mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 03:27:39 +00:00
2288 lines
70 KiB
C
2288 lines
70 KiB
C
/*
|
|
** 2002 February 23
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C-language implementations for many of the SQL
|
|
** functions of SQLite. (Some function, and in particular the date and
|
|
** time functions, are implemented separately.)
|
|
*/
|
|
#include "libc/assert.h"
|
|
#include "libc/mem/mem.h"
|
|
#include "third_party/sqlite3/sqliteInt.inc"
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
#include "libc/math.h"
|
|
#endif
|
|
#include "third_party/sqlite3/vdbeInt.inc"
|
|
/* clang-format off */
|
|
|
|
/*
|
|
** Return the collating function associated with a function.
|
|
*/
|
|
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
|
|
VdbeOp *pOp;
|
|
assert( context->pVdbe!=0 );
|
|
pOp = &context->pVdbe->aOp[context->iOp-1];
|
|
assert( pOp->opcode==OP_CollSeq );
|
|
assert( pOp->p4type==P4_COLLSEQ );
|
|
return pOp->p4.pColl;
|
|
}
|
|
|
|
/*
|
|
** Indicate that the accumulator load should be skipped on this
|
|
** iteration of the aggregate loop.
|
|
*/
|
|
static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
|
|
assert( context->isError<=0 );
|
|
context->isError = -1;
|
|
context->skipFlag = 1;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the non-aggregate min() and max() functions
|
|
*/
|
|
static void minmaxFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
int mask; /* 0 for min() or 0xffffffff for max() */
|
|
int iBest;
|
|
CollSeq *pColl;
|
|
|
|
assert( argc>1 );
|
|
mask = sqlite3_user_data(context)==0 ? 0 : -1;
|
|
pColl = sqlite3GetFuncCollSeq(context);
|
|
assert( pColl );
|
|
assert( mask==-1 || mask==0 );
|
|
iBest = 0;
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
for(i=1; i<argc; i++){
|
|
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
|
|
if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
|
|
testcase( mask==0 );
|
|
iBest = i;
|
|
}
|
|
}
|
|
sqlite3_result_value(context, argv[iBest]);
|
|
}
|
|
|
|
/*
|
|
** Return the type of the argument.
|
|
*/
|
|
static void typeofFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **argv
|
|
){
|
|
static const char *azType[] = { "integer", "real", "text", "blob", "null" };
|
|
int i = sqlite3_value_type(argv[0]) - 1;
|
|
UNUSED_PARAMETER(NotUsed);
|
|
assert( i>=0 && i<ArraySize(azType) );
|
|
assert( SQLITE_INTEGER==1 );
|
|
assert( SQLITE_FLOAT==2 );
|
|
assert( SQLITE_TEXT==3 );
|
|
assert( SQLITE_BLOB==4 );
|
|
assert( SQLITE_NULL==5 );
|
|
/* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
|
|
** the datatype code for the initial datatype of the sqlite3_value object
|
|
** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
|
|
** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
|
|
sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
|
|
}
|
|
|
|
|
|
/*
|
|
** Implementation of the length() function
|
|
*/
|
|
static void lengthFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_BLOB:
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
const unsigned char *z = sqlite3_value_text(argv[0]);
|
|
const unsigned char *z0;
|
|
unsigned char c;
|
|
if( z==0 ) return;
|
|
z0 = z;
|
|
while( (c = *z)!=0 ){
|
|
z++;
|
|
if( c>=0xc0 ){
|
|
while( (*z & 0xc0)==0x80 ){ z++; z0++; }
|
|
}
|
|
}
|
|
sqlite3_result_int(context, (int)(z-z0));
|
|
break;
|
|
}
|
|
default: {
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the abs() function.
|
|
**
|
|
** IMP: R-23979-26855 The abs(X) function returns the absolute value of
|
|
** the numeric argument X.
|
|
*/
|
|
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_INTEGER: {
|
|
i64 iVal = sqlite3_value_int64(argv[0]);
|
|
if( iVal<0 ){
|
|
if( iVal==SMALLEST_INT64 ){
|
|
/* IMP: R-31676-45509 If X is the integer -9223372036854775808
|
|
** then abs(X) throws an integer overflow error since there is no
|
|
** equivalent positive 64-bit two complement value. */
|
|
sqlite3_result_error(context, "integer overflow", -1);
|
|
return;
|
|
}
|
|
iVal = -iVal;
|
|
}
|
|
sqlite3_result_int64(context, iVal);
|
|
break;
|
|
}
|
|
case SQLITE_NULL: {
|
|
/* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
default: {
|
|
/* Because sqlite3_value_double() returns 0.0 if the argument is not
|
|
** something that can be converted into a number, we have:
|
|
** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
|
|
** that cannot be converted to a numeric value.
|
|
*/
|
|
double rVal = sqlite3_value_double(argv[0]);
|
|
if( rVal<0 ) rVal = -rVal;
|
|
sqlite3_result_double(context, rVal);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the instr() function.
|
|
**
|
|
** instr(haystack,needle) finds the first occurrence of needle
|
|
** in haystack and returns the number of previous characters plus 1,
|
|
** or 0 if needle does not occur within haystack.
|
|
**
|
|
** If both haystack and needle are BLOBs, then the result is one more than
|
|
** the number of bytes in haystack prior to the first occurrence of needle,
|
|
** or 0 if needle never occurs in haystack.
|
|
*/
|
|
static void instrFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zHaystack;
|
|
const unsigned char *zNeedle;
|
|
int nHaystack;
|
|
int nNeedle;
|
|
int typeHaystack, typeNeedle;
|
|
int N = 1;
|
|
int isText;
|
|
unsigned char firstChar;
|
|
sqlite3_value *pC1 = 0;
|
|
sqlite3_value *pC2 = 0;
|
|
|
|
UNUSED_PARAMETER(argc);
|
|
typeHaystack = sqlite3_value_type(argv[0]);
|
|
typeNeedle = sqlite3_value_type(argv[1]);
|
|
if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
|
|
nHaystack = sqlite3_value_bytes(argv[0]);
|
|
nNeedle = sqlite3_value_bytes(argv[1]);
|
|
if( nNeedle>0 ){
|
|
if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
|
|
zHaystack = sqlite3_value_blob(argv[0]);
|
|
zNeedle = sqlite3_value_blob(argv[1]);
|
|
isText = 0;
|
|
}else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
|
|
zHaystack = sqlite3_value_text(argv[0]);
|
|
zNeedle = sqlite3_value_text(argv[1]);
|
|
isText = 1;
|
|
}else{
|
|
pC1 = sqlite3_value_dup(argv[0]);
|
|
zHaystack = sqlite3_value_text(pC1);
|
|
if( zHaystack==0 ) goto endInstrOOM;
|
|
nHaystack = sqlite3_value_bytes(pC1);
|
|
pC2 = sqlite3_value_dup(argv[1]);
|
|
zNeedle = sqlite3_value_text(pC2);
|
|
if( zNeedle==0 ) goto endInstrOOM;
|
|
nNeedle = sqlite3_value_bytes(pC2);
|
|
isText = 1;
|
|
}
|
|
if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
|
|
firstChar = zNeedle[0];
|
|
while( nNeedle<=nHaystack
|
|
&& (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
|
|
){
|
|
N++;
|
|
do{
|
|
nHaystack--;
|
|
zHaystack++;
|
|
}while( isText && (zHaystack[0]&0xc0)==0x80 );
|
|
}
|
|
if( nNeedle>nHaystack ) N = 0;
|
|
}
|
|
sqlite3_result_int(context, N);
|
|
endInstr:
|
|
sqlite3_value_free(pC1);
|
|
sqlite3_value_free(pC2);
|
|
return;
|
|
endInstrOOM:
|
|
sqlite3_result_error_nomem(context);
|
|
goto endInstr;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the printf() function.
|
|
*/
|
|
static void printfFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
PrintfArguments x;
|
|
StrAccum str;
|
|
const char *zFormat;
|
|
int n;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
|
|
if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
|
|
x.nArg = argc-1;
|
|
x.nUsed = 0;
|
|
x.apArg = argv+1;
|
|
sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
|
|
str.printfFlags = SQLITE_PRINTF_SQLFUNC;
|
|
sqlite3_str_appendf(&str, zFormat, &x);
|
|
n = str.nChar;
|
|
sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
|
|
SQLITE_DYNAMIC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the substr() function.
|
|
**
|
|
** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
|
|
** p1 is 1-indexed. So substr(x,1,1) returns the first character
|
|
** of x. If x is text, then we actually count UTF-8 characters.
|
|
** If x is a blob, then we count bytes.
|
|
**
|
|
** If p1 is negative, then we begin abs(p1) from the end of x[].
|
|
**
|
|
** If p2 is negative, return the p2 characters preceding p1.
|
|
*/
|
|
static void substrFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *z;
|
|
const unsigned char *z2;
|
|
int len;
|
|
int p0type;
|
|
i64 p1, p2;
|
|
int negP2 = 0;
|
|
|
|
assert( argc==3 || argc==2 );
|
|
if( sqlite3_value_type(argv[1])==SQLITE_NULL
|
|
|| (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
|
|
){
|
|
return;
|
|
}
|
|
p0type = sqlite3_value_type(argv[0]);
|
|
p1 = sqlite3_value_int(argv[1]);
|
|
if( p0type==SQLITE_BLOB ){
|
|
len = sqlite3_value_bytes(argv[0]);
|
|
z = sqlite3_value_blob(argv[0]);
|
|
if( z==0 ) return;
|
|
assert( len==sqlite3_value_bytes(argv[0]) );
|
|
}else{
|
|
z = sqlite3_value_text(argv[0]);
|
|
if( z==0 ) return;
|
|
len = 0;
|
|
if( p1<0 ){
|
|
for(z2=z; *z2; len++){
|
|
SQLITE_SKIP_UTF8(z2);
|
|
}
|
|
}
|
|
}
|
|
#ifdef SQLITE_SUBSTR_COMPATIBILITY
|
|
/* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
|
|
** as substr(X,1,N) - it returns the first N characters of X. This
|
|
** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
|
|
** from 2009-02-02 for compatibility of applications that exploited the
|
|
** old buggy behavior. */
|
|
if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
|
|
#endif
|
|
if( argc==3 ){
|
|
p2 = sqlite3_value_int(argv[2]);
|
|
if( p2<0 ){
|
|
p2 = -p2;
|
|
negP2 = 1;
|
|
}
|
|
}else{
|
|
p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
|
|
}
|
|
if( p1<0 ){
|
|
p1 += len;
|
|
if( p1<0 ){
|
|
p2 += p1;
|
|
if( p2<0 ) p2 = 0;
|
|
p1 = 0;
|
|
}
|
|
}else if( p1>0 ){
|
|
p1--;
|
|
}else if( p2>0 ){
|
|
p2--;
|
|
}
|
|
if( negP2 ){
|
|
p1 -= p2;
|
|
if( p1<0 ){
|
|
p2 += p1;
|
|
p1 = 0;
|
|
}
|
|
}
|
|
assert( p1>=0 && p2>=0 );
|
|
if( p0type!=SQLITE_BLOB ){
|
|
while( *z && p1 ){
|
|
SQLITE_SKIP_UTF8(z);
|
|
p1--;
|
|
}
|
|
for(z2=z; *z2 && p2; p2--){
|
|
SQLITE_SKIP_UTF8(z2);
|
|
}
|
|
sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
|
|
SQLITE_UTF8);
|
|
}else{
|
|
if( p1+p2>len ){
|
|
p2 = len-p1;
|
|
if( p2<0 ) p2 = 0;
|
|
}
|
|
sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the round() function
|
|
*/
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
int n = 0;
|
|
double r;
|
|
char *zBuf;
|
|
assert( argc==1 || argc==2 );
|
|
if( argc==2 ){
|
|
if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
|
|
n = sqlite3_value_int(argv[1]);
|
|
if( n>30 ) n = 30;
|
|
if( n<0 ) n = 0;
|
|
}
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
r = sqlite3_value_double(argv[0]);
|
|
/* If Y==0 and X will fit in a 64-bit int,
|
|
** handle the rounding directly,
|
|
** otherwise use printf.
|
|
*/
|
|
if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
|
|
/* The value has no fractional part so there is nothing to round */
|
|
}else if( n==0 ){
|
|
r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
|
|
}else{
|
|
zBuf = sqlite3_mprintf("%.*f",n,r);
|
|
if( zBuf==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
return;
|
|
}
|
|
sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
|
|
sqlite3_free(zBuf);
|
|
}
|
|
sqlite3_result_double(context, r);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Allocate nByte bytes of space using sqlite3Malloc(). If the
|
|
** allocation fails, call sqlite3_result_error_nomem() to notify
|
|
** the database handle that malloc() has failed and return NULL.
|
|
** If nByte is larger than the maximum string or blob length, then
|
|
** raise an SQLITE_TOOBIG exception and return NULL.
|
|
*/
|
|
static void *contextMalloc(sqlite3_context *context, i64 nByte){
|
|
char *z;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
assert( nByte>0 );
|
|
testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
|
|
testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
|
|
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
sqlite3_result_error_toobig(context);
|
|
z = 0;
|
|
}else{
|
|
z = sqlite3Malloc(nByte);
|
|
if( !z ){
|
|
sqlite3_result_error_nomem(context);
|
|
}
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the upper() and lower() SQL functions.
|
|
*/
|
|
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z1;
|
|
const char *z2;
|
|
int i, n;
|
|
UNUSED_PARAMETER(argc);
|
|
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
if( z2 ){
|
|
z1 = contextMalloc(context, ((i64)n)+1);
|
|
if( z1 ){
|
|
for(i=0; i<n; i++){
|
|
z1[i] = (char)sqlite3Toupper(z2[i]);
|
|
}
|
|
sqlite3_result_text(context, z1, n, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z1;
|
|
const char *z2;
|
|
int i, n;
|
|
UNUSED_PARAMETER(argc);
|
|
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
if( z2 ){
|
|
z1 = contextMalloc(context, ((i64)n)+1);
|
|
if( z1 ){
|
|
for(i=0; i<n; i++){
|
|
z1[i] = sqlite3Tolower(z2[i]);
|
|
}
|
|
sqlite3_result_text(context, z1, n, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
|
|
** as VDBE code so that unused argument values do not have to be computed.
|
|
** However, we still need some kind of function implementation for this
|
|
** routines in the function table. The noopFunc macro provides this.
|
|
** noopFunc will never be called so it doesn't matter what the implementation
|
|
** is. We might as well use the "version()" function as a substitute.
|
|
*/
|
|
#define noopFunc versionFunc /* Substitute function - never called */
|
|
|
|
/*
|
|
** Implementation of random(). Return a random integer.
|
|
*/
|
|
static void randomFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite_int64 r;
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
sqlite3_randomness(sizeof(r), &r);
|
|
if( r<0 ){
|
|
/* We need to prevent a random number of 0x8000000000000000
|
|
** (or -9223372036854775808) since when you do abs() of that
|
|
** number of you get the same value back again. To do this
|
|
** in a way that is testable, mask the sign bit off of negative
|
|
** values, resulting in a positive value. Then take the
|
|
** 2s complement of that positive value. The end result can
|
|
** therefore be no less than -9223372036854775807.
|
|
*/
|
|
r = -(r & LARGEST_INT64);
|
|
}
|
|
sqlite3_result_int64(context, r);
|
|
}
|
|
|
|
/*
|
|
** Implementation of randomblob(N). Return a random blob
|
|
** that is N bytes long.
|
|
*/
|
|
static void randomBlob(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3_int64 n;
|
|
unsigned char *p;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
n = sqlite3_value_int64(argv[0]);
|
|
if( n<1 ){
|
|
n = 1;
|
|
}
|
|
p = contextMalloc(context, n);
|
|
if( p ){
|
|
sqlite3_randomness(n, p);
|
|
sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the last_insert_rowid() SQL function. The return
|
|
** value is the same as the sqlite3_last_insert_rowid() API function.
|
|
*/
|
|
static void last_insert_rowid(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
/* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
|
|
** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
|
|
** function. */
|
|
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the changes() SQL function.
|
|
**
|
|
** IMP: R-62073-11209 The changes() SQL function is a wrapper
|
|
** around the sqlite3_changes() C/C++ function and hence follows the same
|
|
** rules for counting changes.
|
|
*/
|
|
static void changes(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
sqlite3_result_int(context, sqlite3_changes(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the total_changes() SQL function. The return value is
|
|
** the same as the sqlite3_total_changes() API function.
|
|
*/
|
|
static void total_changes(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
/* IMP: R-52756-41993 This function is a wrapper around the
|
|
** sqlite3_total_changes() C/C++ interface. */
|
|
sqlite3_result_int(context, sqlite3_total_changes(db));
|
|
}
|
|
|
|
/*
|
|
** A structure defining how to do GLOB-style comparisons.
|
|
*/
|
|
struct compareInfo {
|
|
u8 matchAll; /* "*" or "%" */
|
|
u8 matchOne; /* "?" or "_" */
|
|
u8 matchSet; /* "[" or 0 */
|
|
u8 noCase; /* true to ignore case differences */
|
|
};
|
|
|
|
/*
|
|
** For LIKE and GLOB matching on EBCDIC machines, assume that every
|
|
** character is exactly one byte in size. Also, provde the Utf8Read()
|
|
** macro for fast reading of the next character in the common case where
|
|
** the next character is ASCII.
|
|
*/
|
|
#if defined(SQLITE_EBCDIC)
|
|
# define sqlite3Utf8Read(A) (*((*A)++))
|
|
# define Utf8Read(A) (*(A++))
|
|
#else
|
|
# define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
|
|
#endif
|
|
|
|
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
|
|
/* The correct SQL-92 behavior is for the LIKE operator to ignore
|
|
** case. Thus 'a' LIKE 'A' would be true. */
|
|
static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
|
|
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
|
|
** is case sensitive causing 'a' LIKE 'A' to be false */
|
|
static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
|
|
|
|
/*
|
|
** Possible error returns from patternMatch()
|
|
*/
|
|
#define SQLITE_MATCH 0
|
|
#define SQLITE_NOMATCH 1
|
|
#define SQLITE_NOWILDCARDMATCH 2
|
|
|
|
/*
|
|
** Compare two UTF-8 strings for equality where the first string is
|
|
** a GLOB or LIKE expression. Return values:
|
|
**
|
|
** SQLITE_MATCH: Match
|
|
** SQLITE_NOMATCH: No match
|
|
** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
|
|
**
|
|
** Globbing rules:
|
|
**
|
|
** '*' Matches any sequence of zero or more characters.
|
|
**
|
|
** '?' Matches exactly one character.
|
|
**
|
|
** [...] Matches one character from the enclosed list of
|
|
** characters.
|
|
**
|
|
** [^...] Matches one character not in the enclosed list.
|
|
**
|
|
** With the [...] and [^...] matching, a ']' character can be included
|
|
** in the list by making it the first character after '[' or '^'. A
|
|
** range of characters can be specified using '-'. Example:
|
|
** "[a-z]" matches any single lower-case letter. To match a '-', make
|
|
** it the last character in the list.
|
|
**
|
|
** Like matching rules:
|
|
**
|
|
** '%' Matches any sequence of zero or more characters
|
|
**
|
|
*** '_' Matches any one character
|
|
**
|
|
** Ec Where E is the "esc" character and c is any other
|
|
** character, including '%', '_', and esc, match exactly c.
|
|
**
|
|
** The comments within this routine usually assume glob matching.
|
|
**
|
|
** This routine is usually quick, but can be N**2 in the worst case.
|
|
*/
|
|
static int patternCompare(
|
|
const u8 *zPattern, /* The glob pattern */
|
|
const u8 *zString, /* The string to compare against the glob */
|
|
const struct compareInfo *pInfo, /* Information about how to do the compare */
|
|
u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
|
|
){
|
|
u32 c, c2; /* Next pattern and input string chars */
|
|
u32 matchOne = pInfo->matchOne; /* "?" or "_" */
|
|
u32 matchAll = pInfo->matchAll; /* "*" or "%" */
|
|
u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
|
|
const u8 *zEscaped = 0; /* One past the last escaped input char */
|
|
|
|
while( (c = Utf8Read(zPattern))!=0 ){
|
|
if( c==matchAll ){ /* Match "*" */
|
|
/* Skip over multiple "*" characters in the pattern. If there
|
|
** are also "?" characters, skip those as well, but consume a
|
|
** single character of the input string for each "?" skipped */
|
|
while( (c=Utf8Read(zPattern)) == matchAll
|
|
|| (c == matchOne && matchOne!=0) ){
|
|
if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
|
|
return SQLITE_NOWILDCARDMATCH;
|
|
}
|
|
}
|
|
if( c==0 ){
|
|
return SQLITE_MATCH; /* "*" at the end of the pattern matches */
|
|
}else if( c==matchOther ){
|
|
if( pInfo->matchSet==0 ){
|
|
c = sqlite3Utf8Read(&zPattern);
|
|
if( c==0 ) return SQLITE_NOWILDCARDMATCH;
|
|
}else{
|
|
/* "[...]" immediately follows the "*". We have to do a slow
|
|
** recursive search in this case, but it is an unusual case. */
|
|
assert( matchOther<0x80 ); /* '[' is a single-byte character */
|
|
while( *zString ){
|
|
int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
|
|
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
|
|
SQLITE_SKIP_UTF8(zString);
|
|
}
|
|
return SQLITE_NOWILDCARDMATCH;
|
|
}
|
|
}
|
|
|
|
/* At this point variable c contains the first character of the
|
|
** pattern string past the "*". Search in the input string for the
|
|
** first matching character and recursively continue the match from
|
|
** that point.
|
|
**
|
|
** For a case-insensitive search, set variable cx to be the same as
|
|
** c but in the other case and search the input string for either
|
|
** c or cx.
|
|
*/
|
|
if( c<=0x80 ){
|
|
char zStop[3];
|
|
int bMatch;
|
|
if( noCase ){
|
|
zStop[0] = sqlite3Toupper(c);
|
|
zStop[1] = sqlite3Tolower(c);
|
|
zStop[2] = 0;
|
|
}else{
|
|
zStop[0] = c;
|
|
zStop[1] = 0;
|
|
}
|
|
while(1){
|
|
zString += strcspn((const char*)zString, zStop);
|
|
if( zString[0]==0 ) break;
|
|
zString++;
|
|
bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
|
|
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
|
|
}
|
|
}else{
|
|
int bMatch;
|
|
while( (c2 = Utf8Read(zString))!=0 ){
|
|
if( c2!=c ) continue;
|
|
bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
|
|
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
|
|
}
|
|
}
|
|
return SQLITE_NOWILDCARDMATCH;
|
|
}
|
|
if( c==matchOther ){
|
|
if( pInfo->matchSet==0 ){
|
|
c = sqlite3Utf8Read(&zPattern);
|
|
if( c==0 ) return SQLITE_NOMATCH;
|
|
zEscaped = zPattern;
|
|
}else{
|
|
u32 prior_c = 0;
|
|
int seen = 0;
|
|
int invert = 0;
|
|
c = sqlite3Utf8Read(&zString);
|
|
if( c==0 ) return SQLITE_NOMATCH;
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
if( c2=='^' ){
|
|
invert = 1;
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
}
|
|
if( c2==']' ){
|
|
if( c==']' ) seen = 1;
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
}
|
|
while( c2 && c2!=']' ){
|
|
if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
if( c>=prior_c && c<=c2 ) seen = 1;
|
|
prior_c = 0;
|
|
}else{
|
|
if( c==c2 ){
|
|
seen = 1;
|
|
}
|
|
prior_c = c2;
|
|
}
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
}
|
|
if( c2==0 || (seen ^ invert)==0 ){
|
|
return SQLITE_NOMATCH;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
c2 = Utf8Read(zString);
|
|
if( c==c2 ) continue;
|
|
if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
|
|
continue;
|
|
}
|
|
if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
|
|
return SQLITE_NOMATCH;
|
|
}
|
|
return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
|
|
** non-zero if there is no match.
|
|
*/
|
|
int sqlite3_strglob(const char *zGlobPattern, const char *zString){
|
|
return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
|
|
** a miss - like strcmp().
|
|
*/
|
|
int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
|
|
return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
|
|
}
|
|
|
|
/*
|
|
** Count the number of times that the LIKE operator (or GLOB which is
|
|
** just a variation of LIKE) gets called. This is used for testing
|
|
** only.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_like_count = 0;
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Implementation of the like() SQL function. This function implements
|
|
** the build-in LIKE operator. The first argument to the function is the
|
|
** pattern and the second argument is the string. So, the SQL statements:
|
|
**
|
|
** A LIKE B
|
|
**
|
|
** is implemented as like(B,A).
|
|
**
|
|
** This same function (with a different compareInfo structure) computes
|
|
** the GLOB operator.
|
|
*/
|
|
static void likeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zA, *zB;
|
|
u32 escape;
|
|
int nPat;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
struct compareInfo *pInfo = sqlite3_user_data(context);
|
|
struct compareInfo backupInfo;
|
|
|
|
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
|
|
if( sqlite3_value_type(argv[0])==SQLITE_BLOB
|
|
|| sqlite3_value_type(argv[1])==SQLITE_BLOB
|
|
){
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_like_count++;
|
|
#endif
|
|
sqlite3_result_int(context, 0);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Limit the length of the LIKE or GLOB pattern to avoid problems
|
|
** of deep recursion and N*N behavior in patternCompare().
|
|
*/
|
|
nPat = sqlite3_value_bytes(argv[0]);
|
|
testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
|
|
testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
|
|
if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
|
|
sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
|
|
return;
|
|
}
|
|
if( argc==3 ){
|
|
/* The escape character string must consist of a single UTF-8 character.
|
|
** Otherwise, return an error.
|
|
*/
|
|
const unsigned char *zEsc = sqlite3_value_text(argv[2]);
|
|
if( zEsc==0 ) return;
|
|
if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
|
|
sqlite3_result_error(context,
|
|
"ESCAPE expression must be a single character", -1);
|
|
return;
|
|
}
|
|
escape = sqlite3Utf8Read(&zEsc);
|
|
if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
|
|
memcpy(&backupInfo, pInfo, sizeof(backupInfo));
|
|
pInfo = &backupInfo;
|
|
if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
|
|
if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
|
|
}
|
|
}else{
|
|
escape = pInfo->matchSet;
|
|
}
|
|
zB = sqlite3_value_text(argv[0]);
|
|
zA = sqlite3_value_text(argv[1]);
|
|
if( zA && zB ){
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_like_count++;
|
|
#endif
|
|
sqlite3_result_int(context,
|
|
patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the NULLIF(x,y) function. The result is the first
|
|
** argument if the arguments are different. The result is NULL if the
|
|
** arguments are equal to each other.
|
|
*/
|
|
static void nullifFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **argv
|
|
){
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
UNUSED_PARAMETER(NotUsed);
|
|
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
|
|
sqlite3_result_value(context, argv[0]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sqlite_version() function. The result is the version
|
|
** of the SQLite library that is running.
|
|
*/
|
|
static void versionFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
/* IMP: R-48699-48617 This function is an SQL wrapper around the
|
|
** sqlite3_libversion() C-interface. */
|
|
sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sqlite_source_id() function. The result is a string
|
|
** that identifies the particular version of the source code used to build
|
|
** SQLite.
|
|
*/
|
|
static void sourceidFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
/* IMP: R-24470-31136 This function is an SQL wrapper around the
|
|
** sqlite3_sourceid() C interface. */
|
|
sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sqlite_log() function. This is a wrapper around
|
|
** sqlite3_log(). The return value is NULL. The function exists purely for
|
|
** its side-effects.
|
|
*/
|
|
static void errlogFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
UNUSED_PARAMETER(argc);
|
|
UNUSED_PARAMETER(context);
|
|
sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sqlite_compileoption_used() function.
|
|
** The result is an integer that identifies if the compiler option
|
|
** was used to build SQLite.
|
|
*/
|
|
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
|
|
static void compileoptionusedFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *zOptName;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
/* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
|
|
** function is a wrapper around the sqlite3_compileoption_used() C/C++
|
|
** function.
|
|
*/
|
|
if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
|
|
sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
|
|
|
|
/*
|
|
** Implementation of the sqlite_compileoption_get() function.
|
|
** The result is a string that identifies the compiler options
|
|
** used to build SQLite.
|
|
*/
|
|
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
|
|
static void compileoptiongetFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int n;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
/* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
|
|
** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
|
|
*/
|
|
n = sqlite3_value_int(argv[0]);
|
|
sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
|
|
}
|
|
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
|
|
|
|
/* Array for converting from half-bytes (nybbles) into ASCII hex
|
|
** digits. */
|
|
static const char hexdigits[] = {
|
|
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
|
|
};
|
|
|
|
/*
|
|
** Implementation of the QUOTE() function. This function takes a single
|
|
** argument. If the argument is numeric, the return value is the same as
|
|
** the argument. If the argument is NULL, the return value is the string
|
|
** "NULL". Otherwise, the argument is enclosed in single quotes with
|
|
** single-quote escapes.
|
|
*/
|
|
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_FLOAT: {
|
|
double r1, r2;
|
|
char zBuf[50];
|
|
r1 = sqlite3_value_double(argv[0]);
|
|
sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
|
|
sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
|
|
if( r1!=r2 ){
|
|
sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
|
|
}
|
|
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER: {
|
|
sqlite3_result_value(context, argv[0]);
|
|
break;
|
|
}
|
|
case SQLITE_BLOB: {
|
|
char *zText = 0;
|
|
char const *zBlob = sqlite3_value_blob(argv[0]);
|
|
int nBlob = sqlite3_value_bytes(argv[0]);
|
|
assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
|
zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
|
|
if( zText ){
|
|
int i;
|
|
for(i=0; i<nBlob; i++){
|
|
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
|
|
zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
|
|
}
|
|
zText[(nBlob*2)+2] = '\'';
|
|
zText[(nBlob*2)+3] = '\0';
|
|
zText[0] = 'X';
|
|
zText[1] = '\'';
|
|
sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
|
|
sqlite3_free(zText);
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
int i,j;
|
|
u64 n;
|
|
const unsigned char *zArg = sqlite3_value_text(argv[0]);
|
|
char *z;
|
|
|
|
if( zArg==0 ) return;
|
|
for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
|
|
z = contextMalloc(context, ((i64)i)+((i64)n)+3);
|
|
if( z ){
|
|
z[0] = '\'';
|
|
for(i=0, j=1; zArg[i]; i++){
|
|
z[j++] = zArg[i];
|
|
if( zArg[i]=='\'' ){
|
|
z[j++] = '\'';
|
|
}
|
|
}
|
|
z[j++] = '\'';
|
|
z[j] = 0;
|
|
sqlite3_result_text(context, z, j, sqlite3_free);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
|
|
sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The unicode() function. Return the integer unicode code-point value
|
|
** for the first character of the input string.
|
|
*/
|
|
static void unicodeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *z = sqlite3_value_text(argv[0]);
|
|
(void)argc;
|
|
if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
|
|
}
|
|
|
|
/*
|
|
** The char() function takes zero or more arguments, each of which is
|
|
** an integer. It constructs a string where each character of the string
|
|
** is the unicode character for the corresponding integer argument.
|
|
*/
|
|
static void charFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
unsigned char *z, *zOut;
|
|
int i;
|
|
zOut = z = sqlite3_malloc64( argc*4+1 );
|
|
if( z==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
return;
|
|
}
|
|
for(i=0; i<argc; i++){
|
|
sqlite3_int64 x;
|
|
unsigned c;
|
|
x = sqlite3_value_int64(argv[i]);
|
|
if( x<0 || x>0x10ffff ) x = 0xfffd;
|
|
c = (unsigned)(x & 0x1fffff);
|
|
if( c<0x00080 ){
|
|
*zOut++ = (u8)(c&0xFF);
|
|
}else if( c<0x00800 ){
|
|
*zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
|
|
*zOut++ = 0x80 + (u8)(c & 0x3F);
|
|
}else if( c<0x10000 ){
|
|
*zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
|
|
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
|
|
*zOut++ = 0x80 + (u8)(c & 0x3F);
|
|
}else{
|
|
*zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
|
|
*zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
|
|
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
|
|
*zOut++ = 0x80 + (u8)(c & 0x3F);
|
|
} \
|
|
}
|
|
sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
|
|
}
|
|
|
|
/*
|
|
** The hex() function. Interpret the argument as a blob. Return
|
|
** a hexadecimal rendering as text.
|
|
*/
|
|
static void hexFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i, n;
|
|
const unsigned char *pBlob;
|
|
char *zHex, *z;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
pBlob = sqlite3_value_blob(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
|
z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
|
|
if( zHex ){
|
|
for(i=0; i<n; i++, pBlob++){
|
|
unsigned char c = *pBlob;
|
|
*(z++) = hexdigits[(c>>4)&0xf];
|
|
*(z++) = hexdigits[c&0xf];
|
|
}
|
|
*z = 0;
|
|
sqlite3_result_text(context, zHex, n*2, sqlite3_free);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The zeroblob(N) function returns a zero-filled blob of size N bytes.
|
|
*/
|
|
static void zeroblobFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
i64 n;
|
|
int rc;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
n = sqlite3_value_int64(argv[0]);
|
|
if( n<0 ) n = 0;
|
|
rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
|
|
if( rc ){
|
|
sqlite3_result_error_code(context, rc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The replace() function. Three arguments are all strings: call
|
|
** them A, B, and C. The result is also a string which is derived
|
|
** from A by replacing every occurrence of B with C. The match
|
|
** must be exact. Collating sequences are not used.
|
|
*/
|
|
static void replaceFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zStr; /* The input string A */
|
|
const unsigned char *zPattern; /* The pattern string B */
|
|
const unsigned char *zRep; /* The replacement string C */
|
|
unsigned char *zOut; /* The output */
|
|
int nStr; /* Size of zStr */
|
|
int nPattern; /* Size of zPattern */
|
|
int nRep; /* Size of zRep */
|
|
i64 nOut; /* Maximum size of zOut */
|
|
int loopLimit; /* Last zStr[] that might match zPattern[] */
|
|
int i, j; /* Loop counters */
|
|
unsigned cntExpand; /* Number zOut expansions */
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
|
|
assert( argc==3 );
|
|
UNUSED_PARAMETER(argc);
|
|
zStr = sqlite3_value_text(argv[0]);
|
|
if( zStr==0 ) return;
|
|
nStr = sqlite3_value_bytes(argv[0]);
|
|
assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
|
|
zPattern = sqlite3_value_text(argv[1]);
|
|
if( zPattern==0 ){
|
|
assert( sqlite3_value_type(argv[1])==SQLITE_NULL
|
|
|| sqlite3_context_db_handle(context)->mallocFailed );
|
|
return;
|
|
}
|
|
if( zPattern[0]==0 ){
|
|
assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
|
|
sqlite3_result_value(context, argv[0]);
|
|
return;
|
|
}
|
|
nPattern = sqlite3_value_bytes(argv[1]);
|
|
assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
|
|
zRep = sqlite3_value_text(argv[2]);
|
|
if( zRep==0 ) return;
|
|
nRep = sqlite3_value_bytes(argv[2]);
|
|
assert( zRep==sqlite3_value_text(argv[2]) );
|
|
nOut = nStr + 1;
|
|
assert( nOut<SQLITE_MAX_LENGTH );
|
|
zOut = contextMalloc(context, (i64)nOut);
|
|
if( zOut==0 ){
|
|
return;
|
|
}
|
|
loopLimit = nStr - nPattern;
|
|
cntExpand = 0;
|
|
for(i=j=0; i<=loopLimit; i++){
|
|
if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
|
|
zOut[j++] = zStr[i];
|
|
}else{
|
|
if( nRep>nPattern ){
|
|
nOut += nRep - nPattern;
|
|
testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
|
|
testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
|
|
if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
sqlite3_result_error_toobig(context);
|
|
sqlite3_free(zOut);
|
|
return;
|
|
}
|
|
cntExpand++;
|
|
if( (cntExpand&(cntExpand-1))==0 ){
|
|
/* Grow the size of the output buffer only on substitutions
|
|
** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
|
|
u8 *zOld;
|
|
zOld = zOut;
|
|
zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
|
|
if( zOut==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
sqlite3_free(zOld);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
memcpy(&zOut[j], zRep, nRep);
|
|
j += nRep;
|
|
i += nPattern-1;
|
|
}
|
|
}
|
|
assert( j+nStr-i+1<=nOut );
|
|
memcpy(&zOut[j], &zStr[i], nStr-i);
|
|
j += nStr - i;
|
|
assert( j<=nOut );
|
|
zOut[j] = 0;
|
|
sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
|
|
** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
|
|
*/
|
|
static void trimFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zIn; /* Input string */
|
|
const unsigned char *zCharSet; /* Set of characters to trim */
|
|
int nIn; /* Number of bytes in input */
|
|
int flags; /* 1: trimleft 2: trimright 3: trim */
|
|
int i; /* Loop counter */
|
|
unsigned char *aLen = 0; /* Length of each character in zCharSet */
|
|
unsigned char **azChar = 0; /* Individual characters in zCharSet */
|
|
int nChar; /* Number of characters in zCharSet */
|
|
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
|
|
return;
|
|
}
|
|
zIn = sqlite3_value_text(argv[0]);
|
|
if( zIn==0 ) return;
|
|
nIn = sqlite3_value_bytes(argv[0]);
|
|
assert( zIn==sqlite3_value_text(argv[0]) );
|
|
if( argc==1 ){
|
|
static const unsigned char lenOne[] = { 1 };
|
|
static unsigned char * const azOne[] = { (u8*)" " };
|
|
nChar = 1;
|
|
aLen = (u8*)lenOne;
|
|
azChar = (unsigned char **)azOne;
|
|
zCharSet = 0;
|
|
}else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
|
|
return;
|
|
}else{
|
|
const unsigned char *z;
|
|
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
SQLITE_SKIP_UTF8(z);
|
|
}
|
|
if( nChar>0 ){
|
|
azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
|
|
if( azChar==0 ){
|
|
return;
|
|
}
|
|
aLen = (unsigned char*)&azChar[nChar];
|
|
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
azChar[nChar] = (unsigned char *)z;
|
|
SQLITE_SKIP_UTF8(z);
|
|
aLen[nChar] = (u8)(z - azChar[nChar]);
|
|
}
|
|
}
|
|
}
|
|
if( nChar>0 ){
|
|
flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
|
|
if( flags & 1 ){
|
|
while( nIn>0 ){
|
|
int len = 0;
|
|
for(i=0; i<nChar; i++){
|
|
len = aLen[i];
|
|
if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
|
|
}
|
|
if( i>=nChar ) break;
|
|
zIn += len;
|
|
nIn -= len;
|
|
}
|
|
}
|
|
if( flags & 2 ){
|
|
while( nIn>0 ){
|
|
int len = 0;
|
|
for(i=0; i<nChar; i++){
|
|
len = aLen[i];
|
|
if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
|
|
}
|
|
if( i>=nChar ) break;
|
|
nIn -= len;
|
|
}
|
|
}
|
|
if( zCharSet ){
|
|
sqlite3_free(azChar);
|
|
}
|
|
}
|
|
sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
|
|
}
|
|
|
|
|
|
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
|
|
/*
|
|
** The "unknown" function is automatically substituted in place of
|
|
** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
|
|
** when the SQLITE_ENABLE_UNKNOWN_FUNCTION compile-time option is used.
|
|
** When the "sqlite3" command-line shell is built using this functionality,
|
|
** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
|
|
** involving application-defined functions to be examined in a generic
|
|
** sqlite3 shell.
|
|
*/
|
|
static void unknownFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
/* no-op */
|
|
}
|
|
#endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
|
|
|
|
|
|
/* IMP: R-25361-16150 This function is omitted from SQLite by default. It
|
|
** is only available if the SQLITE_SOUNDEX compile-time option is used
|
|
** when SQLite is built.
|
|
*/
|
|
#ifdef SQLITE_SOUNDEX
|
|
/*
|
|
** Compute the soundex encoding of a word.
|
|
**
|
|
** IMP: R-59782-00072 The soundex(X) function returns a string that is the
|
|
** soundex encoding of the string X.
|
|
*/
|
|
static void soundexFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
char zResult[8];
|
|
const u8 *zIn;
|
|
int i, j;
|
|
static const unsigned char iCode[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
};
|
|
assert( argc==1 );
|
|
zIn = (u8*)sqlite3_value_text(argv[0]);
|
|
if( zIn==0 ) zIn = (u8*)"";
|
|
for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
|
|
if( zIn[i] ){
|
|
u8 prevcode = iCode[zIn[i]&0x7f];
|
|
zResult[0] = sqlite3Toupper(zIn[i]);
|
|
for(j=1; j<4 && zIn[i]; i++){
|
|
int code = iCode[zIn[i]&0x7f];
|
|
if( code>0 ){
|
|
if( code!=prevcode ){
|
|
prevcode = code;
|
|
zResult[j++] = code + '0';
|
|
}
|
|
}else{
|
|
prevcode = 0;
|
|
}
|
|
}
|
|
while( j<4 ){
|
|
zResult[j++] = '0';
|
|
}
|
|
zResult[j] = 0;
|
|
sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
|
|
}else{
|
|
/* IMP: R-64894-50321 The string "?000" is returned if the argument
|
|
** is NULL or contains no ASCII alphabetic characters. */
|
|
sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
|
|
}
|
|
}
|
|
#endif /* SQLITE_SOUNDEX */
|
|
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
/*
|
|
** A function that loads a shared-library extension then returns NULL.
|
|
*/
|
|
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
const char *zFile = (const char *)sqlite3_value_text(argv[0]);
|
|
const char *zProc;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
char *zErrMsg = 0;
|
|
|
|
/* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
|
|
** flag is set. See the sqlite3_enable_load_extension() API.
|
|
*/
|
|
if( (db->flags & SQLITE_LoadExtFunc)==0 ){
|
|
sqlite3_result_error(context, "not authorized", -1);
|
|
return;
|
|
}
|
|
|
|
if( argc==2 ){
|
|
zProc = (const char *)sqlite3_value_text(argv[1]);
|
|
}else{
|
|
zProc = 0;
|
|
}
|
|
if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
|
|
sqlite3_result_error(context, zErrMsg, -1);
|
|
sqlite3_free(zErrMsg);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** An instance of the following structure holds the context of a
|
|
** sum() or avg() aggregate computation.
|
|
*/
|
|
typedef struct SumCtx SumCtx;
|
|
struct SumCtx {
|
|
double rSum; /* Floating point sum */
|
|
i64 iSum; /* Integer sum */
|
|
i64 cnt; /* Number of elements summed */
|
|
u8 overflow; /* True if integer overflow seen */
|
|
u8 approx; /* True if non-integer value was input to the sum */
|
|
};
|
|
|
|
/*
|
|
** Routines used to compute the sum, average, and total.
|
|
**
|
|
** The SUM() function follows the (broken) SQL standard which means
|
|
** that it returns NULL if it sums over no inputs. TOTAL returns
|
|
** 0.0 in that case. In addition, TOTAL always returns a float where
|
|
** SUM might return an integer if it never encounters a floating point
|
|
** value. TOTAL never fails, but SUM might through an exception if
|
|
** it overflows an integer.
|
|
*/
|
|
static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
SumCtx *p;
|
|
int type;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
type = sqlite3_value_numeric_type(argv[0]);
|
|
if( p && type!=SQLITE_NULL ){
|
|
p->cnt++;
|
|
if( type==SQLITE_INTEGER ){
|
|
i64 v = sqlite3_value_int64(argv[0]);
|
|
p->rSum += v;
|
|
if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
|
|
p->approx = p->overflow = 1;
|
|
}
|
|
}else{
|
|
p->rSum += sqlite3_value_double(argv[0]);
|
|
p->approx = 1;
|
|
}
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
|
|
SumCtx *p;
|
|
int type;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
type = sqlite3_value_numeric_type(argv[0]);
|
|
/* p is always non-NULL because sumStep() will have been called first
|
|
** to initialize it */
|
|
if( ALWAYS(p) && type!=SQLITE_NULL ){
|
|
assert( p->cnt>0 );
|
|
p->cnt--;
|
|
assert( type==SQLITE_INTEGER || p->approx );
|
|
if( type==SQLITE_INTEGER && p->approx==0 ){
|
|
i64 v = sqlite3_value_int64(argv[0]);
|
|
p->rSum -= v;
|
|
p->iSum -= v;
|
|
}else{
|
|
p->rSum -= sqlite3_value_double(argv[0]);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
# define sumInverse 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
static void sumFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
if( p && p->cnt>0 ){
|
|
if( p->overflow ){
|
|
sqlite3_result_error(context,"integer overflow",-1);
|
|
}else if( p->approx ){
|
|
sqlite3_result_double(context, p->rSum);
|
|
}else{
|
|
sqlite3_result_int64(context, p->iSum);
|
|
}
|
|
}
|
|
}
|
|
static void avgFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
if( p && p->cnt>0 ){
|
|
sqlite3_result_double(context, p->rSum/(double)p->cnt);
|
|
}
|
|
}
|
|
static void totalFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
|
|
sqlite3_result_double(context, p ? p->rSum : (double)0);
|
|
}
|
|
|
|
/*
|
|
** The following structure keeps track of state information for the
|
|
** count() aggregate function.
|
|
*/
|
|
typedef struct CountCtx CountCtx;
|
|
struct CountCtx {
|
|
i64 n;
|
|
#ifdef SQLITE_DEBUG
|
|
int bInverse; /* True if xInverse() ever called */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** Routines to implement the count() aggregate function.
|
|
*/
|
|
static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
|
|
p->n++;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
/* The sqlite3_aggregate_count() function is deprecated. But just to make
|
|
** sure it still operates correctly, verify that its count agrees with our
|
|
** internal count when using count(*) and when the total count can be
|
|
** expressed as a 32-bit integer. */
|
|
assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
|
|
|| p->n==sqlite3_aggregate_count(context) );
|
|
#endif
|
|
}
|
|
static void countFinalize(sqlite3_context *context){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
sqlite3_result_int64(context, p ? p->n : 0);
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(ctx, sizeof(*p));
|
|
/* p is always non-NULL since countStep() will have been called first */
|
|
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
|
|
p->n--;
|
|
#ifdef SQLITE_DEBUG
|
|
p->bInverse = 1;
|
|
#endif
|
|
}
|
|
}
|
|
#else
|
|
# define countInverse 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
|
|
/*
|
|
** Routines to implement min() and max() aggregate functions.
|
|
*/
|
|
static void minmaxStep(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **argv
|
|
){
|
|
Mem *pArg = (Mem *)argv[0];
|
|
Mem *pBest;
|
|
UNUSED_PARAMETER(NotUsed);
|
|
|
|
pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
|
|
if( !pBest ) return;
|
|
|
|
if( sqlite3_value_type(pArg)==SQLITE_NULL ){
|
|
if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
|
|
}else if( pBest->flags ){
|
|
int max;
|
|
int cmp;
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
/* This step function is used for both the min() and max() aggregates,
|
|
** the only difference between the two being that the sense of the
|
|
** comparison is inverted. For the max() aggregate, the
|
|
** sqlite3_user_data() function returns (void *)-1. For min() it
|
|
** returns (void *)db, where db is the sqlite3* database pointer.
|
|
** Therefore the next statement sets variable 'max' to 1 for the max()
|
|
** aggregate, or 0 for min().
|
|
*/
|
|
max = sqlite3_user_data(context)!=0;
|
|
cmp = sqlite3MemCompare(pBest, pArg, pColl);
|
|
if( (max && cmp<0) || (!max && cmp>0) ){
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}else{
|
|
sqlite3SkipAccumulatorLoad(context);
|
|
}
|
|
}else{
|
|
pBest->db = sqlite3_context_db_handle(context);
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}
|
|
}
|
|
static void minMaxValueFinalize(sqlite3_context *context, int bValue){
|
|
sqlite3_value *pRes;
|
|
pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
|
|
if( pRes ){
|
|
if( pRes->flags ){
|
|
sqlite3_result_value(context, pRes);
|
|
}
|
|
if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void minMaxValue(sqlite3_context *context){
|
|
minMaxValueFinalize(context, 1);
|
|
}
|
|
#else
|
|
# define minMaxValue 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
static void minMaxFinalize(sqlite3_context *context){
|
|
minMaxValueFinalize(context, 0);
|
|
}
|
|
|
|
/*
|
|
** group_concat(EXPR, ?SEPARATOR?)
|
|
*/
|
|
static void groupConcatStep(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *zVal;
|
|
StrAccum *pAccum;
|
|
const char *zSep;
|
|
int nVal, nSep;
|
|
assert( argc==1 || argc==2 );
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
|
|
|
|
if( pAccum ){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
int firstTerm = pAccum->mxAlloc==0;
|
|
pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
|
|
if( !firstTerm ){
|
|
if( argc==2 ){
|
|
zSep = (char*)sqlite3_value_text(argv[1]);
|
|
nSep = sqlite3_value_bytes(argv[1]);
|
|
}else{
|
|
zSep = ",";
|
|
nSep = 1;
|
|
}
|
|
if( zSep ) sqlite3_str_append(pAccum, zSep, nSep);
|
|
}
|
|
zVal = (char*)sqlite3_value_text(argv[0]);
|
|
nVal = sqlite3_value_bytes(argv[0]);
|
|
if( zVal ) sqlite3_str_append(pAccum, zVal, nVal);
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void groupConcatInverse(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int n;
|
|
StrAccum *pAccum;
|
|
assert( argc==1 || argc==2 );
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
|
|
/* pAccum is always non-NULL since groupConcatStep() will have always
|
|
** run frist to initialize it */
|
|
if( ALWAYS(pAccum) ){
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
if( argc==2 ){
|
|
n += sqlite3_value_bytes(argv[1]);
|
|
}else{
|
|
n++;
|
|
}
|
|
if( n>=(int)pAccum->nChar ){
|
|
pAccum->nChar = 0;
|
|
}else{
|
|
pAccum->nChar -= n;
|
|
memmove(pAccum->zText, &pAccum->zText[n], pAccum->nChar);
|
|
}
|
|
if( pAccum->nChar==0 ) pAccum->mxAlloc = 0;
|
|
}
|
|
}
|
|
#else
|
|
# define groupConcatInverse 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
static void groupConcatFinalize(sqlite3_context *context){
|
|
StrAccum *pAccum;
|
|
pAccum = sqlite3_aggregate_context(context, 0);
|
|
if( pAccum ){
|
|
if( pAccum->accError==SQLITE_TOOBIG ){
|
|
sqlite3_result_error_toobig(context);
|
|
}else if( pAccum->accError==SQLITE_NOMEM ){
|
|
sqlite3_result_error_nomem(context);
|
|
}else{
|
|
sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
|
|
sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void groupConcatValue(sqlite3_context *context){
|
|
sqlite3_str *pAccum;
|
|
pAccum = (sqlite3_str*)sqlite3_aggregate_context(context, 0);
|
|
if( pAccum ){
|
|
if( pAccum->accError==SQLITE_TOOBIG ){
|
|
sqlite3_result_error_toobig(context);
|
|
}else if( pAccum->accError==SQLITE_NOMEM ){
|
|
sqlite3_result_error_nomem(context);
|
|
}else{
|
|
const char *zText = sqlite3_str_value(pAccum);
|
|
sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
# define groupConcatValue 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
|
|
/*
|
|
** This routine does per-connection function registration. Most
|
|
** of the built-in functions above are part of the global function set.
|
|
** This routine only deals with those that are not global.
|
|
*/
|
|
void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
|
|
int rc = sqlite3_overload_function(db, "MATCH", 2);
|
|
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
|
|
if( rc==SQLITE_NOMEM ){
|
|
sqlite3OomFault(db);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Re-register the built-in LIKE functions. The caseSensitive
|
|
** parameter determines whether or not the LIKE operator is case
|
|
** sensitive.
|
|
*/
|
|
void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
|
|
struct compareInfo *pInfo;
|
|
int flags;
|
|
if( caseSensitive ){
|
|
pInfo = (struct compareInfo*)&likeInfoAlt;
|
|
flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
|
|
}else{
|
|
pInfo = (struct compareInfo*)&likeInfoNorm;
|
|
flags = SQLITE_FUNC_LIKE;
|
|
}
|
|
sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
|
|
sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
|
|
sqlite3FindFunction(db, "like", 2, SQLITE_UTF8, 0)->funcFlags |= flags;
|
|
sqlite3FindFunction(db, "like", 3, SQLITE_UTF8, 0)->funcFlags |= flags;
|
|
}
|
|
|
|
/*
|
|
** pExpr points to an expression which implements a function. If
|
|
** it is appropriate to apply the LIKE optimization to that function
|
|
** then set aWc[0] through aWc[2] to the wildcard characters and the
|
|
** escape character and then return TRUE. If the function is not a
|
|
** LIKE-style function then return FALSE.
|
|
**
|
|
** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
|
|
** operator if c is a string literal that is exactly one byte in length.
|
|
** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
|
|
** no ESCAPE clause.
|
|
**
|
|
** *pIsNocase is set to true if uppercase and lowercase are equivalent for
|
|
** the function (default for LIKE). If the function makes the distinction
|
|
** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
|
|
** false.
|
|
*/
|
|
int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
|
|
FuncDef *pDef;
|
|
int nExpr;
|
|
assert( pExpr!=0 );
|
|
assert( pExpr->op==TK_FUNCTION );
|
|
if( !pExpr->x.pList ){
|
|
return 0;
|
|
}
|
|
assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
|
nExpr = pExpr->x.pList->nExpr;
|
|
pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
|
|
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
|
|
if( pDef==0 ) return 0;
|
|
#endif
|
|
if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
|
|
return 0;
|
|
}
|
|
|
|
/* The memcpy() statement assumes that the wildcard characters are
|
|
** the first three statements in the compareInfo structure. The
|
|
** asserts() that follow verify that assumption
|
|
*/
|
|
memcpy(aWc, pDef->pUserData, 3);
|
|
assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
|
|
assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
|
|
assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
|
|
|
|
if( nExpr<3 ){
|
|
aWc[3] = 0;
|
|
}else{
|
|
Expr *pEscape = pExpr->x.pList->a[2].pExpr;
|
|
char *zEscape;
|
|
if( pEscape->op!=TK_STRING ) return 0;
|
|
zEscape = pEscape->u.zToken;
|
|
if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
|
|
if( zEscape[0]==aWc[0] ) return 0;
|
|
if( zEscape[0]==aWc[1] ) return 0;
|
|
aWc[3] = zEscape[0];
|
|
}
|
|
|
|
*pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
|
|
return 1;
|
|
}
|
|
|
|
/* Mathematical Constants */
|
|
#ifndef M_PI
|
|
# define M_PI 3.141592653589793238462643383279502884
|
|
#endif
|
|
#ifndef M_LN10
|
|
# define M_LN10 2.302585092994045684017991454684364208
|
|
#endif
|
|
#ifndef M_LN2
|
|
# define M_LN2 0.693147180559945309417232121458176568
|
|
#endif
|
|
|
|
|
|
/* Extra math functions that require linking with -lm
|
|
*/
|
|
#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
|
|
/*
|
|
** Implementation SQL functions:
|
|
**
|
|
** ceil(X)
|
|
** ceiling(X)
|
|
** floor(X)
|
|
**
|
|
** The sqlite3_user_data() pointer is a pointer to the libm implementation
|
|
** of the underlying C function.
|
|
*/
|
|
static void ceilingFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
assert( argc==1 );
|
|
switch( sqlite3_value_numeric_type(argv[0]) ){
|
|
case SQLITE_INTEGER: {
|
|
sqlite3_result_int64(context, sqlite3_value_int64(argv[0]));
|
|
break;
|
|
}
|
|
case SQLITE_FLOAT: {
|
|
double (*x)(double) = (double(*)(double))sqlite3_user_data(context);
|
|
sqlite3_result_double(context, x(sqlite3_value_double(argv[0])));
|
|
break;
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** On some systems, ceil() and floor() are intrinsic function. You are
|
|
** unable to take a pointer to these functions. Hence, we here wrap them
|
|
** in our own actual functions.
|
|
*/
|
|
static double xCeil(double x){ return ceil(x); }
|
|
static double xFloor(double x){ return floor(x); }
|
|
|
|
/*
|
|
** Implementation of SQL functions:
|
|
**
|
|
** ln(X) - natural logarithm
|
|
** log(X) - log X base 10
|
|
** log10(X) - log X base 10
|
|
** log(B,X) - log X base B
|
|
*/
|
|
static void logFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
double x, b, ans;
|
|
assert( argc==1 || argc==2 );
|
|
switch( sqlite3_value_numeric_type(argv[0]) ){
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT:
|
|
x = sqlite3_value_double(argv[0]);
|
|
if( x<=0.0 ) return;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
if( argc==2 ){
|
|
switch( sqlite3_value_numeric_type(argv[0]) ){
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT:
|
|
b = log(x);
|
|
if( b<=0.0 ) return;
|
|
x = sqlite3_value_double(argv[1]);
|
|
if( x<=0.0 ) return;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
ans = log(x)/b;
|
|
}else{
|
|
ans = log(x);
|
|
switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){
|
|
case 1:
|
|
/* Convert from natural logarithm to log base 10 */
|
|
ans *= 1.0/M_LN10;
|
|
break;
|
|
case 2:
|
|
/* Convert from natural logarithm to log base 2 */
|
|
ans *= 1.0/M_LN2;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
sqlite3_result_double(context, ans);
|
|
}
|
|
|
|
/*
|
|
** Functions to converts degrees to radians and radians to degrees.
|
|
*/
|
|
static double degToRad(double x){ return x*(M_PI/180.0); }
|
|
static double radToDeg(double x){ return x*(180.0/M_PI); }
|
|
|
|
/*
|
|
** Implementation of 1-argument SQL math functions:
|
|
**
|
|
** exp(X) - Compute e to the X-th power
|
|
*/
|
|
static void math1Func(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int type0;
|
|
double v0, ans;
|
|
double (*x)(double);
|
|
assert( argc==1 );
|
|
type0 = sqlite3_value_numeric_type(argv[0]);
|
|
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
|
|
v0 = sqlite3_value_double(argv[0]);
|
|
x = (double(*)(double))sqlite3_user_data(context);
|
|
ans = x(v0);
|
|
sqlite3_result_double(context, ans);
|
|
}
|
|
|
|
/*
|
|
** Implementation of 2-argument SQL math functions:
|
|
**
|
|
** power(X,Y) - Compute X to the Y-th power
|
|
*/
|
|
static void math2Func(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int type0, type1;
|
|
double v0, v1, ans;
|
|
double (*x)(double,double);
|
|
assert( argc==2 );
|
|
type0 = sqlite3_value_numeric_type(argv[0]);
|
|
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
|
|
type1 = sqlite3_value_numeric_type(argv[1]);
|
|
if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return;
|
|
v0 = sqlite3_value_double(argv[0]);
|
|
v1 = sqlite3_value_double(argv[1]);
|
|
x = (double(*)(double,double))sqlite3_user_data(context);
|
|
ans = x(v0, v1);
|
|
sqlite3_result_double(context, ans);
|
|
}
|
|
|
|
/*
|
|
** Implementation of 2-argument SQL math functions:
|
|
**
|
|
** power(X,Y) - Compute X to the Y-th power
|
|
*/
|
|
static void piFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
assert( argc==0 );
|
|
sqlite3_result_double(context, M_PI);
|
|
}
|
|
|
|
#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
|
|
|
|
/*
|
|
** Implementation of sign(X) function.
|
|
*/
|
|
static void signFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int type0;
|
|
double x;
|
|
UNUSED_PARAMETER(argc);
|
|
assert( argc==1 );
|
|
type0 = sqlite3_value_numeric_type(argv[0]);
|
|
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
|
|
x = sqlite3_value_double(argv[0]);
|
|
sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0);
|
|
}
|
|
|
|
/*
|
|
** All of the FuncDef structures in the aBuiltinFunc[] array above
|
|
** to the global function hash table. This occurs at start-time (as
|
|
** a consequence of calling sqlite3_initialize()).
|
|
**
|
|
** After this routine runs
|
|
*/
|
|
void sqlite3RegisterBuiltinFunctions(void){
|
|
/*
|
|
** The following array holds FuncDef structures for all of the functions
|
|
** defined in this file.
|
|
**
|
|
** The array cannot be constant since changes are made to the
|
|
** FuncDef.pHash elements at start-time. The elements of this array
|
|
** are read-only after initialization is complete.
|
|
**
|
|
** For peak efficiency, put the most frequently used function last.
|
|
*/
|
|
static FuncDef aBuiltinFunc[] = {
|
|
/***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
|
|
TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
|
|
TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
|
|
TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
|
|
#ifdef SQLITE_DEBUG
|
|
TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
|
|
#endif
|
|
/***** Regular functions *****/
|
|
#ifdef SQLITE_SOUNDEX
|
|
FUNCTION(soundex, 1, 0, 0, soundexFunc ),
|
|
#endif
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
SFUNCTION(load_extension, 1, 0, 0, loadExt ),
|
|
SFUNCTION(load_extension, 2, 0, 0, loadExt ),
|
|
#endif
|
|
#if SQLITE_USER_AUTHENTICATION
|
|
FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
|
|
#endif
|
|
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
|
|
DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
|
|
DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
|
|
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
|
|
INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
|
|
INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
|
|
INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
|
|
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
|
|
FUNCTION2(sqlite_offset, 1, 0, 0, noopFunc, SQLITE_FUNC_OFFSET|
|
|
SQLITE_FUNC_TYPEOF),
|
|
#endif
|
|
FUNCTION(ltrim, 1, 1, 0, trimFunc ),
|
|
FUNCTION(ltrim, 2, 1, 0, trimFunc ),
|
|
FUNCTION(rtrim, 1, 2, 0, trimFunc ),
|
|
FUNCTION(rtrim, 2, 2, 0, trimFunc ),
|
|
FUNCTION(trim, 1, 3, 0, trimFunc ),
|
|
FUNCTION(trim, 2, 3, 0, trimFunc ),
|
|
FUNCTION(min, -1, 0, 1, minmaxFunc ),
|
|
FUNCTION(min, 0, 0, 1, 0 ),
|
|
WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
|
|
SQLITE_FUNC_MINMAX ),
|
|
FUNCTION(max, -1, 1, 1, minmaxFunc ),
|
|
FUNCTION(max, 0, 1, 1, 0 ),
|
|
WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
|
|
SQLITE_FUNC_MINMAX ),
|
|
FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
|
|
FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
|
|
FUNCTION(instr, 2, 0, 0, instrFunc ),
|
|
FUNCTION(printf, -1, 0, 0, printfFunc ),
|
|
FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
|
|
FUNCTION(char, -1, 0, 0, charFunc ),
|
|
FUNCTION(abs, 1, 0, 0, absFunc ),
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
FUNCTION(round, 1, 0, 0, roundFunc ),
|
|
FUNCTION(round, 2, 0, 0, roundFunc ),
|
|
#endif
|
|
FUNCTION(upper, 1, 0, 0, upperFunc ),
|
|
FUNCTION(lower, 1, 0, 0, lowerFunc ),
|
|
FUNCTION(hex, 1, 0, 0, hexFunc ),
|
|
INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
|
|
VFUNCTION(random, 0, 0, 0, randomFunc ),
|
|
VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
|
|
FUNCTION(nullif, 2, 0, 1, nullifFunc ),
|
|
DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
|
|
DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
|
|
FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
|
|
FUNCTION(quote, 1, 0, 0, quoteFunc ),
|
|
VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
|
|
VFUNCTION(changes, 0, 0, 0, changes ),
|
|
VFUNCTION(total_changes, 0, 0, 0, total_changes ),
|
|
FUNCTION(replace, 3, 0, 0, replaceFunc ),
|
|
FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
|
|
FUNCTION(substr, 2, 0, 0, substrFunc ),
|
|
FUNCTION(substr, 3, 0, 0, substrFunc ),
|
|
FUNCTION(substring, 2, 0, 0, substrFunc ),
|
|
FUNCTION(substring, 3, 0, 0, substrFunc ),
|
|
WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
|
|
WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
|
|
WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
|
|
WAGGREGATE(count, 0,0,0, countStep,
|
|
countFinalize, countFinalize, countInverse, SQLITE_FUNC_COUNT ),
|
|
WAGGREGATE(count, 1,0,0, countStep,
|
|
countFinalize, countFinalize, countInverse, 0 ),
|
|
WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
|
|
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
|
|
WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
|
|
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
|
|
|
|
LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
|
#ifdef SQLITE_CASE_SENSITIVE_LIKE
|
|
LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
|
LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
|
#else
|
|
LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
|
|
LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
|
|
#endif
|
|
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
|
|
FUNCTION(unknown, -1, 0, 0, unknownFunc ),
|
|
#endif
|
|
FUNCTION(coalesce, 1, 0, 0, 0 ),
|
|
FUNCTION(coalesce, 0, 0, 0, 0 ),
|
|
#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
|
|
MFUNCTION(ceil, 1, xCeil, ceilingFunc ),
|
|
MFUNCTION(ceiling, 1, xCeil, ceilingFunc ),
|
|
MFUNCTION(floor, 1, xFloor, ceilingFunc ),
|
|
#if SQLITE_HAVE_C99_MATH_FUNCS
|
|
MFUNCTION(trunc, 1, trunc, ceilingFunc ),
|
|
#endif
|
|
FUNCTION(ln, 1, 0, 0, logFunc ),
|
|
FUNCTION(log, 1, 1, 0, logFunc ),
|
|
FUNCTION(log10, 1, 1, 0, logFunc ),
|
|
FUNCTION(log2, 1, 2, 0, logFunc ),
|
|
FUNCTION(log, 2, 0, 0, logFunc ),
|
|
MFUNCTION(exp, 1, exp, math1Func ),
|
|
MFUNCTION(pow, 2, pow, math2Func ),
|
|
MFUNCTION(power, 2, pow, math2Func ),
|
|
MFUNCTION(mod, 2, fmod, math2Func ),
|
|
MFUNCTION(acos, 1, acos, math1Func ),
|
|
MFUNCTION(asin, 1, asin, math1Func ),
|
|
MFUNCTION(atan, 1, atan, math1Func ),
|
|
MFUNCTION(atan2, 2, atan2, math2Func ),
|
|
MFUNCTION(cos, 1, cos, math1Func ),
|
|
MFUNCTION(sin, 1, sin, math1Func ),
|
|
MFUNCTION(tan, 1, tan, math1Func ),
|
|
MFUNCTION(cosh, 1, cosh, math1Func ),
|
|
MFUNCTION(sinh, 1, sinh, math1Func ),
|
|
MFUNCTION(tanh, 1, tanh, math1Func ),
|
|
#if SQLITE_HAVE_C99_MATH_FUNCS
|
|
MFUNCTION(acosh, 1, acosh, math1Func ),
|
|
MFUNCTION(asinh, 1, asinh, math1Func ),
|
|
MFUNCTION(atanh, 1, atanh, math1Func ),
|
|
#endif
|
|
MFUNCTION(sqrt, 1, sqrt, math1Func ),
|
|
MFUNCTION(radians, 1, degToRad, math1Func ),
|
|
MFUNCTION(degrees, 1, radToDeg, math1Func ),
|
|
FUNCTION(pi, 0, 0, 0, piFunc ),
|
|
#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
|
|
FUNCTION(sign, 1, 0, 0, signFunc ),
|
|
INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ),
|
|
INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ),
|
|
};
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
sqlite3AlterFunctions();
|
|
#endif
|
|
sqlite3WindowFunctions();
|
|
sqlite3RegisterDateTimeFunctions();
|
|
sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
|
|
|
|
#if 0 /* Enable to print out how the built-in functions are hashed */
|
|
{
|
|
int i;
|
|
FuncDef *p;
|
|
for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
|
|
printf("FUNC-HASH %02d:", i);
|
|
for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
|
|
int n = sqlite3Strlen30(p->zName);
|
|
int h = p->zName[0] + n;
|
|
printf(" %s(%d)", p->zName, h);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
}
|