cosmopolitan/test/libc/runtime/itsatrap_test.c
Justine Tunney f4f4caab0e Add x86_64-linux-gnu emulator
I wanted a tiny scriptable meltdown proof way to run userspace programs
and visualize how program execution impacts memory. It helps to explain
how things like Actually Portable Executable works. It can show you how
the GCC generated code is going about manipulating matrices and more. I
didn't feel fully comfortable with Qemu and Bochs because I'm not smart
enough to understand them. I wanted something like gVisor but with much
stronger levels of assurances. I wanted a single binary that'll run, on
all major operating systems with an embedded GPL barrier ZIP filesystem
that is tiny enough to transpile to JavaScript and run in browsers too.

https://justine.storage.googleapis.com/emulator625.mp4
2020-08-25 04:43:42 -07:00

354 lines
8.9 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ This program is free software; you can redistribute it and/or modify │
│ it under the terms of the GNU General Public License as published by │
│ the Free Software Foundation; version 2 of the License. │
│ │
│ This program is distributed in the hope that it will be useful, but │
│ WITHOUT ANY WARRANTY; without even the implied warranty of │
│ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │
│ General Public License for more details. │
│ │
│ You should have received a copy of the GNU General Public License │
│ along with this program; if not, write to the Free Software │
│ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │
│ 02110-1301 USA │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/limits.h"
#include "libc/runtime/runtime.h"
#include "libc/testlib/testlib.h"
/**
* @fileoverview Tests for arithmetic overflow traps.
*
* This module assumes -ftrapv, but not -fsanitize=undefined; since
* Ubsan provides a superset trapping functionality, and therefore
* overrides the prior. The nice thing about -ftrapv is that it doesn't
* leak huge amounts of information into the binary. So it's appropriate
* to enable in a release build.
*
* @note LLVM's implementation of the runtime for this crashes due to
* relying on undefined behavior lool, the very thing the flag was
* meant to help prevent, so we don't get punked by the compiler
* @see __addvsi3, __mulvsi3, etc.
*/
volatile bool overflowed_;
void __on_arithmetic_overflow(void) {
overflowed_ = true;
}
void SetUp(void) {
overflowed_ = false;
}
/* 32-BIT SIGNED NEGATION */
TEST(__negvsi2, testMax) {
EXPECT_EQ(-INT_MAX, -VEIL("r", INT_MAX));
EXPECT_FALSE(overflowed_);
}
TEST(__negvsi2, testMin0) {
EXPROPRIATE(-VEIL("r", INT_MIN));
EXPECT_TRUE(overflowed_);
}
/* 64-BIT SIGNED NEGATION */
TEST(__negvdi2, testMax) {
EXPECT_EQ(-LONG_MAX, -VEIL("r", LONG_MAX));
EXPECT_FALSE(overflowed_);
}
TEST(__negvdi2, testMin0) {
EXPROPRIATE(-VEIL("r", LONG_MIN));
EXPECT_TRUE(overflowed_);
}
/* 32-BIT SIGNED MULTIPLICATION */
TEST(__mulvsi3, testMin0) {
EXPECT_EQ(0, 0 * VEIL("r", INT_MIN));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvsi3, testMin1) {
EXPECT_EQ(INT_MIN, 1 * VEIL("r", INT_MIN));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvsi3, testMin2) {
EXPROPRIATE(2 * VEIL("r", INT_MIN));
EXPECT_TRUE(overflowed_);
}
TEST(__mulvsi3, testMax0) {
EXPECT_EQ(0, 0 * VEIL("r", INT_MAX));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvsi3, testMax1) {
EXPECT_EQ(INT_MAX, 1 * VEIL("r", INT_MAX));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvsi3, testMax2) {
EXPROPRIATE(2 * VEIL("r", INT_MAX));
EXPECT_TRUE(overflowed_);
}
TEST(__mulvsi3, test7) {
EXPECT_EQ(0x70000000, 7 * VEIL("r", 0x10000000));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvsi3, test8) {
EXPROPRIATE(8 * VEIL("r", 0x10000000));
EXPECT_TRUE(overflowed_);
}
TEST(__mulvsi3, test31337) {
EXPROPRIATE(0x31337 * VEIL("r", 0x31337));
EXPECT_TRUE(overflowed_);
}
TEST(__mulvsi3, standAndDeliver_aNegativeTimesANegativeEqualsAPositive) {
EXPECT_EQ(25, -5 * VEIL("r", -5));
EXPECT_FALSE(overflowed_);
}
/* 64-BIT SIGNED MULTIPLICATION */
TEST(__mulvdi3, testMin0) {
EXPECT_EQ(0, 0 * VEIL("r", LONG_MIN));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvdi3, testMin1) {
EXPECT_EQ(LONG_MIN, 1 * VEIL("r", LONG_MIN));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvdi3, testMin2) {
EXPROPRIATE(2 * VEIL("r", LONG_MIN));
EXPECT_TRUE(overflowed_);
}
TEST(__mulvdi3, testMax0) {
EXPECT_EQ(0, 0 * VEIL("r", LONG_MAX));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvdi3, testMax1) {
EXPECT_EQ(LONG_MAX, 1 * VEIL("r", LONG_MAX));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvdi3, testMax2) {
EXPROPRIATE(2 * VEIL("r", LONG_MAX));
EXPECT_TRUE(overflowed_);
}
TEST(__mulvdi3, test7) {
EXPECT_EQ(0x7000000000000000l, 7 * VEIL("r", 0x1000000000000000l));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvdi3, test8) {
EXPROPRIATE(8 * VEIL("r", 0x1000000000000000l));
EXPECT_TRUE(overflowed_);
}
TEST(__mulvdi3, test31337) {
EXPROPRIATE(0x3133700000000l * VEIL("r", 0x3133700000000l));
EXPECT_TRUE(overflowed_);
}
TEST(__mulvdi3, standAndDeliver_aNegativeTimesANegativeEqualsAPositive) {
EXPECT_EQ(25l, -5l * VEIL("r", -5l));
EXPECT_FALSE(overflowed_);
}
TEST(__mulvdi3, testOverflow) {
volatile int64_t x;
x = 3037000500;
x *= 3037000499;
EXPECT_FALSE(overflowed_);
x = 3037000500;
x *= 3037000500;
EXPECT_TRUE(overflowed_);
}
/* 32-BIT SIGNED ADDITION */
TEST(__addvsi3, testMin1) {
EXPECT_EQ(INT_MIN + 1, 1 + VEIL("r", INT_MIN));
EXPECT_FALSE(overflowed_);
}
TEST(__addvsi3, testMax1) {
EXPROPRIATE(1 + VEIL("r", INT_MAX));
EXPECT_TRUE(overflowed_);
}
TEST(__addvsi3, testNegPos) {
EXPECT_EQ(2, -2 + VEIL("r", 4));
EXPECT_FALSE(overflowed_);
}
TEST(__addvsi3, testPosNeg) {
EXPECT_EQ(-2, 2 + VEIL("r", -4));
EXPECT_FALSE(overflowed_);
}
/* 64-BIT SIGNED ADDITION */
TEST(__addvdi3, testMin1) {
EXPECT_EQ(LONG_MIN + 1, 1 + VEIL("r", LONG_MIN));
EXPECT_FALSE(overflowed_);
}
TEST(__addvdi3, testMax1) {
EXPROPRIATE(1 + VEIL("r", LONG_MAX));
EXPECT_TRUE(overflowed_);
}
TEST(__addvdi3, testNegPos) {
EXPECT_EQ(2l, -2l + VEIL("r", 4l));
EXPECT_FALSE(overflowed_);
}
TEST(__addvdi3, testPosNeg) {
EXPECT_EQ(-2l, 2l + VEIL("r", -4l));
EXPECT_FALSE(overflowed_);
}
/* 32-BIT SIGNED SUBTRACTION */
TEST(__subvsi3, testMin1) {
EXPROPRIATE(VEIL("r", INT_MIN) - 1);
EXPECT_TRUE(overflowed_);
}
TEST(__subvsi3, testMax1) {
EXPECT_EQ(INT_MAX - 1, VEIL("r", INT_MAX) - 1);
EXPECT_FALSE(overflowed_);
}
TEST(__subvsi3, testPosNeg) {
EXPECT_EQ(-2, 2 - VEIL("r", 4));
EXPECT_FALSE(overflowed_);
}
/* 64-BIT SIGNED SUBTRACTION */
TEST(__subvdi3, testMin1) {
EXPROPRIATE(VEIL("r", LONG_MIN) - 1);
EXPECT_TRUE(overflowed_);
}
TEST(__subvdi3, testMax1) {
EXPECT_EQ(LONG_MAX - 1, VEIL("r", LONG_MAX) - 1);
EXPECT_FALSE(overflowed_);
}
/* 128-BIT SIGNED ADDITION */
TEST(__addvti3, testMath) {
volatile int128_t x;
x = 2;
x += 2;
EXPECT_EQ(4, x);
x = -2;
x += -2;
EXPECT_EQ(-4, x);
x = UINT64_MAX;
x += 1;
EXPECT_EQ((int128_t)UINT64_MAX + 1, x);
EXPECT_FALSE(overflowed_);
}
TEST(__addvti3, testOverflow) {
volatile int128_t x;
x = INT128_MAX;
x += 1;
EXPECT_TRUE(overflowed_);
}
/* 128-BIT SIGNED SUBTRACTION */
TEST(__subvti3, testMath) {
volatile int128_t x;
x = -2;
x -= 2;
EXPECT_EQ(-4, x);
x = UINT64_MIN;
x -= 1;
EXPECT_EQ((int128_t)UINT64_MIN - 1, x);
EXPECT_FALSE(overflowed_);
}
TEST(__subvti3, testOverflow) {
volatile int128_t x;
x = INT128_MIN;
x -= 1;
EXPECT_TRUE(overflowed_);
}
/* 128-BIT SIGNED NEGATION */
TEST(__negvti3, testMath) {
volatile int128_t x;
x = -2;
x = -x;
EXPECT_EQ(2, x);
EXPECT_FALSE(overflowed_);
x = INT128_MAX;
x = -x;
EXPECT_EQ(INT128_MIN + 1, x);
EXPECT_FALSE(overflowed_);
x = (uint128_t)0x8000000000000000 << 64 | 0x8000000000000000;
x = -x;
EXPECT_EQ((uint128_t)0x7fffffffffffffff << 64 | 0x8000000000000000, x);
EXPECT_FALSE(overflowed_);
}
TEST(__negvti3, testOverflow) {
volatile int128_t x;
x = INT128_MIN;
x = -x;
EXPECT_TRUE(overflowed_);
}
/* 128-BIT SIGNED MULTIPLICATION */
TEST(__mulvti3, testMath) {
volatile int128_t x;
x = 7;
x *= 11;
EXPECT_EQ(77, x);
EXPECT_FALSE(overflowed_);
x = 0x1fffffffffffffff;
x *= 0x1fffffffffffffff;
EXPECT_EQ((uint128_t)0x3ffffffffffffff << 64 | 0xc000000000000001, x);
EXPECT_FALSE(overflowed_);
x = -0x1fffffffffffffff;
x *= 0x1fffffffffffffff;
EXPECT_EQ((uint128_t)0xfc00000000000000 << 64 | 0x3fffffffffffffff, x);
EXPECT_FALSE(overflowed_);
}
TEST(__mulvti3, testOverflow) {
volatile int128_t x;
x = 0xb504f333f9de5be0;
x *= 0xb504f333f9de6d28;
EXPECT_FALSE(overflowed_);
x = 0xb504f333f9de5be0;
x *= 0xb504f333f9de6d29;
EXPECT_TRUE(overflowed_);
}