mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-10-16 06:36:11 +00:00
- Emulator can now test the αcτµαlly pδrταblε εxεcµταblε bootloader - Whipped up a webserver named redbean. It services 150k requests per second on a single core. Bundling assets inside zip enables extremely fast serving for two reasons. The first is that zip central directory lookups go faster than stat() system calls. The second is that both zip and gzip content-encoding use DEFLATE, therefore, compressed responses can be served via the sendfile() system call which does an in-kernel copy directly from the zip executable structure. Also note that red bean zip executables can be deployed easily to all platforms, since these native executables work on Linux, Mac, BSD, and Windows. - Address sanitizer now works very well
282 lines
9.7 KiB
C
282 lines
9.7 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
|
|
╞══════════════════════════════════════════════════════════════════════════════╡
|
|
│ Copyright 2020 Justine Alexandra Roberts Tunney │
|
|
│ │
|
|
│ This program is free software; you can redistribute it and/or modify │
|
|
│ it under the terms of the GNU General Public License as published by │
|
|
│ the Free Software Foundation; version 2 of the License. │
|
|
│ │
|
|
│ This program is distributed in the hope that it will be useful, but │
|
|
│ WITHOUT ANY WARRANTY; without even the implied warranty of │
|
|
│ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │
|
|
│ General Public License for more details. │
|
|
│ │
|
|
│ You should have received a copy of the GNU General Public License │
|
|
│ along with this program; if not, write to the Free Software │
|
|
│ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │
|
|
│ 02110-1301 USA │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "dsp/core/c161.h"
|
|
#include "dsp/core/core.h"
|
|
#include "dsp/core/ituround.h"
|
|
#include "dsp/core/q.h"
|
|
#include "dsp/core/twixt8.h"
|
|
#include "libc/limits.h"
|
|
#include "libc/log/check.h"
|
|
#include "libc/log/log.h"
|
|
#include "libc/macros.h"
|
|
#include "libc/math.h"
|
|
#include "libc/mem/mem.h"
|
|
#include "libc/nexgen32e/bsr.h"
|
|
#include "libc/runtime/gc.h"
|
|
#include "libc/str/str.h"
|
|
#include "libc/testlib/testlib.h"
|
|
#include "libc/x/x.h"
|
|
#include "third_party/dtoa/dtoa.h"
|
|
#include "tool/viz/lib/knobs.h"
|
|
|
|
/**
|
|
* @fileoverview Gyarados resizes graphics.
|
|
* @note H/T John Costella, Facebook, Photoshop, Carl Friedrich Gauss
|
|
* @note Eric Brasseur has an interesting blog post on tip of iceberg
|
|
* @see Magikarp
|
|
*/
|
|
|
|
#define M 14
|
|
#define SQR(X) ((X) * (X))
|
|
|
|
struct SamplingSolution {
|
|
int n, s;
|
|
void *weights;
|
|
void *indices;
|
|
};
|
|
|
|
static double ComputeWeight(double x) {
|
|
if (-1.5 < x && x < 1.5) {
|
|
if (-.5 < x && x < .5) {
|
|
return .75 - SQR(x);
|
|
} else if (x < 0) {
|
|
return .5 * SQR(x + 1.5);
|
|
} else {
|
|
return .5 * SQR(x - 1.5);
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static struct SamplingSolution *NewSamplingSolution(long n, long s) {
|
|
struct SamplingSolution *ss;
|
|
ss = xcalloc(1, sizeof(struct SamplingSolution));
|
|
ss->n = n;
|
|
ss->s = s;
|
|
ss->weights = xcalloc(n * s, sizeof(short));
|
|
ss->indices = xcalloc(n * s, sizeof(short));
|
|
return ss;
|
|
}
|
|
|
|
static bool IsNormalized(int n, double A[n]) {
|
|
int i;
|
|
double x;
|
|
for (x = i = 0; i < n; ++i) x += A[i];
|
|
return fabs(x - 1) < 1e-4;
|
|
}
|
|
|
|
void FreeSamplingSolution(struct SamplingSolution *ss) {
|
|
long i;
|
|
if (ss) {
|
|
free(ss->indices);
|
|
free(ss->weights);
|
|
free(ss);
|
|
}
|
|
}
|
|
|
|
struct SamplingSolution *ComputeSamplingSolution(long dn, long sn, double dar,
|
|
double off, double par) {
|
|
double *fweights;
|
|
double sum, hw, w, x, f;
|
|
short *weights, *indices;
|
|
struct SamplingSolution *res;
|
|
long j, i, k, n, min, max, s, N[6];
|
|
if (!dar) dar = sn, dar /= dn;
|
|
if (!off) off = (dar - 1) / 2;
|
|
f = dar < 1 ? 1 / dar : dar;
|
|
s = 3 * f + 4;
|
|
fweights = gc(xcalloc(s, sizeof(double)));
|
|
res = NewSamplingSolution(dn, s);
|
|
weights = res->weights;
|
|
indices = res->indices;
|
|
for (i = 0; i < dn; ++i) {
|
|
x = off + i * dar;
|
|
hw = 1.5 * f;
|
|
min = ceil(x - hw);
|
|
max = floor(x + hw);
|
|
n = max - min + 1;
|
|
CHECK_LE(n, s);
|
|
for (k = 0, j = min; j <= max; ++j) {
|
|
fweights[k++] = ComputeWeight((j - x) / (f / par));
|
|
}
|
|
for (sum = k = 0; k < n; ++k) sum += fweights[k];
|
|
for (j = 0; j < n; ++j) fweights[j] *= 1 / sum;
|
|
DCHECK(IsNormalized(n, fweights));
|
|
for (j = 0; j < n; ++j) {
|
|
indices[i * s + j] = MIN(sn - 1, MAX(0, min + j));
|
|
}
|
|
for (j = 0; j < n; j += 6) {
|
|
GetIntegerCoefficients(N, fweights + j, M, 0, 255);
|
|
for (k = 0; k < MIN(6, n - j); ++k) {
|
|
weights[i * s + j + k] = N[k];
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static void *ZeroMatrix(long yw, long xw, int p[yw][xw], long yn, long xn) {
|
|
long y;
|
|
for (y = 0; y < yn; ++y) {
|
|
memset(p[y], 0, xn);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
static int Sharpen(int ax, int bx, int cx) {
|
|
return (-1 * ax + 6 * bx + -1 * cx + 2) / 4;
|
|
}
|
|
|
|
static void GyaradosImpl(long dyw, long dxw, int dst[dyw][dxw], long syw,
|
|
long sxw, const int src[syw][sxw], long dyn, long dxn,
|
|
long syn, long sxn, int tmp0[restrict dyn][sxn],
|
|
int tmp1[restrict dyn][sxn],
|
|
int tmp2[restrict dyn][dxn], long yfn, long xfn,
|
|
const short fyi[dyn][yfn], const short fyw[dyn][yfn],
|
|
const short fxi[dxn][xfn], const short fxw[dxn][xfn],
|
|
bool sharpen) {
|
|
long i, j;
|
|
int eax, dy, dx, sy, sx;
|
|
for (sx = 0; sx < sxn; ++sx) {
|
|
for (dy = 0; dy < dyn; ++dy) {
|
|
for (eax = i = 0; i < yfn; ++i) {
|
|
eax += fyw[dy][i] * src[fyi[dy][i]][sx];
|
|
}
|
|
tmp0[dy][sx] = QRS(M, eax);
|
|
}
|
|
}
|
|
for (dy = 0; dy < dyn; ++dy) {
|
|
for (sx = 0; sx < sxn; ++sx) {
|
|
tmp1[dy][sx] = sharpen ? Sharpen(tmp0[MIN(dyn - 1, MAX(0, dy - 1))][sx],
|
|
tmp0[dy][sx],
|
|
tmp0[MIN(dyn - 1, MAX(0, dy + 1))][sx])
|
|
: tmp0[dy][sx];
|
|
}
|
|
}
|
|
for (dx = 0; dx < dxn; ++dx) {
|
|
for (dy = 0; dy < dyn; ++dy) {
|
|
for (eax = i = 0; i < xfn; ++i) {
|
|
eax += fxw[dx][i] * tmp1[dy][fxi[dx][i]];
|
|
}
|
|
tmp2[dy][dx] = QRS(M, eax);
|
|
}
|
|
}
|
|
for (dx = 0; dx < dxn; ++dx) {
|
|
for (dy = 0; dy < dyn; ++dy) {
|
|
dst[dy][dx] = sharpen ? Sharpen(tmp2[dy][MIN(dxn - 1, MAX(0, dx - 1))],
|
|
tmp2[dy][dx],
|
|
tmp2[dy][MIN(dxn - 1, MAX(0, dx + 1))])
|
|
: tmp2[dy][dx];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Scales image.
|
|
*
|
|
* @note gyarados is magikarp in its infinite form
|
|
* @see Magikarp2xY(), Magikarp2xX()
|
|
*/
|
|
void *Gyarados(long dyw, long dxw, int dst[dyw][dxw], long syw, long sxw,
|
|
const int src[syw][sxw], long dyn, long dxn, long syn, long sxn,
|
|
struct SamplingSolution *cy, struct SamplingSolution *cx,
|
|
bool sharpen) {
|
|
if (dyn > 0 && dxn > 0) {
|
|
if (syn > 0 && sxn > 0) {
|
|
CHECK_LE(syn, syw);
|
|
CHECK_LE(sxn, sxw);
|
|
CHECK_LE(dyn, dyw);
|
|
CHECK_LE(dxn, dxw);
|
|
CHECK_LT(bsrl(syn) + bsrl(sxn), 32);
|
|
CHECK_LT(bsrl(dyn) + bsrl(dxn), 32);
|
|
CHECK_LE(dyw, 0x7fff);
|
|
CHECK_LE(dxw, 0x7fff);
|
|
CHECK_LE(syw, 0x7fff);
|
|
CHECK_LE(sxw, 0x7fff);
|
|
CHECK_LE(dyn, 0x7fff);
|
|
CHECK_LE(dxn, 0x7fff);
|
|
CHECK_LE(syn, 0x7fff);
|
|
CHECK_LE(sxn, 0x7fff);
|
|
GyaradosImpl(dyw, dxw, dst, syw, sxw, src, dyn, dxn, syn, sxn,
|
|
gc(xmemalign(64, sizeof(int) * dyn * sxn)),
|
|
gc(xmemalign(64, sizeof(int) * dyn * sxn)),
|
|
gc(xmemalign(64, sizeof(int) * dyn * dxn)), cy->s, cx->s,
|
|
cy->indices, cy->weights, cx->indices, cx->weights, sharpen);
|
|
} else {
|
|
ZeroMatrix(dyw, dxw, dst, dyn, dxn);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
void *GyaradosUint8(long dyw, long dxw, unsigned char dst[dyw][dxw], long syw,
|
|
long sxw, const unsigned char src[syw][sxw], long dyn,
|
|
long dxn, long syn, long sxn, long lo, long hi,
|
|
struct SamplingSolution *cy, struct SamplingSolution *cx,
|
|
bool sharpen) {
|
|
static bool once;
|
|
static int Tin[256];
|
|
static unsigned char Tout[32768];
|
|
long i, y, x;
|
|
int(*tmp)[MAX(dyn, syn)][MAX(dxn, sxn)];
|
|
if (!once) {
|
|
for (i = 0; i < ARRAYLEN(Tin); ++i) {
|
|
Tin[i] = F2Q(15, rgb2linpc(i / 255., 2.4));
|
|
}
|
|
for (i = 0; i < ARRAYLEN(Tout); ++i) {
|
|
Tout[i] = MIN(255, MAX(0, round(rgb2stdpc(Q2F(15, i), 2.4) * 255.)));
|
|
}
|
|
once = true;
|
|
}
|
|
tmp = xmemalign(64, sizeof(int) * MAX(dyn, syn) * MAX(dxn, sxn));
|
|
for (y = 0; y < syn; ++y) {
|
|
for (x = 0; x < sxn; ++x) {
|
|
(*tmp)[y][x] = Tin[src[y][x]];
|
|
}
|
|
}
|
|
Gyarados(MAX(dyn, syn), MAX(dxn, sxn), *tmp, MAX(dyn, syn), MAX(dxn, sxn),
|
|
*tmp, dyn, dxn, syn, sxn, cy, cx, sharpen);
|
|
for (y = 0; y < dyn; ++y) {
|
|
for (x = 0; x < dxn; ++x) {
|
|
dst[y][x] = Tout[MIN(32767, MAX(0, (*tmp)[y][x]))];
|
|
}
|
|
}
|
|
free(tmp);
|
|
return dst;
|
|
}
|
|
|
|
void *EzGyarados(long dcw, long dyw, long dxw, unsigned char dst[dcw][dyw][dxw],
|
|
long scw, long syw, long sxw,
|
|
const unsigned char src[scw][syw][sxw], long c0, long cn,
|
|
long dyn, long dxn, long syn, long sxn, double ry, double rx,
|
|
double oy, double ox) {
|
|
long c;
|
|
struct SamplingSolution *cy, *cx;
|
|
cy = ComputeSamplingSolution(dyn, syn, ry, oy, 1);
|
|
cx = ComputeSamplingSolution(dxn, sxn, rx, ox, 1);
|
|
for (c = c0; c < cn; ++c) {
|
|
GyaradosUint8(dyw, dxw, dst[c], syw, sxw, src[c], dyn, dxn, syn, sxn, 0,
|
|
255, cy, cx, true);
|
|
}
|
|
FreeSamplingSolution(cx);
|
|
FreeSamplingSolution(cy);
|
|
return dst;
|
|
}
|