cosmopolitan/third_party/mbedtls/sha256.c
Justine Tunney 957c61cbbf
Release Cosmopolitan v3.3
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.

This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.

Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.

OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().

This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.

We no longer use hex constants to define math.h symbols like M_PI.
2024-02-20 13:27:59 -08:00

500 lines
17 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:4;coding:utf-8 -*-│
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright The Mbed TLS Contributors │
│ │
│ Licensed under the Apache License, Version 2.0 (the "License"); │
│ you may not use this file except in compliance with the License. │
│ You may obtain a copy of the License at │
│ │
│ http://www.apache.org/licenses/LICENSE-2.0 │
│ │
│ Unless required by applicable law or agreed to in writing, software │
│ distributed under the License is distributed on an "AS IS" BASIS, │
│ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. │
│ See the License for the specific language governing permissions and │
│ limitations under the License. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/mbedtls/sha256.h"
#include "libc/dce.h"
#include "libc/intrin/asan.internal.h"
#include "libc/macros.internal.h"
#include "libc/nexgen32e/nexgen32e.h"
#include "libc/nexgen32e/sha.h"
#include "libc/nexgen32e/x86feature.h"
#include "libc/str/str.h"
#include "third_party/mbedtls/common.h"
#include "third_party/mbedtls/endian.h"
#include "third_party/mbedtls/error.h"
#include "third_party/mbedtls/md.h"
__static_yoink("mbedtls_notice");
/**
* @fileoverview FIPS-180-2 compliant SHA-256 implementation
*
* The SHA-256 Secure Hash Standard was published by NIST in 2002.
*
* @see http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
*/
#define SHA256_VALIDATE_RET(cond) \
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_SHA256_BAD_INPUT_DATA )
#define SHA256_VALIDATE(cond) MBEDTLS_INTERNAL_VALIDATE( cond )
#if !defined(MBEDTLS_SHA256_ALT)
/**
* \brief This function clones the state of a SHA-256 context.
*
* \param dst The destination context. This must be initialized.
* \param src The context to clone. This must be initialized.
*/
void mbedtls_sha256_clone( mbedtls_sha256_context *dst,
const mbedtls_sha256_context *src )
{
SHA256_VALIDATE( dst );
SHA256_VALIDATE( src );
*dst = *src;
}
int mbedtls_sha256_starts_224( mbedtls_sha256_context *ctx )
{
SHA256_VALIDATE_RET( ctx );
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0xC1059ED8;
ctx->state[1] = 0x367CD507;
ctx->state[2] = 0x3070DD17;
ctx->state[3] = 0xF70E5939;
ctx->state[4] = 0xFFC00B31;
ctx->state[5] = 0x68581511;
ctx->state[6] = 0x64F98FA7;
ctx->state[7] = 0xBEFA4FA4;
ctx->is224 = true;
return( 0 );
}
int mbedtls_sha256_starts_256( mbedtls_sha256_context *ctx )
{
SHA256_VALIDATE_RET( ctx );
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
ctx->is224 = false;
return( 0 );
}
/**
* \brief This function starts a SHA-224 or SHA-256 checksum
* calculation.
*
* \param ctx The context to use. This must be initialized.
* \param is224 This determines which function to use. This must be
* either \c 0 for SHA-256, or \c 1 for SHA-224.
*
* \return \c 0 on success.
* \return A negative error code on failure.
*/
int mbedtls_sha256_starts_ret( mbedtls_sha256_context *ctx, int is224 )
{
SHA256_VALIDATE_RET( ctx );
SHA256_VALIDATE_RET( is224 == 0 || is224 == 1 );
if( !is224 )
return mbedtls_sha256_starts_256( ctx );
else
return mbedtls_sha256_starts_224( ctx );
}
#if !defined(MBEDTLS_SHA256_PROCESS_ALT)
#define K kSha256
#define SHR(x,n) (((x) & 0xFFFFFFFF) >> (n))
#define ROTR(x,n) (SHR(x,n) | ((x) << (32 - (n))))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define F0(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define F1(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define R(t) \
( \
local.W[t] = S1(local.W[(t) - 2]) + local.W[(t) - 7] + \
S0(local.W[(t) - 15]) + local.W[(t) - 16] \
)
#define P(a,b,c,d,e,f,g,h,x,K) \
do \
{ \
local.temp1 = (h) + S3(e) + F1((e),(f),(g)) + (K) + (x); \
local.temp2 = S2(a) + F0((a),(b),(c)); \
(d) += local.temp1; (h) = local.temp1 + local.temp2; \
} while( 0 )
/**
* \brief This function processes a single data block within
* the ongoing SHA-256 computation. This function is for
* internal use only.
*
* \param ctx The SHA-256 context. This must be initialized.
* \param data The buffer holding one block of data. This must
* be a readable buffer of length \c 64 Bytes.
*
* \return \c 0 on success.
* \return A negative error code on failure.
*/
int mbedtls_internal_sha256_process( mbedtls_sha256_context *ctx,
const unsigned char data[64] )
{
struct
{
uint32_t temp1, temp2, W[64];
uint32_t A[8];
} local;
unsigned int i;
SHA256_VALIDATE_RET( ctx != NULL );
SHA256_VALIDATE_RET( (const unsigned char *)data != NULL );
if( X86_HAVE( SHA ) &&
X86_HAVE( SSE2 ) &&
X86_HAVE( SSSE3 ) )
{
if( IsAsan() )
__asan_verify( data, 64 );
sha256_transform_ni( ctx->state, data, 1 );
return( 0 );
}
if( X86_HAVE( BMI2 ) &&
X86_HAVE( AVX ) &&
X86_HAVE( AVX2 ) )
{
if( IsAsan() )
__asan_verify( data, 64 );
sha256_transform_rorx( ctx->state, data, 1 );
return( 0 );
}
for( i = 0; i < 8; i++ )
local.A[i] = ctx->state[i];
#if defined(MBEDTLS_SHA256_SMALLER)
for( i = 0; i < 64; i++ ) {
if( i < 16 )
GET_UINT32_BE( local.W[i], data, 4 * i );
else
R( i );
P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i], K[i] );
local.temp1 = local.A[7]; local.A[7] = local.A[6];
local.A[6] = local.A[5]; local.A[5] = local.A[4];
local.A[4] = local.A[3]; local.A[3] = local.A[2];
local.A[2] = local.A[1]; local.A[1] = local.A[0];
local.A[0] = local.temp1;
}
#else /* MBEDTLS_SHA256_SMALLER */
for( i = 0; i < 16; i++ )
GET_UINT32_BE( local.W[i], data, 4 * i );
for( i = 0; i < 16; i += 8 ) {
P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0] );
P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1] );
P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2] );
P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3] );
P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4] );
P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5] );
P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6] );
P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7] );
}
for( i = 16; i < 64; i += 8 ) {
P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], R(i+0), K[i+0] );
P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], R(i+1), K[i+1] );
P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], R(i+2), K[i+2] );
P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], R(i+3), K[i+3] );
P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], R(i+4), K[i+4] );
P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], R(i+5), K[i+5] );
P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], R(i+6), K[i+6] );
P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], R(i+7), K[i+7] );
}
#endif /* MBEDTLS_SHA256_SMALLER */
for( i = 0; i < 8; i++ )
ctx->state[i] += local.A[i];
/* Zeroise buffers and variables to clear sensitive data from memory. */
mbedtls_platform_zeroize( &local, sizeof( local ) );
return( 0 );
}
#endif /* !MBEDTLS_SHA256_PROCESS_ALT */
/**
* \brief This function feeds an input buffer into an ongoing
* SHA-256 checksum calculation.
*
* \param ctx The SHA-256 context. This must be initialized
* and have a hash operation started.
* \param input The buffer holding the data. This must be a readable
* buffer of length \p ilen Bytes.
* \param ilen The length of the input data in Bytes.
*
* \return \c 0 on success.
* \return A negative error code on failure.
*/
int mbedtls_sha256_update_ret( mbedtls_sha256_context *ctx,
const unsigned char *input,
size_t ilen )
{
int ret = MBEDTLS_ERR_THIS_CORRUPTION;
size_t fill;
uint32_t left;
SHA256_VALIDATE_RET( ctx != NULL );
SHA256_VALIDATE_RET( ilen == 0 || input != NULL );
if( ilen == 0 )
return( 0 );
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if( ctx->total[0] < (uint32_t) ilen )
ctx->total[1]++;
if( left && ilen >= fill )
{
memcpy( (void *) (ctx->buffer + left), input, fill );
if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 )
return( ret );
input += fill;
ilen -= fill;
left = 0;
}
if( ilen >= 64 )
{
if( X86_HAVE( SHA ) &&
X86_HAVE( SSE2 ) &&
X86_HAVE( SSSE3 ) )
{
if( IsAsan() )
__asan_verify( input, ilen );
sha256_transform_ni( ctx->state, input, ilen / 64 );
input += ROUNDDOWN( ilen, 64 );
ilen -= ROUNDDOWN( ilen, 64 );
}
else if( X86_HAVE( BMI ) &&
X86_HAVE( BMI2 ) &&
X86_HAVE( AVX2 ) )
{
if( IsAsan() )
__asan_verify( input, ilen );
sha256_transform_rorx( ctx->state, input, ilen / 64 );
input += ROUNDDOWN( ilen, 64 );
ilen -= ROUNDDOWN( ilen, 64 );
}
else
{
do
{
if(( ret = mbedtls_internal_sha256_process( ctx, input ) ))
return( ret );
input += 64;
ilen -= 64;
}
while( ilen >= 64 );
}
}
if( ilen > 0 )
memcpy( (void *) (ctx->buffer + left), input, ilen );
return( 0 );
}
/**
* \brief This function finishes the SHA-256 operation, and writes
* the result to the output buffer.
*
* \param ctx The SHA-256 context. This must be initialized
* and have a hash operation started.
* \param output The SHA-224 or SHA-256 checksum result.
* This must be a writable buffer of length \c 32 Bytes.
*
* \return \c 0 on success.
* \return A negative error code on failure.
*/
int mbedtls_sha256_finish_ret( mbedtls_sha256_context *ctx,
unsigned char output[32] )
{
int ret = MBEDTLS_ERR_THIS_CORRUPTION;
uint32_t used;
uint32_t high, low;
SHA256_VALIDATE_RET( ctx != NULL );
SHA256_VALIDATE_RET( (unsigned char *)output != NULL );
/*
* Add padding: 0x80 then 0x00 until 8 bytes remain for the length
*/
used = ctx->total[0] & 0x3F;
ctx->buffer[used++] = 0x80;
if( used <= 56 )
{
/* Enough room for padding + length in current block */
mbedtls_platform_zeroize( ctx->buffer + used, 56 - used );
}
else
{
/* We'll need an extra block */
mbedtls_platform_zeroize( ctx->buffer + used, 64 - used );
if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 )
return( ret );
mbedtls_platform_zeroize( ctx->buffer, 56 );
}
/*
* Add message length
*/
high = ( ctx->total[0] >> 29 )
| ( ctx->total[1] << 3 );
low = ( ctx->total[0] << 3 );
PUT_UINT32_BE( high, ctx->buffer, 56 );
PUT_UINT32_BE( low, ctx->buffer, 60 );
if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 )
return( ret );
/*
* Output final state
*/
PUT_UINT32_BE( ctx->state[0], output, 0 );
PUT_UINT32_BE( ctx->state[1], output, 4 );
PUT_UINT32_BE( ctx->state[2], output, 8 );
PUT_UINT32_BE( ctx->state[3], output, 12 );
PUT_UINT32_BE( ctx->state[4], output, 16 );
PUT_UINT32_BE( ctx->state[5], output, 20 );
PUT_UINT32_BE( ctx->state[6], output, 24 );
if( ctx->is224 == 0 )
PUT_UINT32_BE( ctx->state[7], output, 28 );
return( 0 );
}
#endif /* !MBEDTLS_SHA256_ALT */
/**
* \brief This function calculates the SHA-224 or SHA-256
* checksum of a buffer.
*
* The function allocates the context, performs the
* calculation, and frees the context.
*
* The SHA-256 result is calculated as
* output = SHA-256(input buffer).
*
* \param input The buffer holding the data. This must be a readable
* buffer of length \p ilen Bytes.
* \param ilen The length of the input data in Bytes.
* \param output The SHA-224 or SHA-256 checksum result. This must
* be a writable buffer of length \c 32 Bytes.
* \param is224 Determines which function to use. This must be
* either \c 0 for SHA-256, or \c 1 for SHA-224.
*/
int mbedtls_sha256_ret( const void *input,
size_t ilen,
unsigned char output[32],
int is224 )
{
int ret = MBEDTLS_ERR_THIS_CORRUPTION;
mbedtls_sha256_context ctx;
SHA256_VALIDATE_RET( is224 == 0 || is224 == 1 );
SHA256_VALIDATE_RET( ilen == 0 || input != NULL );
SHA256_VALIDATE_RET( (unsigned char *)output != NULL );
mbedtls_sha256_init( &ctx );
if( ( ret = mbedtls_sha256_starts_ret( &ctx, is224 ) ) != 0 )
goto exit;
if( ( ret = mbedtls_sha256_update_ret( &ctx, input, ilen ) ) != 0 )
goto exit;
if( ( ret = mbedtls_sha256_finish_ret( &ctx, output ) ) != 0 )
goto exit;
exit:
mbedtls_sha256_free( &ctx );
return( ret );
}
dontinstrument int mbedtls_sha256_ret_224( const void *input, size_t ilen, unsigned char *output )
{
return mbedtls_sha256_ret( input, ilen, output, true );
}
dontinstrument int mbedtls_sha256_ret_256( const void *input, size_t ilen, unsigned char *output )
{
return mbedtls_sha256_ret( input, ilen, output, false );
}
const mbedtls_md_info_t mbedtls_sha224_info = {
"SHA224",
MBEDTLS_MD_SHA224,
28,
64,
(void *)mbedtls_sha256_starts_224,
(void *)mbedtls_sha256_update_ret,
(void *)mbedtls_internal_sha256_process,
(void *)mbedtls_sha256_finish_ret,
mbedtls_sha256_ret_224,
};
const mbedtls_md_info_t mbedtls_sha256_info = {
"SHA256",
MBEDTLS_MD_SHA256,
32,
64,
(void *)mbedtls_sha256_starts_256,
(void *)mbedtls_sha256_update_ret,
(void *)mbedtls_internal_sha256_process,
(void *)mbedtls_sha256_finish_ret,
mbedtls_sha256_ret_256,
};