cosmopolitan/third_party/intel/clang/sm4intrin.h
Justine Tunney c9152b6f14
Release Cosmopolitan v3.8.0
This change switches c++ exception handling from sjlj to standard dwarf.
It's needed because clang for aarch64 doesn't support sjlj. It turns out
that libunwind had a bare-metal configuration that made this easy to do.

This change gets the new experimental cosmocc -mclang flag in a state of
working so well that it can now be used to build all of llamafile and it
goes 3x faster in terms of build latency, without trading away any perf.

The int_fast16_t and int_fast32_t types are now always defined as 32-bit
in the interest of having more abi consistency between cosmocc -mgcc and
-mclang mode.
2024-08-30 20:14:07 -07:00

269 lines
8.2 KiB
C

/*===--------------- sm4intrin.h - SM4 intrinsics -----------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <sm4intrin.h> directly; include <immintrin.h> instead."
#endif // __IMMINTRIN_H
#ifndef __SM4INTRIN_H
#define __SM4INTRIN_H
/// This intrinsic performs four rounds of SM4 key expansion. The intrinsic
/// operates on independent 128-bit lanes. The calculated results are
/// stored in \a dst.
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm4key4_epi32(__m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM4KEY4 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE SBOX_BYTE(dword, i) {
/// RETURN sbox[dword.byte[i]]
/// }
/// DEFINE lower_t(dword) {
/// tmp.byte[0] := SBOX_BYTE(dword, 0)
/// tmp.byte[1] := SBOX_BYTE(dword, 1)
/// tmp.byte[2] := SBOX_BYTE(dword, 2)
/// tmp.byte[3] := SBOX_BYTE(dword, 3)
/// RETURN tmp
/// }
/// DEFINE L_KEY(dword) {
/// RETURN dword ^ ROL32(dword, 13) ^ ROL32(dword, 23)
/// }
/// DEFINE T_KEY(dword) {
/// RETURN L_KEY(lower_t(dword))
/// }
/// DEFINE F_KEY(X0, X1, X2, X3, round_key) {
/// RETURN X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key)
/// }
/// FOR i:= 0 to 0
/// P[0] := __B.xmm[i].dword[0]
/// P[1] := __B.xmm[i].dword[1]
/// P[2] := __B.xmm[i].dword[2]
/// P[3] := __B.xmm[i].dword[3]
/// C[0] := F_KEY(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
/// C[1] := F_KEY(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
/// C[2] := F_KEY(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
/// C[3] := F_KEY(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
/// DEST.xmm[i].dword[0] := C[0]
/// DEST.xmm[i].dword[1] := C[1]
/// DEST.xmm[i].dword[2] := C[2]
/// DEST.xmm[i].dword[3] := C[3]
/// ENDFOR
/// DEST[MAX:128] := 0
/// \endcode
#define _mm_sm4key4_epi32(A, B) \
(__m128i) __builtin_ia32_vsm4key4128((__v4su)A, (__v4su)B)
/// This intrinsic performs four rounds of SM4 key expansion. The intrinsic
/// operates on independent 128-bit lanes. The calculated results are
/// stored in \a dst.
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_sm4key4_epi32(__m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM4KEY4 instruction.
///
/// \param __A
/// A 256-bit vector of [8 x int].
/// \param __B
/// A 256-bit vector of [8 x int].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE SBOX_BYTE(dword, i) {
/// RETURN sbox[dword.byte[i]]
/// }
/// DEFINE lower_t(dword) {
/// tmp.byte[0] := SBOX_BYTE(dword, 0)
/// tmp.byte[1] := SBOX_BYTE(dword, 1)
/// tmp.byte[2] := SBOX_BYTE(dword, 2)
/// tmp.byte[3] := SBOX_BYTE(dword, 3)
/// RETURN tmp
/// }
/// DEFINE L_KEY(dword) {
/// RETURN dword ^ ROL32(dword, 13) ^ ROL32(dword, 23)
/// }
/// DEFINE T_KEY(dword) {
/// RETURN L_KEY(lower_t(dword))
/// }
/// DEFINE F_KEY(X0, X1, X2, X3, round_key) {
/// RETURN X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key)
/// }
/// FOR i:= 0 to 1
/// P[0] := __B.xmm[i].dword[0]
/// P[1] := __B.xmm[i].dword[1]
/// P[2] := __B.xmm[i].dword[2]
/// P[3] := __B.xmm[i].dword[3]
/// C[0] := F_KEY(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
/// C[1] := F_KEY(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
/// C[2] := F_KEY(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
/// C[3] := F_KEY(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
/// DEST.xmm[i].dword[0] := C[0]
/// DEST.xmm[i].dword[1] := C[1]
/// DEST.xmm[i].dword[2] := C[2]
/// DEST.xmm[i].dword[3] := C[3]
/// ENDFOR
/// DEST[MAX:256] := 0
/// \endcode
#define _mm256_sm4key4_epi32(A, B) \
(__m256i) __builtin_ia32_vsm4key4256((__v8su)A, (__v8su)B)
/// This intrinisc performs four rounds of SM4 encryption. The intrinisc
/// operates on independent 128-bit lanes. The calculated results are
/// stored in \a dst.
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm4rnds4_epi32(__m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM4RNDS4 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE lower_t(dword) {
/// tmp.byte[0] := SBOX_BYTE(dword, 0)
/// tmp.byte[1] := SBOX_BYTE(dword, 1)
/// tmp.byte[2] := SBOX_BYTE(dword, 2)
/// tmp.byte[3] := SBOX_BYTE(dword, 3)
/// RETURN tmp
/// }
/// DEFINE L_RND(dword) {
/// tmp := dword
/// tmp := tmp ^ ROL32(dword, 2)
/// tmp := tmp ^ ROL32(dword, 10)
/// tmp := tmp ^ ROL32(dword, 18)
/// tmp := tmp ^ ROL32(dword, 24)
/// RETURN tmp
/// }
/// DEFINE T_RND(dword) {
/// RETURN L_RND(lower_t(dword))
/// }
/// DEFINE F_RND(X0, X1, X2, X3, round_key) {
/// RETURN X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key)
/// }
/// FOR i:= 0 to 0
/// P[0] := __B.xmm[i].dword[0]
/// P[1] := __B.xmm[i].dword[1]
/// P[2] := __B.xmm[i].dword[2]
/// P[3] := __B.xmm[i].dword[3]
/// C[0] := F_RND(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
/// C[1] := F_RND(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
/// C[2] := F_RND(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
/// C[3] := F_RND(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
/// DEST.xmm[i].dword[0] := C[0]
/// DEST.xmm[i].dword[1] := C[1]
/// DEST.xmm[i].dword[2] := C[2]
/// DEST.xmm[i].dword[3] := C[3]
/// ENDFOR
/// DEST[MAX:128] := 0
/// \endcode
#define _mm_sm4rnds4_epi32(A, B) \
(__m128i) __builtin_ia32_vsm4rnds4128((__v4su)A, (__v4su)B)
/// This intrinisc performs four rounds of SM4 encryption. The intrinisc
/// operates on independent 128-bit lanes. The calculated results are
/// stored in \a dst.
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_sm4rnds4_epi32(__m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM4RNDS4 instruction.
///
/// \param __A
/// A 256-bit vector of [8 x int].
/// \param __B
/// A 256-bit vector of [8 x int].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE lower_t(dword) {
/// tmp.byte[0] := SBOX_BYTE(dword, 0)
/// tmp.byte[1] := SBOX_BYTE(dword, 1)
/// tmp.byte[2] := SBOX_BYTE(dword, 2)
/// tmp.byte[3] := SBOX_BYTE(dword, 3)
/// RETURN tmp
/// }
/// DEFINE L_RND(dword) {
/// tmp := dword
/// tmp := tmp ^ ROL32(dword, 2)
/// tmp := tmp ^ ROL32(dword, 10)
/// tmp := tmp ^ ROL32(dword, 18)
/// tmp := tmp ^ ROL32(dword, 24)
/// RETURN tmp
/// }
/// DEFINE T_RND(dword) {
/// RETURN L_RND(lower_t(dword))
/// }
/// DEFINE F_RND(X0, X1, X2, X3, round_key) {
/// RETURN X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key)
/// }
/// FOR i:= 0 to 0
/// P[0] := __B.xmm[i].dword[0]
/// P[1] := __B.xmm[i].dword[1]
/// P[2] := __B.xmm[i].dword[2]
/// P[3] := __B.xmm[i].dword[3]
/// C[0] := F_RND(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
/// C[1] := F_RND(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
/// C[2] := F_RND(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
/// C[3] := F_RND(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
/// DEST.xmm[i].dword[0] := C[0]
/// DEST.xmm[i].dword[1] := C[1]
/// DEST.xmm[i].dword[2] := C[2]
/// DEST.xmm[i].dword[3] := C[3]
/// ENDFOR
/// DEST[MAX:256] := 0
/// \endcode
#define _mm256_sm4rnds4_epi32(A, B) \
(__m256i) __builtin_ia32_vsm4rnds4256((__v8su)A, (__v8su)B)
#endif // __SM4INTRIN_H