cosmopolitan/libc/tinymath/freebsd.internal.h
Justine Tunney cc1732bc42
Make AARCH64 harder, better, faster, stronger
- Perform some housekeeping on scalar math function code
- Import ARM's Optimized Routines for SIMD string processing
- Upgrade to latest Chromium zlib and enable more SIMD optimizations
2023-05-15 02:15:34 -07:00

1239 lines
38 KiB
C

#ifndef COSMOPOLITAN_LIBC_TINYMATH_FREEBSD_INTERNAL_H_
#define COSMOPOLITAN_LIBC_TINYMATH_FREEBSD_INTERNAL_H_
#include "libc/assert.h"
#include "libc/complex.h"
#include "libc/math.h"
#include "libc/runtime/fenv.h"
#if !(__ASSEMBLER__ + __LINKER__ + 0)
COSMOPOLITAN_C_START_
// clang-format off
#define __CONCAT1(x,y) x ## y
#define __CONCAT(x,y) __CONCAT1(x,y)
#define __STRING(x) #x
#define __XSTRING(x) __STRING(x)
#ifdef __x86_64__
union IEEEl2bits {
long double e;
struct {
unsigned int manl :32;
unsigned int manh :32;
unsigned int exp :15;
unsigned int sign :1;
unsigned int junkl :16;
unsigned int junkh :32;
} bits;
struct {
unsigned long man :64;
unsigned int expsign :16;
unsigned long junk :48;
} xbits;
};
#define LDBL_NBIT 0x80000000
#define mask_nbit_l(u) ((u).bits.manh &= ~LDBL_NBIT)
#define LDBL_MANH_SIZE 32
#define LDBL_MANL_SIZE 32
#define LDBL_TO_ARRAY32(u, a) do { \
(a)[0] = (uint32_t)(u).bits.manl; \
(a)[1] = (uint32_t)(u).bits.manh; \
} while (0)
#elif defined(__aarch64__)
union IEEEl2bits {
long double e;
struct {
unsigned long manl :64;
unsigned long manh :48;
unsigned int exp :15;
unsigned int sign :1;
} bits;
/* TODO andrew: Check the packing here */
struct {
unsigned long manl :64;
unsigned long manh :48;
unsigned int expsign :16;
} xbits;
};
#define LDBL_NBIT 0
#define LDBL_IMPLICIT_NBIT
#define mask_nbit_l(u) ((void)0)
#define LDBL_MANH_SIZE 48
#define LDBL_MANL_SIZE 64
#define LDBL_TO_ARRAY32(u, a) do { \
(a)[0] = (uint32_t)(u).bits.manl; \
(a)[1] = (uint32_t)((u).bits.manl >> 32); \
(a)[2] = (uint32_t)(u).bits.manh; \
(a)[3] = (uint32_t)((u).bits.manh >> 32); \
} while(0)
#elif defined(__powerpc64__)
union IEEEl2bits {
long double e;
struct {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
unsigned int manl :32;
unsigned int manh :20;
unsigned int exp :11;
unsigned int sign :1;
#else /* _BYTE_ORDER == _LITTLE_ENDIAN */
unsigned int sign :1;
unsigned int exp :11;
unsigned int manh :20;
unsigned int manl :32;
#endif
} bits;
};
#define mask_nbit_l(u) ((void)0)
#define LDBL_IMPLICIT_NBIT
#define LDBL_NBIT 0
#define LDBL_MANH_SIZE 20
#define LDBL_MANL_SIZE 32
#define LDBL_TO_ARRAY32(u, a) do { \
(a)[0] = (uint32_t)(u).bits.manl; \
(a)[1] = (uint32_t)(u).bits.manh; \
} while(0)
#endif /* __x86_64__ */
/*
* The original fdlibm code used statements like:
* n0 = ((*(int*)&one)>>29)^1; * index of high word *
* ix0 = *(n0+(int*)&x); * high word of x *
* ix1 = *((1-n0)+(int*)&x); * low word of x *
* to dig two 32 bit words out of the 64 bit IEEE floating point
* value. That is non-ANSI, and, moreover, the gcc instruction
* scheduler gets it wrong. We instead use the following macros.
* Unlike the original code, we determine the endianness at compile
* time, not at run time; I don't see much benefit to selecting
* endianness at run time.
*/
/*
* A union which permits us to convert between a double and two 32 bit
* ints.
*/
#ifdef __arm__
#if defined(__VFP_FP__) || defined(__ARM_EABI__)
#define IEEE_WORD_ORDER __BYTE_ORDER__
#else
#define IEEE_WORD_ORDER __ORDER_BIG_ENDIAN__
#endif
#else /* __arm__ */
#define IEEE_WORD_ORDER __BYTE_ORDER__
#endif
/* A union which permits us to convert between a long double and
four 32 bit ints. */
#if IEEE_WORD_ORDER == __ORDER_BIG_ENDIAN__
typedef union
{
long double value;
struct {
uint32_t mswhi;
uint32_t mswlo;
uint32_t lswhi;
uint32_t lswlo;
} parts32;
struct {
uint64_t msw;
uint64_t lsw;
} parts64;
} ieee_quad_shape_type;
#endif
#if IEEE_WORD_ORDER == __ORDER_LITTLE_ENDIAN__
typedef union
{
long double value;
struct {
uint32_t lswlo;
uint32_t lswhi;
uint32_t mswlo;
uint32_t mswhi;
} parts32;
struct {
uint64_t lsw;
uint64_t msw;
} parts64;
} ieee_quad_shape_type;
#endif
#if IEEE_WORD_ORDER == __ORDER_BIG_ENDIAN__
typedef union
{
double value;
struct
{
uint32_t msw;
uint32_t lsw;
} parts;
struct
{
uint64_t w;
} xparts;
} ieee_double_shape_type;
#endif
#if IEEE_WORD_ORDER == __ORDER_LITTLE_ENDIAN__
typedef union
{
double value;
struct
{
uint32_t lsw;
uint32_t msw;
} parts;
struct
{
uint64_t w;
} xparts;
} ieee_double_shape_type;
#endif
/* Get two 32 bit ints from a double. */
#define EXTRACT_WORDS(ix0,ix1,d) \
do { \
ieee_double_shape_type ew_u; \
ew_u.value = (d); \
(ix0) = ew_u.parts.msw; \
(ix1) = ew_u.parts.lsw; \
} while (0)
/* Get a 64-bit int from a double. */
#define EXTRACT_WORD64(ix,d) \
do { \
ieee_double_shape_type ew_u; \
ew_u.value = (d); \
(ix) = ew_u.xparts.w; \
} while (0)
/* Get the more significant 32 bit int from a double. */
#define GET_HIGH_WORD(i,d) \
do { \
ieee_double_shape_type gh_u; \
gh_u.value = (d); \
(i) = gh_u.parts.msw; \
} while (0)
/* Get the less significant 32 bit int from a double. */
#define GET_LOW_WORD(i,d) \
do { \
ieee_double_shape_type gl_u; \
gl_u.value = (d); \
(i) = gl_u.parts.lsw; \
} while (0)
/* Set a double from two 32 bit ints. */
#define INSERT_WORDS(d,ix0,ix1) \
do { \
ieee_double_shape_type iw_u; \
iw_u.parts.msw = (ix0); \
iw_u.parts.lsw = (ix1); \
(d) = iw_u.value; \
} while (0)
/* Set a double from a 64-bit int. */
#define INSERT_WORD64(d,ix) \
do { \
ieee_double_shape_type iw_u; \
iw_u.xparts.w = (ix); \
(d) = iw_u.value; \
} while (0)
/* Set the more significant 32 bits of a double from an int. */
#define SET_HIGH_WORD(d,v) \
do { \
ieee_double_shape_type sh_u; \
sh_u.value = (d); \
sh_u.parts.msw = (v); \
(d) = sh_u.value; \
} while (0)
/* Set the less significant 32 bits of a double from an int. */
#define SET_LOW_WORD(d,v) \
do { \
ieee_double_shape_type sl_u; \
sl_u.value = (d); \
sl_u.parts.lsw = (v); \
(d) = sl_u.value; \
} while (0)
/*
* A union which permits us to convert between a float and a 32 bit
* int.
*/
typedef union
{
float value;
/* FIXME: Assumes 32 bit int. */
unsigned int word;
} ieee_float_shape_type;
/* Get a 32 bit int from a float. */
#define GET_FLOAT_WORD(i,d) \
do { \
ieee_float_shape_type gf_u; \
gf_u.value = (d); \
(i) = gf_u.word; \
} while (0)
/* Set a float from a 32 bit int. */
#define SET_FLOAT_WORD(d,i) \
do { \
ieee_float_shape_type sf_u; \
sf_u.word = (i); \
(d) = sf_u.value; \
} while (0)
/*
* Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
* double.
*/
#define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \
do { \
union IEEEl2bits ew_u; \
ew_u.e = (d); \
(ix0) = ew_u.xbits.expsign; \
(ix1) = ew_u.xbits.man; \
} while (0)
/*
* Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
* long double.
*/
#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \
do { \
union IEEEl2bits ew_u; \
ew_u.e = (d); \
(ix0) = ew_u.xbits.expsign; \
(ix1) = ew_u.xbits.manh; \
(ix2) = ew_u.xbits.manl; \
} while (0)
/* Get expsign as a 16 bit int from a long double. */
#define GET_LDBL_EXPSIGN(i,d) \
do { \
union IEEEl2bits ge_u; \
ge_u.e = (d); \
(i) = ge_u.xbits.expsign; \
} while (0)
/*
* Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
* mantissa.
*/
#define INSERT_LDBL80_WORDS(d,ix0,ix1) \
do { \
union IEEEl2bits iw_u; \
iw_u.xbits.expsign = (ix0); \
iw_u.xbits.man = (ix1); \
(d) = iw_u.e; \
} while (0)
/*
* Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
* comprising the mantissa.
*/
#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \
do { \
union IEEEl2bits iw_u; \
iw_u.xbits.expsign = (ix0); \
iw_u.xbits.manh = (ix1); \
iw_u.xbits.manl = (ix2); \
(d) = iw_u.e; \
} while (0)
/* Set expsign of a long double from a 16 bit int. */
#define SET_LDBL_EXPSIGN(d,v) \
do { \
union IEEEl2bits se_u; \
se_u.e = (d); \
se_u.xbits.expsign = (v); \
(d) = se_u.e; \
} while (0)
#ifdef __i386__
/* Long double constants are broken on i386. */
#define LD80C(m, ex, v) { \
.xbits.man = __CONCAT(m, ULL), \
.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
}
#else
/* The above works on non-i386 too, but we use this to check v. */
#define LD80C(m, ex, v) { .e = (v), }
#endif
#ifdef FLT_EVAL_METHOD
/*
* Attempt to get strict C99 semantics for assignment with non-C99 compilers.
*/
#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
#else
#define STRICT_ASSIGN(type, lval, rval) do { \
volatile type __lval; \
\
if (sizeof(type) >= sizeof(long double)) \
(lval) = (rval); \
else { \
__lval = (rval); \
(lval) = __lval; \
} \
} while (0)
#endif
#endif /* FLT_EVAL_METHOD */
/* Support switching the mode to FP_PE if necessary. */
#if defined(__i386__) && !defined(NO_FPSETPREC)
#define ENTERI() ENTERIT(long double)
#define ENTERIT(returntype) \
returntype __retval; \
fp_prec_t __oprec; \
\
if ((__oprec = fpgetprec()) != FP_PE) \
fpsetprec(FP_PE)
#define RETURNI(x) do { \
__retval = (x); \
if (__oprec != FP_PE) \
fpsetprec(__oprec); \
RETURNF(__retval); \
} while (0)
#define ENTERV() \
fp_prec_t __oprec; \
\
if ((__oprec = fpgetprec()) != FP_PE) \
fpsetprec(FP_PE)
#define RETURNV() do { \
if (__oprec != FP_PE) \
fpsetprec(__oprec); \
return; \
} while (0)
#else
#define ENTERI()
#define ENTERIT(x)
#define RETURNI(x) RETURNF(x)
#define ENTERV()
#define RETURNV() return
#endif
/* Default return statement if hack*_t() is not used. */
#define RETURNF(v) return (v)
/*
* 2sum gives the same result as 2sumF without requiring |a| >= |b| or
* a == 0, but is slower.
*/
#define _2sum(a, b) do { \
__typeof(a) __s, __w; \
\
__w = (a) + (b); \
__s = __w - (a); \
(b) = ((a) - (__w - __s)) + ((b) - __s); \
(a) = __w; \
} while (0)
/*
* 2sumF algorithm.
*
* "Normalize" the terms in the infinite-precision expression a + b for
* the sum of 2 floating point values so that b is as small as possible
* relative to 'a'. (The resulting 'a' is the value of the expression in
* the same precision as 'a' and the resulting b is the rounding error.)
* |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
* exponent overflow or underflow must not occur. This uses a Theorem of
* Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum"
* is apparently due to Skewchuk (1997).
*
* For this to always work, assignment of a + b to 'a' must not retain any
* extra precision in a + b. This is required by C standards but broken
* in many compilers. The brokenness cannot be worked around using
* STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
* algorithm would be destroyed by non-null strict assignments. (The
* compilers are correct to be broken -- the efficiency of all floating
* point code calculations would be destroyed similarly if they forced the
* conversions.)
*
* Fortunately, a case that works well can usually be arranged by building
* any extra precision into the type of 'a' -- 'a' should have type float_t,
* double_t or long double. b's type should be no larger than 'a's type.
* Callers should use these types with scopes as large as possible, to
* reduce their own extra-precision and efficiciency problems. In
* particular, they shouldn't convert back and forth just to call here.
*/
#ifdef DEBUG
#define _2sumF(a, b) do { \
__typeof(a) __w; \
volatile __typeof(a) __ia, __ib, __r, __vw; \
\
__ia = (a); \
__ib = (b); \
assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \
\
__w = (a) + (b); \
(b) = ((a) - __w) + (b); \
(a) = __w; \
\
/* The next 2 assertions are weak if (a) is already long double. */ \
assert((long double)__ia + __ib == (long double)(a) + (b)); \
__vw = __ia + __ib; \
__r = __ia - __vw; \
__r += __ib; \
assert(__vw == (a) && __r == (b)); \
} while (0)
#else /* !DEBUG */
#define _2sumF(a, b) do { \
__typeof(a) __w; \
\
__w = (a) + (b); \
(b) = ((a) - __w) + (b); \
(a) = __w; \
} while (0)
#endif /* DEBUG */
/*
* Set x += c, where x is represented in extra precision as a + b.
* x must be sufficiently normalized and sufficiently larger than c,
* and the result is then sufficiently normalized.
*
* The details of ordering are that |a| must be >= |c| (so that (a, c)
* can be normalized without extra work to swap 'a' with c). The details of
* the normalization are that b must be small relative to the normalized 'a'.
* Normalization of (a, c) makes the normalized c tiny relative to the
* normalized a, so b remains small relative to 'a' in the result. However,
* b need not ever be tiny relative to 'a'. For example, b might be about
* 2**20 times smaller than 'a' to give about 20 extra bits of precision.
* That is usually enough, and adding c (which by normalization is about
* 2**53 times smaller than a) cannot change b significantly. However,
* cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
* significantly relative to b. The caller must ensure that significant
* cancellation doesn't occur, either by having c of the same sign as 'a',
* or by having |c| a few percent smaller than |a|. Pre-normalization of
* (a, b) may help.
*
* This is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
* exercise 19). We gain considerable efficiency by requiring the terms to
* be sufficiently normalized and sufficiently increasing.
*/
#define _3sumF(a, b, c) do { \
__typeof(a) __tmp; \
\
__tmp = (c); \
_2sumF(__tmp, (a)); \
(b) += (a); \
(a) = __tmp; \
} while (0)
/*
* Common routine to process the arguments to nan(), nanf(), and nanl().
*/
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
/*
* Mix 0, 1 or 2 NaNs. First add 0 to each arg. This normally just turns
* signaling NaNs into quiet NaNs by setting a quiet bit. We do this
* because we want to never return a signaling NaN, and also because we
* don't want the quiet bit to affect the result. Then mix the converted
* args using the specified operation.
*
* When one arg is NaN, the result is typically that arg quieted. When both
* args are NaNs, the result is typically the quietening of the arg whose
* mantissa is largest after quietening. When neither arg is NaN, the
* result may be NaN because it is indeterminate, or finite for subsequent
* construction of a NaN as the indeterminate 0.0L/0.0L.
*
* Technical complications: the result in bits after rounding to the final
* precision might depend on the runtime precision and/or on compiler
* optimizations, especially when different register sets are used for
* different precisions. Try to make the result not depend on at least the
* runtime precision by always doing the main mixing step in long double
* precision. Try to reduce dependencies on optimizations by adding the
* the 0's in different precisions (unless everything is in long double
* precision).
*/
#define nan_mix(x, y) (nan_mix_op((x), (y), +))
#define nan_mix_op(x, y, op) (((x) + 0.0L) op ((y) + 0))
#ifdef _COMPLEX_H
/*
* C99 specifies that complex numbers have the same representation as
* an array of two elements, where the first element is the real part
* and the second element is the imaginary part.
*/
typedef union {
float complex f;
float a[2];
} float_complex;
typedef union {
double complex f;
double a[2];
} double_complex;
typedef union {
long double complex f;
long double a[2];
} long_double_complex;
#define REALPART(z) ((z).a[0])
#define IMAGPART(z) ((z).a[1])
/*
* Inline functions that can be used to construct complex values.
*
* The C99 standard intends x+I*y to be used for this, but x+I*y is
* currently unusable in general since gcc introduces many overflow,
* underflow, sign and efficiency bugs by rewriting I*y as
* (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
* In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
* to -0.0+I*0.0.
*
* The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL()
* to construct complex values. Compilers that conform to the C99
* standard require the following functions to avoid the above issues.
*/
#ifndef CMPLXF
static __inline float complex
CMPLXF(float x, float y)
{
float_complex z;
REALPART(z) = x;
IMAGPART(z) = y;
return (z.f);
}
#endif
#ifndef CMPLX
static __inline double complex
CMPLX(double x, double y)
{
double_complex z;
REALPART(z) = x;
IMAGPART(z) = y;
return (z.f);
}
#endif
#ifndef CMPLXL
static __inline long double complex
CMPLXL(long double x, long double y)
{
long_double_complex z;
REALPART(z) = x;
IMAGPART(z) = y;
return (z.f);
}
#endif
#endif /* _COMPLEX_H */
/*
* The rnint() family rounds to the nearest integer for a restricted range
* range of args (up to about 2**MANT_DIG). We assume that the current
* rounding mode is FE_TONEAREST so that this can be done efficiently.
* Extra precision causes more problems in practice, and we only centralize
* this here to reduce those problems, and have not solved the efficiency
* problems. The exp2() family uses a more delicate version of this that
* requires extracting bits from the intermediate value, so it is not
* centralized here and should copy any solution of the efficiency problems.
*/
static inline double
rnint(double_t x)
{
/*
* This casts to double to kill any extra precision. This depends
* on the cast being applied to a double_t to avoid compiler bugs
* (this is a cleaner version of STRICT_ASSIGN()). This is
* inefficient if there actually is extra precision, but is hard
* to improve on. We use double_t in the API to minimise conversions
* for just calling here. Note that we cannot easily change the
* magic number to the one that works directly with double_t, since
* the rounding precision is variable at runtime on x86 so the
* magic number would need to be variable. Assuming that the
* rounding precision is always the default is too fragile. This
* and many other complications will move when the default is
* changed to FP_PE.
*/
return ((double)(x + 0x1.8p52) - 0x1.8p52);
}
static inline float
rnintf(float_t x)
{
/*
* As for rnint(), except we could just call that to handle the
* extra precision case, usually without losing efficiency.
*/
return ((float)(x + 0x1.8p23F) - 0x1.8p23F);
}
#ifdef LDBL_MANT_DIG
/*
* The complications for extra precision are smaller for rnintl() since it
* can safely assume that the rounding precision has been increased from
* its default to FP_PE on x86. We don't exploit that here to get small
* optimizations from limiting the rangle to double. We just need it for
* the magic number to work with long doubles. ld128 callers should use
* rnint() instead of this if possible. ld80 callers should prefer
* rnintl() since for amd64 this avoids swapping the register set, while
* for i386 it makes no difference (assuming FP_PE), and for other arches
* it makes little difference.
*/
static inline long double
rnintl(long double x)
{
return (x + __CONCAT(0x1.8p, LDBL_MANT_DIG) / 2 -
__CONCAT(0x1.8p, LDBL_MANT_DIG) / 2);
}
#endif /* LDBL_MANT_DIG */
/*
* irint() and i64rint() give the same result as casting to their integer
* return type provided their arg is a floating point integer. They can
* sometimes be more efficient because no rounding is required.
*/
#if defined(amd64) || defined(__i386__)
#define irint(x) \
(sizeof(x) == sizeof(float) && \
sizeof(float_t) == sizeof(long double) ? irintf(x) : \
sizeof(x) == sizeof(double) && \
sizeof(double_t) == sizeof(long double) ? irintd(x) : \
sizeof(x) == sizeof(long double) ? irintl(x) : (int)(x))
#else
#define irint(x) ((int)(x))
#endif
#define i64rint(x) ((int64_t)(x)) /* only needed for ld128 so not opt. */
#if defined(__i386__)
static __inline int
irintf(float x)
{
int n;
__asm("fistl %0" : "=m" (n) : "t" (x));
return (n);
}
static __inline int
irintd(double x)
{
int n;
__asm("fistl %0" : "=m" (n) : "t" (x));
return (n);
}
#endif
#if defined(__amd64__) || defined(__i386__)
static __inline int
irintl(long double x)
{
int n;
__asm("fistl %0" : "=m" (n) : "t" (x));
return (n);
}
#endif
#ifdef DEBUG
#if defined(__amd64__) || defined(__i386__)
#define breakpoint() asm("int $3")
#else
#define breakpoint() raise(SIGTRAP)
#endif
#endif
/* Write a pari script to test things externally. */
#ifdef DOPRINT
#ifndef DOPRINT_SWIZZLE
#define DOPRINT_SWIZZLE 0
#endif
#ifdef DOPRINT_LD80
#define DOPRINT_START(xp) do { \
uint64_t __lx; \
uint16_t __hx; \
\
/* Hack to give more-problematic args. */ \
EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \
__lx ^= DOPRINT_SWIZZLE; \
INSERT_LDBL80_WORDS(*xp, __hx, __lx); \
printf("x = %.21Lg; ", (long double)*xp); \
} while (0)
#define DOPRINT_END1(v) \
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
#define DOPRINT_END2(hi, lo) \
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
(long double)(hi), (long double)(lo))
#elif defined(DOPRINT_D64)
#define DOPRINT_START(xp) do { \
uint32_t __hx, __lx; \
\
EXTRACT_WORDS(__hx, __lx, *xp); \
__lx ^= DOPRINT_SWIZZLE; \
INSERT_WORDS(*xp, __hx, __lx); \
printf("x = %.21Lg; ", (long double)*xp); \
} while (0)
#define DOPRINT_END1(v) \
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
#define DOPRINT_END2(hi, lo) \
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
(long double)(hi), (long double)(lo))
#elif defined(DOPRINT_F32)
#define DOPRINT_START(xp) do { \
uint32_t __hx; \
\
GET_FLOAT_WORD(__hx, *xp); \
__hx ^= DOPRINT_SWIZZLE; \
SET_FLOAT_WORD(*xp, __hx); \
printf("x = %.21Lg; ", (long double)*xp); \
} while (0)
#define DOPRINT_END1(v) \
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
#define DOPRINT_END2(hi, lo) \
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
(long double)(hi), (long double)(lo))
#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
#ifndef DOPRINT_SWIZZLE_HIGH
#define DOPRINT_SWIZZLE_HIGH 0
#endif
#define DOPRINT_START(xp) do { \
uint64_t __lx, __llx; \
uint16_t __hx; \
\
EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \
__llx ^= DOPRINT_SWIZZLE; \
__lx ^= DOPRINT_SWIZZLE_HIGH; \
INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \
printf("x = %.36Lg; ", (long double)*xp); \
} while (0)
#define DOPRINT_END1(v) \
printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
#define DOPRINT_END2(hi, lo) \
printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \
(long double)(hi), (long double)(lo))
#endif /* DOPRINT_LD80 */
#else /* !DOPRINT */
#define DOPRINT_START(xp)
#define DOPRINT_END1(v)
#define DOPRINT_END2(hi, lo)
#endif /* DOPRINT */
#define RETURNP(x) do { \
DOPRINT_END1(x); \
RETURNF(x); \
} while (0)
#define RETURNPI(x) do { \
DOPRINT_END1(x); \
RETURNI(x); \
} while (0)
#define RETURN2P(x, y) do { \
DOPRINT_END2((x), (y)); \
RETURNF((x) + (y)); \
} while (0)
#define RETURN2PI(x, y) do { \
DOPRINT_END2((x), (y)); \
RETURNI((x) + (y)); \
} while (0)
#define RETURNSP(rp) do { \
if (!(rp)->lo_set) \
RETURNP((rp)->hi); \
RETURN2P((rp)->hi, (rp)->lo); \
} while (0)
#define RETURNSPI(rp) do { \
if (!(rp)->lo_set) \
RETURNPI((rp)->hi); \
RETURN2PI((rp)->hi, (rp)->lo); \
} while (0)
#define SUM2P(x, y) ({ \
const __typeof (x) __x = (x); \
const __typeof (y) __y = (y); \
\
DOPRINT_END2(__x, __y); \
__x + __y; \
})
/* fdlibm kernel function */
int __kernel_rem_pio2(double*,double*,int,int,int);
/* double precision kernel functions */
#ifndef INLINE_REM_PIO2
int __ieee754_rem_pio2(double,double*);
#endif
double __kernel_sin(double,double,int);
double __kernel_cos(double,double);
double __kernel_tan(double,double,int);
double __ldexp_exp(double,int);
#ifdef _COMPLEX_H
double complex __ldexp_cexp(double complex,int);
#endif
/* float precision kernel functions */
#ifndef INLINE_REM_PIO2F
int __ieee754_rem_pio2f(float,double*);
#endif
#ifndef INLINE_KERNEL_SINDF
float __kernel_sindf(double);
#endif
#ifndef INLINE_KERNEL_COSDF
float __kernel_cosdf(double);
#endif
#ifndef INLINE_KERNEL_TANDF
float __kernel_tandf(double,int);
#endif
float __ldexp_expf(float,int);
#ifdef _COMPLEX_H
float complex __ldexp_cexpf(float complex,int);
#endif
/* long double precision kernel functions */
long double __kernel_sinl(long double, long double, int);
long double __kernel_cosl(long double, long double);
long double __kernel_tanl(long double, long double, int);
/*
* ld128 version of k_expl.h. See ../ld80/s_expl.c for most comments.
*
* See ../src/e_exp.c and ../src/k_exp.h for precision-independent comments
* about the secondary kernels.
*/
#define INTERVALS 128
#define LOG2_INTERVALS 7
#define BIAS (LDBL_MAX_EXP - 1)
static const double
/*
* ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication). L1 must
* have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
* bits zero so that multiplication of it by n is exact.
*/
INV_L = 1.8466496523378731e+2, /* 0x171547652b82fe.0p-45 */
L2 = -1.0253670638894731e-29; /* -0x1.9ff0342542fc3p-97 */
static const long double
/* 0x1.62e42fefa39ef35793c768000000p-8 */
L1 = 5.41521234812457272982212595914567508e-3L;
/*
* XXX values in hex in comments have been lost (or were never present)
* from here.
*/
static const long double
/*
* Domain [-0.002708, 0.002708], range ~[-2.4021e-38, 2.4234e-38]:
* |exp(x) - p(x)| < 2**-124.9
* (0.002708 is ln2/(2*INTERVALS) rounded up a little).
*
* XXX the coeffs aren't very carefully rounded, and I get 3.6 more bits.
*/
A2 = 0.5,
A3 = 1.66666666666666666666666666651085500e-1L,
A4 = 4.16666666666666666666666666425885320e-2L,
A5 = 8.33333333333333333334522877160175842e-3L,
A6 = 1.38888888888888888889971139751596836e-3L;
static const double
A7 = 1.9841269841269470e-4, /* 0x1.a01a01a019f91p-13 */
A8 = 2.4801587301585286e-5, /* 0x1.71de3ec75a967p-19 */
A9 = 2.7557324277411235e-6, /* 0x1.71de3ec75a967p-19 */
A10 = 2.7557333722375069e-7; /* 0x1.27e505ab56259p-22 */
static const struct {
/*
* hi must be rounded to at most 106 bits so that multiplication
* by r1 in expm1l() is exact, but it is rounded to 88 bits due to
* historical accidents.
*
* XXX it is wasteful to use long double for both hi and lo. ld128
* exp2l() uses only float for lo (in a very differently organized
* table; ld80 exp2l() is different again. It uses 2 doubles in a
* table organized like this one. 1 double and 1 float would
* suffice). There are different packing/locality/alignment/caching
* problems with these methods.
*
* XXX C's bad %a format makes the bits unreadable. They happen
* to all line up for the hi values 1 before the point and 88
* in 22 nybbles, but for the low values the nybbles are shifted
* randomly.
*/
long double hi;
long double lo;
} tbl[INTERVALS] = {
{0x1p0L, 0x0p0L},
{0x1.0163da9fb33356d84a66aep0L, 0x3.36dcdfa4003ec04c360be2404078p-92L},
{0x1.02c9a3e778060ee6f7cacap0L, 0x4.f7a29bde93d70a2cabc5cb89ba10p-92L},
{0x1.04315e86e7f84bd738f9a2p0L, 0xd.a47e6ed040bb4bfc05af6455e9b8p-96L},
{0x1.059b0d31585743ae7c548ep0L, 0xb.68ca417fe53e3495f7df4baf84a0p-92L},
{0x1.0706b29ddf6ddc6dc403a8p0L, 0x1.d87b27ed07cb8b092ac75e311753p-88L},
{0x1.0874518759bc808c35f25cp0L, 0x1.9427fa2b041b2d6829d8993a0d01p-88L},
{0x1.09e3ecac6f3834521e060cp0L, 0x5.84d6b74ba2e023da730e7fccb758p-92L},
{0x1.0b5586cf9890f6298b92b6p0L, 0x1.1842a98364291408b3ceb0a2a2bbp-88L},
{0x1.0cc922b7247f7407b705b8p0L, 0x9.3dc5e8aac564e6fe2ef1d431fd98p-92L},
{0x1.0e3ec32d3d1a2020742e4ep0L, 0x1.8af6a552ac4b358b1129e9f966a4p-88L},
{0x1.0fb66affed31af232091dcp0L, 0x1.8a1426514e0b627bda694a400a27p-88L},
{0x1.11301d0125b50a4ebbf1aep0L, 0xd.9318ceac5cc47ab166ee57427178p-92L},
{0x1.12abdc06c31cbfb92bad32p0L, 0x4.d68e2f7270bdf7cedf94eb1cb818p-92L},
{0x1.1429aaea92ddfb34101942p0L, 0x1.b2586d01844b389bea7aedd221d4p-88L},
{0x1.15a98c8a58e512480d573cp0L, 0x1.d5613bf92a2b618ee31b376c2689p-88L},
{0x1.172b83c7d517adcdf7c8c4p0L, 0x1.0eb14a792035509ff7d758693f24p-88L},
{0x1.18af9388c8de9bbbf70b9ap0L, 0x3.c2505c97c0102e5f1211941d2840p-92L},
{0x1.1a35beb6fcb753cb698f68p0L, 0x1.2d1c835a6c30724d5cfae31b84e5p-88L},
{0x1.1bbe084045cd39ab1e72b4p0L, 0x4.27e35f9acb57e473915519a1b448p-92L},
{0x1.1d4873168b9aa7805b8028p0L, 0x9.90f07a98b42206e46166cf051d70p-92L},
{0x1.1ed5022fcd91cb8819ff60p0L, 0x1.121d1e504d36c47474c9b7de6067p-88L},
{0x1.2063b88628cd63b8eeb028p0L, 0x1.50929d0fc487d21c2b84004264dep-88L},
{0x1.21f49917ddc962552fd292p0L, 0x9.4bdb4b61ea62477caa1dce823ba0p-92L},
{0x1.2387a6e75623866c1fadb0p0L, 0x1.c15cb593b0328566902df69e4de2p-88L},
{0x1.251ce4fb2a63f3582ab7dep0L, 0x9.e94811a9c8afdcf796934bc652d0p-92L},
{0x1.26b4565e27cdd257a67328p0L, 0x1.d3b249dce4e9186ddd5ff44e6b08p-92L},
{0x1.284dfe1f5638096cf15cf0p0L, 0x3.ca0967fdaa2e52d7c8106f2e262cp-92L},
{0x1.29e9df51fdee12c25d15f4p0L, 0x1.a24aa3bca890ac08d203fed80a07p-88L},
{0x1.2b87fd0dad98ffddea4652p0L, 0x1.8fcab88442fdc3cb6de4519165edp-88L},
{0x1.2d285a6e4030b40091d536p0L, 0xd.075384589c1cd1b3e4018a6b1348p-92L},
{0x1.2ecafa93e2f5611ca0f45cp0L, 0x1.523833af611bdcda253c554cf278p-88L},
{0x1.306fe0a31b7152de8d5a46p0L, 0x3.05c85edecbc27343629f502f1af2p-92L},
{0x1.32170fc4cd8313539cf1c2p0L, 0x1.008f86dde3220ae17a005b6412bep-88L},
{0x1.33c08b26416ff4c9c8610cp0L, 0x1.96696bf95d1593039539d94d662bp-88L},
{0x1.356c55f929ff0c94623476p0L, 0x3.73af38d6d8d6f9506c9bbc93cbc0p-92L},
{0x1.371a7373aa9caa7145502ep0L, 0x1.4547987e3e12516bf9c699be432fp-88L},
{0x1.38cae6d05d86585a9cb0d8p0L, 0x1.bed0c853bd30a02790931eb2e8f0p-88L},
{0x1.3a7db34e59ff6ea1bc9298p0L, 0x1.e0a1d336163fe2f852ceeb134067p-88L},
{0x1.3c32dc313a8e484001f228p0L, 0xb.58f3775e06ab66353001fae9fca0p-92L},
{0x1.3dea64c12342235b41223ep0L, 0x1.3d773fba2cb82b8244267c54443fp-92L},
{0x1.3fa4504ac801ba0bf701aap0L, 0x4.1832fb8c1c8dbdff2c49909e6c60p-92L},
{0x1.4160a21f72e29f84325b8ep0L, 0x1.3db61fb352f0540e6ba05634413ep-88L},
{0x1.431f5d950a896dc7044394p0L, 0x1.0ccec81e24b0caff7581ef4127f7p-92L},
{0x1.44e086061892d03136f408p0L, 0x1.df019fbd4f3b48709b78591d5cb5p-88L},
{0x1.46a41ed1d005772512f458p0L, 0x1.229d97df404ff21f39c1b594d3a8p-88L},
{0x1.486a2b5c13cd013c1a3b68p0L, 0x1.062f03c3dd75ce8757f780e6ec99p-88L},
{0x1.4a32af0d7d3de672d8bcf4p0L, 0x6.f9586461db1d878b1d148bd3ccb8p-92L},
{0x1.4bfdad5362a271d4397afep0L, 0xc.42e20e0363ba2e159c579f82e4b0p-92L},
{0x1.4dcb299fddd0d63b36ef1ap0L, 0x9.e0cc484b25a5566d0bd5f58ad238p-92L},
{0x1.4f9b2769d2ca6ad33d8b68p0L, 0x1.aa073ee55e028497a329a7333dbap-88L},
{0x1.516daa2cf6641c112f52c8p0L, 0x4.d822190e718226177d7608d20038p-92L},
{0x1.5342b569d4f81df0a83c48p0L, 0x1.d86a63f4e672a3e429805b049465p-88L},
{0x1.551a4ca5d920ec52ec6202p0L, 0x4.34ca672645dc6c124d6619a87574p-92L},
{0x1.56f4736b527da66ecb0046p0L, 0x1.64eb3c00f2f5ab3d801d7cc7272dp-88L},
{0x1.58d12d497c7fd252bc2b72p0L, 0x1.43bcf2ec936a970d9cc266f0072fp-88L},
{0x1.5ab07dd48542958c930150p0L, 0x1.91eb345d88d7c81280e069fbdb63p-88L},
{0x1.5c9268a5946b701c4b1b80p0L, 0x1.6986a203d84e6a4a92f179e71889p-88L},
{0x1.5e76f15ad21486e9be4c20p0L, 0x3.99766a06548a05829e853bdb2b52p-92L},
{0x1.605e1b976dc08b076f592ap0L, 0x4.86e3b34ead1b4769df867b9c89ccp-92L},
{0x1.6247eb03a5584b1f0fa06ep0L, 0x1.d2da42bb1ceaf9f732275b8aef30p-88L},
{0x1.6434634ccc31fc76f8714cp0L, 0x4.ed9a4e41000307103a18cf7a6e08p-92L},
{0x1.66238825522249127d9e28p0L, 0x1.b8f314a337f4dc0a3adf1787ff74p-88L},
{0x1.68155d44ca973081c57226p0L, 0x1.b9f32706bfe4e627d809a85dcc66p-88L},
{0x1.6a09e667f3bcc908b2fb12p0L, 0x1.66ea957d3e3adec17512775099dap-88L},
{0x1.6c012750bdabeed76a9980p0L, 0xf.4f33fdeb8b0ecd831106f57b3d00p-96L},
{0x1.6dfb23c651a2ef220e2cbep0L, 0x1.bbaa834b3f11577ceefbe6c1c411p-92L},
{0x1.6ff7df9519483cf87e1b4ep0L, 0x1.3e213bff9b702d5aa477c12523cep-88L},
{0x1.71f75e8ec5f73dd2370f2ep0L, 0xf.0acd6cb434b562d9e8a20adda648p-92L},
{0x1.73f9a48a58173bd5c9a4e6p0L, 0x8.ab1182ae217f3a7681759553e840p-92L},
{0x1.75feb564267c8bf6e9aa32p0L, 0x1.a48b27071805e61a17b954a2dad8p-88L},
{0x1.780694fde5d3f619ae0280p0L, 0x8.58b2bb2bdcf86cd08e35fb04c0f0p-92L},
{0x1.7a11473eb0186d7d51023ep0L, 0x1.6cda1f5ef42b66977960531e821bp-88L},
{0x1.7c1ed0130c1327c4933444p0L, 0x1.937562b2dc933d44fc828efd4c9cp-88L},
{0x1.7e2f336cf4e62105d02ba0p0L, 0x1.5797e170a1427f8fcdf5f3906108p-88L},
{0x1.80427543e1a11b60de6764p0L, 0x9.a354ea706b8e4d8b718a672bf7c8p-92L},
{0x1.82589994cce128acf88afap0L, 0xb.34a010f6ad65cbbac0f532d39be0p-92L},
{0x1.8471a4623c7acce52f6b96p0L, 0x1.c64095370f51f48817914dd78665p-88L},
{0x1.868d99b4492ec80e41d90ap0L, 0xc.251707484d73f136fb5779656b70p-92L},
{0x1.88ac7d98a669966530bcdep0L, 0x1.2d4e9d61283ef385de170ab20f96p-88L},
{0x1.8ace5422aa0db5ba7c55a0p0L, 0x1.92c9bb3e6ed61f2733304a346d8fp-88L},
{0x1.8cf3216b5448bef2aa1cd0p0L, 0x1.61c55d84a9848f8c453b3ca8c946p-88L},
{0x1.8f1ae991577362b982745cp0L, 0x7.2ed804efc9b4ae1458ae946099d4p-92L},
{0x1.9145b0b91ffc588a61b468p0L, 0x1.f6b70e01c2a90229a4c4309ea719p-88L},
{0x1.93737b0cdc5e4f4501c3f2p0L, 0x5.40a22d2fc4af581b63e8326efe9cp-92L},
{0x1.95a44cbc8520ee9b483694p0L, 0x1.a0fc6f7c7d61b2b3a22a0eab2cadp-88L},
{0x1.97d829fde4e4f8b9e920f8p0L, 0x1.1e8bd7edb9d7144b6f6818084cc7p-88L},
{0x1.9a0f170ca07b9ba3109b8cp0L, 0x4.6737beb19e1eada6825d3c557428p-92L},
{0x1.9c49182a3f0901c7c46b06p0L, 0x1.1f2be58ddade50c217186c90b457p-88L},
{0x1.9e86319e323231824ca78ep0L, 0x6.4c6e010f92c082bbadfaf605cfd4p-92L},
{0x1.a0c667b5de564b29ada8b8p0L, 0xc.ab349aa0422a8da7d4512edac548p-92L},
{0x1.a309bec4a2d3358c171f76p0L, 0x1.0daad547fa22c26d168ea762d854p-88L},
{0x1.a5503b23e255c8b424491cp0L, 0xa.f87bc8050a405381703ef7caff50p-92L},
{0x1.a799e1330b3586f2dfb2b0p0L, 0x1.58f1a98796ce8908ae852236ca94p-88L},
{0x1.a9e6b5579fdbf43eb243bcp0L, 0x1.ff4c4c58b571cf465caf07b4b9f5p-88L},
{0x1.ac36bbfd3f379c0db966a2p0L, 0x1.1265fc73e480712d20f8597a8e7bp-88L},
{0x1.ae89f995ad3ad5e8734d16p0L, 0x1.73205a7fbc3ae675ea440b162d6cp-88L},
{0x1.b0e07298db66590842acdep0L, 0x1.c6f6ca0e5dcae2aafffa7a0554cbp-88L},
{0x1.b33a2b84f15faf6bfd0e7ap0L, 0x1.d947c2575781dbb49b1237c87b6ep-88L},
{0x1.b59728de559398e3881110p0L, 0x1.64873c7171fefc410416be0a6525p-88L},
{0x1.b7f76f2fb5e46eaa7b081ap0L, 0xb.53c5354c8903c356e4b625aacc28p-92L},
{0x1.ba5b030a10649840cb3c6ap0L, 0xf.5b47f297203757e1cc6eadc8bad0p-92L},
{0x1.bcc1e904bc1d2247ba0f44p0L, 0x1.b3d08cd0b20287092bd59be4ad98p-88L},
{0x1.bf2c25bd71e088408d7024p0L, 0x1.18e3449fa073b356766dfb568ff4p-88L},
{0x1.c199bdd85529c2220cb12ap0L, 0x9.1ba6679444964a36661240043970p-96L},
{0x1.c40ab5fffd07a6d14df820p0L, 0xf.1828a5366fd387a7bdd54cdf7300p-92L},
{0x1.c67f12e57d14b4a2137fd2p0L, 0xf.2b301dd9e6b151a6d1f9d5d5f520p-96L},
{0x1.c8f6d9406e7b511acbc488p0L, 0x5.c442ddb55820171f319d9e5076a8p-96L},
{0x1.cb720dcef90691503cbd1ep0L, 0x9.49db761d9559ac0cb6dd3ed599e0p-92L},
{0x1.cdf0b555dc3f9c44f8958ep0L, 0x1.ac51be515f8c58bdfb6f5740a3a4p-88L},
{0x1.d072d4a07897b8d0f22f20p0L, 0x1.a158e18fbbfc625f09f4cca40874p-88L},
{0x1.d2f87080d89f18ade12398p0L, 0x9.ea2025b4c56553f5cdee4c924728p-92L},
{0x1.d5818dcfba48725da05aeap0L, 0x1.66e0dca9f589f559c0876ff23830p-88L},
{0x1.d80e316c98397bb84f9d04p0L, 0x8.805f84bec614de269900ddf98d28p-92L},
{0x1.da9e603db3285708c01a5ap0L, 0x1.6d4c97f6246f0ec614ec95c99392p-88L},
{0x1.dd321f301b4604b695de3cp0L, 0x6.30a393215299e30d4fb73503c348p-96L},
{0x1.dfc97337b9b5eb968cac38p0L, 0x1.ed291b7225a944efd5bb5524b927p-88L},
{0x1.e264614f5a128a12761fa0p0L, 0x1.7ada6467e77f73bf65e04c95e29dp-88L},
{0x1.e502ee78b3ff6273d13014p0L, 0x1.3991e8f49659e1693be17ae1d2f9p-88L},
{0x1.e7a51fbc74c834b548b282p0L, 0x1.23786758a84f4956354634a416cep-88L},
{0x1.ea4afa2a490d9858f73a18p0L, 0xf.5db301f86dea20610ceee13eb7b8p-92L},
{0x1.ecf482d8e67f08db0312fap0L, 0x1.949cef462010bb4bc4ce72a900dfp-88L},
{0x1.efa1bee615a27771fd21a8p0L, 0x1.2dac1f6dd5d229ff68e46f27e3dfp-88L},
{0x1.f252b376bba974e8696fc2p0L, 0x1.6390d4c6ad5476b5162f40e1d9a9p-88L},
{0x1.f50765b6e4540674f84b76p0L, 0x2.862baff99000dfc4352ba29b8908p-92L},
{0x1.f7bfdad9cbe138913b4bfep0L, 0x7.2bd95c5ce7280fa4d2344a3f5618p-92L},
{0x1.fa7c1819e90d82e90a7e74p0L, 0xb.263c1dc060c36f7650b4c0f233a8p-92L},
{0x1.fd3c22b8f71f10975ba4b2p0L, 0x1.2bcf3a5e12d269d8ad7c1a4a8875p-88L}
};
/*
* Kernel for expl(x). x must be finite and not tiny or huge.
* "tiny" is anything that would make us underflow (|A6*x^6| < ~LDBL_MIN).
* "huge" is anything that would make fn*L1 inexact (|x| > ~2**17*ln2).
*/
static inline void
__k_expl(long double x, long double *hip, long double *lop, int *kp)
{
long double q, r, r1, t;
double dr, fn, r2;
int n, n2;
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
fn = rnint((double)x * INV_L);
n = irint(fn);
n2 = (unsigned)n % INTERVALS;
/* Depend on the sign bit being propagated: */
*kp = n >> LOG2_INTERVALS;
r1 = x - fn * L1;
r2 = fn * -L2;
r = r1 + r2;
/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
dr = r;
q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
t = tbl[n2].lo + tbl[n2].hi;
*hip = tbl[n2].hi;
*lop = tbl[n2].lo + t * (q + r1);
}
/*
* XXX: the rest of the functions are identical for ld80 and ld128.
* However, we should use scalbnl() for ld128, since long double
* multiplication was very slow on sparc64 and no new evaluation has
* been made for aarch64 and/or riscv.
*/
static inline void
k_hexpl(long double x, long double *hip, long double *lop)
{
float twopkm1;
int k;
__k_expl(x, hip, lop, &k);
SET_FLOAT_WORD(twopkm1, 0x3f800000 + ((k - 1) << 23));
*hip *= twopkm1;
*lop *= twopkm1;
}
static inline long double
hexpl(long double x)
{
long double hi, lo, twopkm2;
int k;
twopkm2 = 1;
__k_expl(x, &hi, &lo, &k);
SET_LDBL_EXPSIGN(twopkm2, BIAS + k - 2);
return (lo + hi) * 2 * twopkm2;
}
#ifdef _COMPLEX_H
/*
* See ../src/k_exp.c for details.
*/
static inline long double complex
__ldexp_cexpl(long double complex z, int expt)
{
long double c, exp_x, hi, lo, s;
long double x, y, scale1, scale2;
int half_expt, k;
x = creall(z);
y = cimagl(z);
__k_expl(x, &hi, &lo, &k);
exp_x = (lo + hi) * 0x1p16382L;
expt += k - 16382;
scale1 = 1;
half_expt = expt / 2;
SET_LDBL_EXPSIGN(scale1, BIAS + half_expt);
scale2 = 1;
SET_LDBL_EXPSIGN(scale2, BIAS + expt - half_expt);
sincosl(y, &s, &c);
return (CMPLXL(c * exp_x * scale1 * scale2,
s * exp_x * scale1 * scale2));
}
#endif /* _COMPLEX_H */
COSMOPOLITAN_C_END_
#endif /* !(__ASSEMBLER__ + __LINKER__ + 0) */
#endif /* COSMOPOLITAN_LIBC_TINYMATH_FREEBSD_INTERNAL_H_ */