cosmopolitan/test/tool/build/lib/machine_test.c
Justine Tunney f4f4caab0e Add x86_64-linux-gnu emulator
I wanted a tiny scriptable meltdown proof way to run userspace programs
and visualize how program execution impacts memory. It helps to explain
how things like Actually Portable Executable works. It can show you how
the GCC generated code is going about manipulating matrices and more. I
didn't feel fully comfortable with Qemu and Bochs because I'm not smart
enough to understand them. I wanted something like gVisor but with much
stronger levels of assurances. I wanted a single binary that'll run, on
all major operating systems with an embedded GPL barrier ZIP filesystem
that is tiny enough to transpile to JavaScript and run in browsers too.

https://justine.storage.googleapis.com/emulator625.mp4
2020-08-25 04:43:42 -07:00

298 lines
10 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ This program is free software; you can redistribute it and/or modify │
│ it under the terms of the GNU General Public License as published by │
│ the Free Software Foundation; version 2 of the License. │
│ │
│ This program is distributed in the hope that it will be useful, but │
│ WITHOUT ANY WARRANTY; without even the implied warranty of │
│ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │
│ General Public License for more details. │
│ │
│ You should have received a copy of the GNU General Public License │
│ along with this program; if not, write to the Free Software │
│ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │
│ 02110-1301 USA │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/bits/progn.h"
#include "libc/fmt/bing.h"
#include "libc/math.h"
#include "libc/mem/mem.h"
#include "libc/runtime/gc.h"
#include "libc/stdio/stdio.h"
#include "libc/testlib/ezbench.h"
#include "libc/testlib/testlib.h"
#include "libc/x/x.h"
#include "tool/build/lib/endian.h"
#include "tool/build/lib/fpu.h"
#include "tool/build/lib/machine.h"
#include "tool/build/lib/memory.h"
const uint8_t kPi80[] = {
0xd9, 0xe8, // fld1
0xb8, 0x0a, 0x00, 0x00, 0x00, // mov $0xa,%eax
0x31, 0xd2, // xor %edx,%edx
0xd9, 0xee, // fldz
0x48, 0x98, // cltq
0x48, 0x39, 0xc2, // cmp %rax,%rdx
0xd9, 0x05, 0x1a, 0x00, 0x00, 0x00, // flds 0x1a(%rip)
0x7d, 0x13, // jge 2b <pi80+0x2b>
0xde, 0xc1, // faddp
0x48, 0xff, 0xc2, // inc %rdx
0xd9, 0xfa, // fsqrt
0xd9, 0x05, 0x0f, 0x00, 0x00, 0x00, // flds 15(%rip)
0xd8, 0xc9, // fmul %st(1),%st
0xde, 0xca, // fmulp %st,%st(2)
0xeb, 0xe2, // jmp d <pi80+0xd>
0xdd, 0xd9, // fstp %st(1)
0xde, 0xf1, // fdivp
0xf4, // hlt
0x00, 0x00, 0x00, 0x40, // .float 2.0
0x00, 0x00, 0x00, 0x3f, // .float 0.5
};
const uint8_t kTenthprime[] = {
0x31, 0xd2, // xor %edx,%edx
0x45, 0x31, 0xc0, // xor %r8d,%r8d
0x31, 0xc9, // xor %ecx,%ecx
0xbe, 0x03, 0x00, 0x00, 0x00, // mov $0x3,%esi
0x41, 0xff, 0xc0, // inc %r8d
0x44, 0x89, 0xc0, // mov %r8d,%eax
0x83, 0xf9, 0x0a, // cmp $0xa,%ecx
0x74, 0x0b, // je 20
0x99, // cltd
0xf7, 0xfe, // idiv %esi
0x83, 0xfa, 0x01, // cmp $0x1,%edx
0x83, 0xd9, 0xff, // sbb $-1,%ecx
0xeb, 0xea, // jmp a
0xf4, // hlt
};
const uint8_t kTenthprime2[] = {
0xE8, 0x11, 0x00, 0x00, 0x00, //
0xF4, //
0x89, 0xF8, //
0xB9, 0x03, 0x00, 0x00, 0x00, //
0x99, //
0xF7, 0xF9, //
0x85, 0xD2, //
0x0F, 0x95, 0xC0, //
0xC3, //
0x55, //
0x48, 0x89, 0xE5, //
0x31, 0xF6, //
0x45, 0x31, 0xC0, //
0x44, 0x89, 0xC7, //
0xE8, 0xDF, 0xFF, 0xFF, 0xFF, //
0x0F, 0xB6, 0xC0, //
0x66, 0x83, 0xF8, 0x01, //
0x83, 0xDE, 0xFF, //
0x41, 0xFF, 0xC0, //
0x83, 0xFE, 0x0A, //
0x75, 0xE6, //
0x44, 0x89, 0xC0, //
0x5D, //
0xC3, //
};
int64_t base;
uint8_t *real;
size_t realsize;
struct Machine *m;
void SetUp(void) {
base = 0;
m = NewMachine();
realsize = 0x10000;
real = tmemalign(PAGESIZE, ROUNDUP(realsize, PAGESIZE));
RegisterMemory(m, base, real, realsize);
m->ip = base;
Write64(m->sp, m->ip + realsize);
}
void TearDown(void) {
ResetRam(m);
tfree(real);
free(m);
}
int ExecuteUntilHalt(struct Machine *m) {
int rc;
if (!(rc = setjmp(m->onhalt))) {
for (;;) {
LoadInstruction(m);
ExecuteInstruction(m);
}
} else {
return rc;
}
}
TEST(machine, test) {
memcpy(real, kTenthprime, sizeof(kTenthprime));
ASSERT_EQ(kMachineHalt, ExecuteUntilHalt(m));
ASSERT_EQ(15, Read32(m->ax));
}
TEST(machine, testFpu) {
memcpy(real, kPi80, sizeof(kPi80));
ASSERT_EQ(kMachineHalt, ExecuteUntilHalt(m));
ASSERT_TRUE(fabs(3.14159 - FpuPop(m)) < 0.0001);
m->ip = base;
ASSERT_EQ(kMachineHalt, ExecuteUntilHalt(m));
ASSERT_TRUE(fabs(3.14159 - FpuPop(m)) < 0.0001);
}
BENCH(machine, benchPrimeNumberPrograms) {
memcpy(real, kTenthprime2, sizeof(kTenthprime2));
EZBENCH2("tenthprime2", m->ip = base, ExecuteUntilHalt(m));
ASSERT_EQ(15, Read32(m->ax));
memcpy(real, kTenthprime, sizeof(kTenthprime));
EZBENCH2("tenthprime", m->ip = base, ExecuteUntilHalt(m));
ASSERT_EQ(15, Read32(m->ax));
}
BENCH(machine, benchFpu) {
memcpy(real, kPi80, sizeof(kPi80));
EZBENCH2("pi80", m->ip = base, PROGN(ExecuteUntilHalt(m), FpuPop(m)));
}
BENCH(machine, benchLoadExec2) {
uint8_t kMovCode[] = {0xbe, 0x03, 0x00, 0x00, 0x00};
memcpy(real, kMovCode, sizeof(kMovCode));
LoadInstruction(m);
EZBENCH2("mov", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec3) {
uint8_t kMovdCode[] = {0x66, 0x0f, 0x6e, 0xc0};
Write64(m->ax, 0);
memcpy(real, kMovdCode, sizeof(kMovdCode));
LoadInstruction(m);
EZBENCH2("movd", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec4) {
uint8_t kAddpsRegregCode[] = {0x0f, 0x58, 0xC0};
uint8_t kAddpsMemregCode[] = {0x0f, 0x58, 0x00};
Write64(m->ax, 0);
memcpy(real, kAddpsRegregCode, sizeof(kAddpsRegregCode));
LoadInstruction(m);
EZBENCH2("addps reg reg", m->ip = base, ExecuteInstruction(m));
memcpy(real, kAddpsMemregCode, sizeof(kAddpsMemregCode));
LoadInstruction(m);
EZBENCH2("addps mem reg", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec5) {
uint8_t kPaddwRegregCode[] = {0x66, 0x0F, 0xFD, 0xC0};
uint8_t kPaddwMemregCode[] = {0x66, 0x0F, 0xFD, 0x00};
Write64(m->ax, 0);
memcpy(real, kPaddwRegregCode, sizeof(kPaddwRegregCode));
LoadInstruction(m);
EZBENCH2("paddw", m->ip = base, ExecuteInstruction(m));
memcpy(real, kPaddwMemregCode, sizeof(kPaddwMemregCode));
LoadInstruction(m);
EZBENCH2("paddw mem", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec6) {
uint8_t kPsubqRegregCode[] = {0x66, 0x0F, 0xFB, 0xC0};
uint8_t kPsubqMemregCode[] = {0x66, 0x0F, 0xFB, 0x00};
Write64(m->ax, 0);
memcpy(real, kPsubqRegregCode, sizeof(kPsubqRegregCode));
LoadInstruction(m);
EZBENCH2("psubq", m->ip = base, ExecuteInstruction(m));
memcpy(real, kPsubqMemregCode, sizeof(kPsubqMemregCode));
LoadInstruction(m);
EZBENCH2("psubq mem", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchAddqMem) {
uint8_t kAddMemregCode[] = {0x48, 0x03, 0x08};
Write64(m->ax, 0);
memcpy(real, kAddMemregCode, sizeof(kAddMemregCode));
LoadInstruction(m);
EZBENCH2("addq mem", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchAddlMem) {
uint8_t kAddMemregCode[] = {0x03, 0x08};
Write64(m->ax, 0);
memcpy(real, kAddMemregCode, sizeof(kAddMemregCode));
LoadInstruction(m);
EZBENCH2("addl mem", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchAddq) {
uint8_t kAddqCode[] = {0x48, 0x01, 0xd8};
Write64(m->ax, 0);
memcpy(real, kAddqCode, sizeof(kAddqCode));
LoadInstruction(m);
EZBENCH2("addq", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchAddb) {
uint8_t kAddbCode[] = {0x00, 0xd8};
Write64(m->ax, 0);
memcpy(real, kAddbCode, sizeof(kAddbCode));
LoadInstruction(m);
EZBENCH2("addb", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchXorReg) {
memcpy(real, kTenthprime, sizeof(kTenthprime));
LoadInstruction(m);
EZBENCH2("xor", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchLoadExec8) {
uint8_t kFchsCode[] = {0xd9, 0xe0};
Write64(m->ax, 0);
OpFinit(m);
*FpuSt(m, 0) = M_PI;
FpuSetTag(m, 0, kFpuTagValid);
memcpy(real, kFchsCode, sizeof(kFchsCode));
LoadInstruction(m);
EZBENCH2("fchs", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchPushpop) {
uint8_t kPushpop[] = {0x50, 0x58};
Write64(m->ax, 0);
memcpy(real, kPushpop, sizeof(kPushpop));
EZBENCH2("pushpop", m->ip = base,
PROGN(LoadInstruction(m), ExecuteInstruction(m), LoadInstruction(m),
ExecuteInstruction(m)));
}
BENCH(machine, benchPause) {
uint8_t kPause[] = {0xf3, 0x90};
Write64(m->ax, 0);
memcpy(real, kPause, sizeof(kPause));
LoadInstruction(m);
EZBENCH2("pause", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchClc) {
uint8_t kClc[] = {0xf8};
Write64(m->ax, 0);
memcpy(real, kClc, sizeof(kClc));
LoadInstruction(m);
EZBENCH2("clc", m->ip = base, ExecuteInstruction(m));
}
BENCH(machine, benchNop) {
uint8_t kNop[] = {0x90};
Write64(m->ax, 0);
memcpy(real, kNop, sizeof(kNop));
LoadInstruction(m);
EZBENCH2("nop", m->ip = base, ExecuteInstruction(m));
}
TEST(machine, sizeIsReasonable) {
ASSERT_LE(sizeof(struct Machine), 65536);
}