd_free(u);
|
|
if (v != vstatic) mpd_free(v);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Left shift of src by 'shift' digits; src may equal dest.
|
|
*
|
|
* dest := area of n mpd_uint_t with space for srcdigits+shift digits.
|
|
* src := coefficient with length m.
|
|
*
|
|
* The case splits in the function are non-obvious. The following
|
|
* equations might help:
|
|
*
|
|
* Let msdigits denote the number of digits in the most significant
|
|
* word of src. Then 1 <= msdigits <= rdigits.
|
|
*
|
|
* 1) shift = q * rdigits + r
|
|
* 2) srcdigits = qsrc * rdigits + msdigits
|
|
* 3) destdigits = shift + srcdigits
|
|
* = q * rdigits + r + qsrc * rdigits + msdigits
|
|
* = q * rdigits + (qsrc * rdigits + (r + msdigits))
|
|
*
|
|
* The result has q zero words, followed by the coefficient that
|
|
* is left-shifted by r. The case r == 0 is trivial. For r > 0, it
|
|
* is important to keep in mind that we always read m source words,
|
|
* but write m+1 destination words if r + msdigits > rdigits, m words
|
|
* otherwise.
|
|
*/
|
|
void
|
|
_mpd_baseshiftl(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t n, mpd_size_t m,
|
|
mpd_size_t shift)
|
|
{
|
|
#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
|
|
/* spurious uninitialized warnings */
|
|
mpd_uint_t l=l, lprev=lprev, h=h;
|
|
#else
|
|
mpd_uint_t l, lprev, h;
|
|
#endif
|
|
mpd_uint_t q, r;
|
|
mpd_uint_t ph;
|
|
|
|
assert(m > 0 && n >= m);
|
|
|
|
_mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
|
|
|
|
if (r != 0) {
|
|
|
|
ph = mpd_pow10[r];
|
|
|
|
--m; --n;
|
|
_mpd_divmod_pow10(&h, &lprev, src[m--], MPD_RDIGITS-r);
|
|
if (h != 0) { /* r + msdigits > rdigits <==> h != 0 */
|
|
dest[n--] = h;
|
|
}
|
|
/* write m-1 shifted words */
|
|
for (; m != MPD_SIZE_MAX; m--,n--) {
|
|
_mpd_divmod_pow10(&h, &l, src[m], MPD_RDIGITS-r);
|
|
dest[n] = ph * lprev + h;
|
|
lprev = l;
|
|
}
|
|
/* write least significant word */
|
|
dest[q] = ph * lprev;
|
|
}
|
|
else {
|
|
while (--m != MPD_SIZE_MAX) {
|
|
dest[m+q] = src[m];
|
|
}
|
|
}
|
|
|
|
mpd_uint_zero(dest, q);
|
|
}
|
|
|
|
/*
|
|
* Right shift of src by 'shift' digits; src may equal dest.
|
|
* Assumption: srcdigits-shift > 0.
|
|
*
|
|
* dest := area with space for srcdigits-shift digits.
|
|
* src := coefficient with length 'slen'.
|
|
*
|
|
* The case splits in the function rely on the following equations:
|
|
*
|
|
* Let msdigits denote the number of digits in the most significant
|
|
* word of src. Then 1 <= msdigits <= rdigits.
|
|
*
|
|
* 1) shift = q * rdigits + r
|
|
* 2) srcdigits = qsrc * rdigits + msdigits
|
|
* 3) destdigits = srcdigits - shift
|
|
* = qsrc * rdigits + msdigits - (q * rdigits + r)
|
|
* = (qsrc - q) * rdigits + msdigits - r
|
|
*
|
|
* Since destdigits > 0 and 1 <= msdigits <= rdigits:
|
|
*
|
|
* 4) qsrc >= q
|
|
* 5) qsrc == q ==> msdigits > r
|
|
*
|
|
* The result has slen-q words if msdigits > r, slen-q-1 words otherwise.
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_baseshiftr(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t slen,
|
|
mpd_size_t shift)
|
|
{
|
|
#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
|
|
/* spurious uninitialized warnings */
|
|
mpd_uint_t l=l, h=h, hprev=hprev; /* low, high, previous high */
|
|
#else
|
|
mpd_uint_t l, h, hprev; /* low, high, previous high */
|
|
#endif
|
|
mpd_uint_t rnd, rest; /* rounding digit, rest */
|
|
mpd_uint_t q, r;
|
|
mpd_size_t i, j;
|
|
mpd_uint_t ph;
|
|
|
|
assert(slen > 0);
|
|
|
|
_mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
|
|
|
|
rnd = rest = 0;
|
|
if (r != 0) {
|
|
|
|
ph = mpd_pow10[MPD_RDIGITS-r];
|
|
|
|
_mpd_divmod_pow10(&hprev, &rest, src[q], r);
|
|
_mpd_divmod_pow10(&rnd, &rest, rest, r-1);
|
|
|
|
if (rest == 0 && q > 0) {
|
|
rest = !_mpd_isallzero(src, q);
|
|
}
|
|
/* write slen-q-1 words */
|
|
for (j=0,i=q+1; i<slen; i++,j++) {
|
|
_mpd_divmod_pow10(&h, &l, src[i], r);
|
|
dest[j] = ph * l + hprev;
|
|
hprev = h;
|
|
}
|
|
/* write most significant word */
|
|
if (hprev != 0) { /* always the case if slen==q-1 */
|
|
dest[j] = hprev;
|
|
}
|
|
}
|
|
else {
|
|
if (q > 0) {
|
|
_mpd_divmod_pow10(&rnd, &rest, src[q-1], MPD_RDIGITS-1);
|
|
/* is there any non-zero digit below rnd? */
|
|
if (rest == 0) rest = !_mpd_isallzero(src, q-1);
|
|
}
|
|
for (j = 0; j < slen-q; j++) {
|
|
dest[j] = src[q+j];
|
|
}
|
|
}
|
|
|
|
/* 0-4 ==> rnd+rest < 0.5 */
|
|
/* 5 ==> rnd+rest == 0.5 */
|
|
/* 6-9 ==> rnd+rest > 0.5 */
|
|
return (rnd == 0 || rnd == 5) ? rnd + !!rest : rnd;
|
|
}
|
|
|
|
|
|
/*********************************************************************/
|
|
/* Calculations in base b */
|
|
/*********************************************************************/
|
|
|
|
/*
|
|
* Add v to w (len m). The calling function has to handle a possible
|
|
* final carry. Assumption: m > 0.
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_shortadd_b(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v, mpd_uint_t b)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry;
|
|
mpd_size_t i;
|
|
|
|
assert(m > 0);
|
|
|
|
/* add v to w */
|
|
s = w[0] + v;
|
|
carry = (s < v) | (s >= b);
|
|
w[0] = carry ? s-b : s;
|
|
|
|
/* if there is a carry, propagate it */
|
|
for (i = 1; carry && i < m; i++) {
|
|
s = w[i] + carry;
|
|
carry = (s == b);
|
|
w[i] = carry ? 0 : s;
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/* w := product of u (len n) and v (single word). Return carry. */
|
|
mpd_uint_t
|
|
_mpd_shortmul_c(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t carry = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
for (i=0; i < n; i++) {
|
|
|
|
_mpd_mul_words(&hi, &lo, u[i], v);
|
|
lo = carry + lo;
|
|
if (lo < carry) hi++;
|
|
|
|
_mpd_div_words_r(&carry, &w[i], hi, lo);
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/* w := product of u (len n) and v (single word) */
|
|
mpd_uint_t
|
|
_mpd_shortmul_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
|
|
mpd_uint_t v, mpd_uint_t b)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t carry = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
for (i=0; i < n; i++) {
|
|
|
|
_mpd_mul_words(&hi, &lo, u[i], v);
|
|
lo = carry + lo;
|
|
if (lo < carry) hi++;
|
|
|
|
_mpd_div_words(&carry, &w[i], hi, lo, b);
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
|
|
* w := quotient of u (len n) divided by a single word v
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_shortdiv_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
|
|
mpd_uint_t v, mpd_uint_t b)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t rem = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
for (i=n-1; i != MPD_SIZE_MAX; i--) {
|
|
|
|
_mpd_mul_words(&hi, &lo, rem, b);
|
|
lo = u[i] + lo;
|
|
if (lo < u[i]) hi++;
|
|
|
|
_mpd_div_words(&w[i], &rem, hi, lo, v);
|
|
}
|
|
|
|
return rem;
|
|
}
|