cosmopolitan/third_party/python/Parser/acceler.c
Justine Tunney b420ed8248 Undiamond Python headers
This change gets the Python codebase into a state where it conforms to
the conventions of this codebase. It's now possible to include headers
from Python, without worrying about ordering. Python has traditionally
solved that problem by "diamonding" everything in Python.h, but that's
problematic since it means any change to any Python header invalidates
all the build artifacts. Lastly it makes tooling not work. Since it is
hard to explain to Emacs when I press C-c C-h to add an import line it
shouldn't add the header that actually defines the symbol, and instead
do follow the nonstandard Python convention.

Progress has been made on letting Python load source code from the zip
executable structure via the standard C library APIs. System calss now
recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME
since Python uses colon as its delimiter.

Some progress has been made on embedding the notice license terms into
the Python object code. This is easier said than done since Python has
an extremely complicated ownership story.

- Some termios APIs have been added
- Implement rewinddir() dirstream API
- GetCpuCount() API added to Cosmopolitan Libc
- More bugs in Cosmopolitan Libc have been fixed
- zipobj.com now has flags for mangling the path
- Fixed bug a priori with sendfile() on certain BSDs
- Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms
- FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes
- APE now supports a hybrid solution to no-self-modify for builds
- Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
2021-08-12 14:07:40 -07:00

125 lines
3.5 KiB
C

#include "third_party/python/Include/grammar.h"
#include "third_party/python/Include/node.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pgenheaders.h"
#include "third_party/python/Include/token.h"
#include "third_party/python/Parser/parser.h"
/* clang-format off */
/* Parser accelerator module */
/* The parser as originally conceived had disappointing performance.
This module does some precomputation that speeds up the selection
of a DFA based upon a token, turning a search through an array
into a simple indexing operation. The parser now cannot work
without the accelerators installed. Note that the accelerators
are installed dynamically when the parser is initialized, they
are not part of the static data structure written on graminit.[ch]
by the parser generator. */
/* Forward references */
static void fixdfa(grammar *, dfa *);
static void fixstate(grammar *, state *);
void
PyGrammar_AddAccelerators(grammar *g)
{
dfa *d;
int i;
d = g->g_dfa;
for (i = g->g_ndfas; --i >= 0; d++)
fixdfa(g, d);
g->g_accel = 1;
}
void
PyGrammar_RemoveAccelerators(grammar *g)
{
dfa *d;
int i;
g->g_accel = 0;
d = g->g_dfa;
for (i = g->g_ndfas; --i >= 0; d++) {
state *s;
int j;
s = d->d_state;
for (j = 0; j < d->d_nstates; j++, s++) {
if (s->s_accel)
PyObject_FREE(s->s_accel);
s->s_accel = NULL;
}
}
}
static void
fixdfa(grammar *g, dfa *d)
{
state *s;
int j;
s = d->d_state;
for (j = 0; j < d->d_nstates; j++, s++)
fixstate(g, s);
}
static void
fixstate(grammar *g, state *s)
{
arc *a;
int k;
int *accel;
int nl = g->g_ll.ll_nlabels;
s->s_accept = 0;
accel = (int *) PyObject_MALLOC(nl * sizeof(int));
if (accel == NULL) {
fprintf(stderr, "no mem to build parser accelerators\n");
exit(1);
}
for (k = 0; k < nl; k++)
accel[k] = -1;
a = s->s_arc;
for (k = s->s_narcs; --k >= 0; a++) {
int lbl = a->a_lbl;
label *l = &g->g_ll.ll_label[lbl];
int type = l->lb_type;
if (a->a_arrow >= (1 << 7)) {
printf("XXX too many states!\n");
continue;
}
if (ISNONTERMINAL(type)) {
dfa *d1 = PyGrammar_FindDFA(g, type);
int ibit;
if (type - NT_OFFSET >= (1 << 7)) {
printf("XXX too high nonterminal number!\n");
continue;
}
for (ibit = 0; ibit < g->g_ll.ll_nlabels; ibit++) {
if (testbit(d1->d_first, ibit)) {
if (accel[ibit] != -1)
printf("XXX ambiguity!\n");
accel[ibit] = a->a_arrow | (1 << 7) |
((type - NT_OFFSET) << 8);
}
}
}
else if (lbl == EMPTY)
s->s_accept = 1;
else if (lbl >= 0 && lbl < nl)
accel[lbl] = a->a_arrow;
}
while (nl > 0 && accel[nl-1] == -1)
nl--;
for (k = 0; k < nl && accel[k] == -1;)
k++;
if (k < nl) {
int i;
s->s_accel = (int *) PyObject_MALLOC((nl-k) * sizeof(int));
if (s->s_accel == NULL) {
fprintf(stderr, "no mem to add parser accelerators\n");
exit(1);
}
s->s_lower = k;
s->s_upper = nl;
for (i = 0; k < nl; i++, k++)
s->s_accel[i] = accel[k];
}
PyObject_FREE(accel);
}