cosmopolitan/third_party/python/Modules/_decimal/libmpdec/crt.c
Justine Tunney b420ed8248 Undiamond Python headers
This change gets the Python codebase into a state where it conforms to
the conventions of this codebase. It's now possible to include headers
from Python, without worrying about ordering. Python has traditionally
solved that problem by "diamonding" everything in Python.h, but that's
problematic since it means any change to any Python header invalidates
all the build artifacts. Lastly it makes tooling not work. Since it is
hard to explain to Emacs when I press C-c C-h to add an import line it
shouldn't add the header that actually defines the symbol, and instead
do follow the nonstandard Python convention.

Progress has been made on letting Python load source code from the zip
executable structure via the standard C library APIs. System calss now
recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME
since Python uses colon as its delimiter.

Some progress has been made on embedding the notice license terms into
the Python object code. This is easier said than done since Python has
an extremely complicated ownership story.

- Some termios APIs have been added
- Implement rewinddir() dirstream API
- GetCpuCount() API added to Cosmopolitan Libc
- More bugs in Cosmopolitan Libc have been fixed
- zipobj.com now has flags for mangling the path
- Fixed bug a priori with sendfile() on certain BSDs
- Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms
- FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes
- APE now supports a hybrid solution to no-self-modify for builds
- Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
2021-08-12 14:07:40 -07:00

182 lines
6.2 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │
│ │
│ Redistribution and use in source and binary forms, with or without │
│ modification, are permitted provided that the following conditions │
│ are met: │
│ │
│ 1. Redistributions of source code must retain the above copyright │
│ notice, this list of conditions and the following disclaimer. │
│ │
│ 2. Redistributions in binary form must reproduce the above copyright │
│ notice, this list of conditions and the following disclaimer in │
│ the documentation and/or other materials provided with the │
│ distribution. │
│ │
│ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │
│ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │
│ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │
│ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │
│ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │
│ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │
│ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │
│ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │
│ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │
│ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │
│ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/python/Modules/_decimal/libmpdec/crt.h"
#include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h"
#include "third_party/python/Modules/_decimal/libmpdec/numbertheory.h"
#include "third_party/python/Modules/_decimal/libmpdec/umodarith.h"
/* clang-format off */
asm(".ident\t\"\\n\\n\
libmpdec (BSD-2)\\n\
Copyright 2008-2016 Stefan Krah\"");
asm(".include \"libc/disclaimer.inc\"");
/* Bignum: Chinese Remainder Theorem, extends the maximum transform length. */
/* Multiply P1P2 by v, store result in w. */
static inline void
_crt_mulP1P2_3(mpd_uint_t w[3], mpd_uint_t v)
{
mpd_uint_t hi1, hi2, lo;
_mpd_mul_words(&hi1, &lo, LH_P1P2, v);
w[0] = lo;
_mpd_mul_words(&hi2, &lo, UH_P1P2, v);
lo = hi1 + lo;
if (lo < hi1) hi2++;
w[1] = lo;
w[2] = hi2;
}
/* Add 3 words from v to w. The result is known to fit in w. */
static inline void
_crt_add3(mpd_uint_t w[3], mpd_uint_t v[3])
{
mpd_uint_t carry;
mpd_uint_t s;
s = w[0] + v[0];
carry = (s < w[0]);
w[0] = s;
s = w[1] + (v[1] + carry);
carry = (s < w[1]);
w[1] = s;
w[2] = w[2] + (v[2] + carry);
}
/* Divide 3 words in u by v, store result in w, return remainder. */
static inline mpd_uint_t
_crt_div3(mpd_uint_t *w, const mpd_uint_t *u, mpd_uint_t v)
{
mpd_uint_t r1 = u[2];
mpd_uint_t r2;
if (r1 < v) {
w[2] = 0;
}
else {
_mpd_div_word(&w[2], &r1, u[2], v); /* GCOV_NOT_REACHED */
}
_mpd_div_words(&w[1], &r2, r1, u[1], v);
_mpd_div_words(&w[0], &r1, r2, u[0], v);
return r1;
}
/*
* Chinese Remainder Theorem:
* Algorithm from Joerg Arndt, "Matters Computational",
* Chapter 37.4.1 [http://www.jjj.de/fxt/]
*
* See also Knuth, TAOCP, Volume 2, 4.3.2, exercise 7.
*/
/*
* CRT with carry: x1, x2, x3 contain numbers modulo p1, p2, p3. For each
* triple of members of the arrays, find the unique z modulo p1*p2*p3, with
* zmax = p1*p2*p3 - 1.
*
* In each iteration of the loop, split z into result[i] = z % MPD_RADIX
* and carry = z / MPD_RADIX. Let N be the size of carry[] and cmax the
* maximum carry.
*
* Limits for the 32-bit build:
*
* N = 2**96
* cmax = 7711435591312380274
*
* Limits for the 64 bit build:
*
* N = 2**192
* cmax = 627710135393475385904124401220046371710
*
* The following statements hold for both versions:
*
* 1) cmax + zmax < N, so the addition does not overflow.
*
* 2) (cmax + zmax) / MPD_RADIX == cmax.
*
* 3) If c <= cmax, then c_next = (c + zmax) / MPD_RADIX <= cmax.
*/
void
crt3(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_size_t rsize)
{
mpd_uint_t p1 = mpd_moduli[P1];
mpd_uint_t umod;
#ifdef PPRO
double dmod;
uint32_t dinvmod[3];
#endif
mpd_uint_t a1, a2, a3;
mpd_uint_t s;
mpd_uint_t z[3], t[3];
mpd_uint_t carry[3] = {0,0,0};
mpd_uint_t hi, lo;
mpd_size_t i;
for (i = 0; i < rsize; i++) {
a1 = x1[i];
a2 = x2[i];
a3 = x3[i];
SETMODULUS(P2);
s = ext_submod(a2, a1, umod);
s = MULMOD(s, INV_P1_MOD_P2);
_mpd_mul_words(&hi, &lo, s, p1);
lo = lo + a1;
if (lo < a1) hi++;
SETMODULUS(P3);
s = dw_submod(a3, hi, lo, umod);
s = MULMOD(s, INV_P1P2_MOD_P3);
z[0] = lo;
z[1] = hi;
z[2] = 0;
_crt_mulP1P2_3(t, s);
_crt_add3(z, t);
_crt_add3(carry, z);
x1[i] = _crt_div3(carry, carry, MPD_RADIX);
}
assert(carry[0] == 0 && carry[1] == 0 && carry[2] == 0);
}