mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-22 05:59:02 +00:00
Commit bc6c183
introduced a bunch of discrepancies between what files
look like in the repo and what clang-format says they should look like.
However, there were already a few discrepancies prior to that. Most of
these discrepancies seemed to be unintentional, but a few of them were
load-bearing (e.g., a #include that violated header ordering needing
something to have been #defined by a 'later' #include.)
I opted to take what I hope is a relatively smooth-brained approach: I
reverted the .clang-format change, ran clang-format on the whole repo,
reapplied the .clang-format change, reran clang-format again, and then
reverted the commit that contained the first run. Thus the full effect
of this PR should only be to apply the changed formatting rules to the
repo, and from skimming the results, this seems to be the case.
My work can be checked by applying the short, manual commits, and then
rerunning the command listed in the autogenerated commits (those whose
messages I have prefixed auto:) and seeing if your results agree.
It might be that the other diffs should be fixed at some point but I'm
leaving that aside for now.
fd '\.c(c|pp)?$' --print0| xargs -0 clang-format -i
405 lines
16 KiB
C
405 lines
16 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
|
||
╞══════════════════════════════════════════════════════════════════════════════╡
|
||
│ Copyright 2020 Justine Alexandra Roberts Tunney │
|
||
│ │
|
||
│ Permission to use, copy, modify, and/or distribute this software for │
|
||
│ any purpose with or without fee is hereby granted, provided that the │
|
||
│ above copyright notice and this permission notice appear in all copies. │
|
||
│ │
|
||
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
|
||
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
|
||
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
|
||
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
|
||
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
|
||
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
|
||
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
||
│ PERFORMANCE OF THIS SOFTWARE. │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include "dsp/core/c11.h"
|
||
#include "dsp/core/c1331.h"
|
||
#include "dsp/core/c1331s.h"
|
||
#include "dsp/core/c161.h"
|
||
#include "dsp/core/core.h"
|
||
#include "dsp/core/half.h"
|
||
#include "dsp/core/illumination.h"
|
||
#include "dsp/core/q.h"
|
||
#include "dsp/scale/scale.h"
|
||
#include "libc/assert.h"
|
||
#include "libc/calls/calls.h"
|
||
#include "libc/calls/struct/sigset.h"
|
||
#include "libc/calls/struct/timespec.h"
|
||
#include "libc/intrin/bsr.h"
|
||
#include "libc/intrin/pmulhrsw.h"
|
||
#include "libc/log/check.h"
|
||
#include "libc/log/log.h"
|
||
#include "libc/macros.internal.h"
|
||
#include "libc/math.h"
|
||
#include "libc/mem/gc.h"
|
||
#include "libc/mem/mem.h"
|
||
#include "libc/nexgen32e/gc.internal.h"
|
||
#include "libc/nexgen32e/nexgen32e.h"
|
||
#include "libc/nexgen32e/x86feature.h"
|
||
#include "libc/runtime/runtime.h"
|
||
#include "libc/str/str.h"
|
||
#include "libc/sysv/consts/sig.h"
|
||
#include "libc/sysv/errfuns.h"
|
||
#include "libc/time/time.h"
|
||
#include "libc/x/x.h"
|
||
#include "tool/viz/lib/graphic.h"
|
||
#include "tool/viz/lib/knobs.h"
|
||
#include "tool/viz/lib/ycbcr.h"
|
||
|
||
#define M 15
|
||
#define CLAMP(X) MIN(255, MAX(0, X))
|
||
|
||
const double kBt601Primaries[] = {.299, .587, .114};
|
||
const double kBt709Primaries[] = {871024 / 4096299., 8788810 / 12288897.,
|
||
887015 / 12288897.};
|
||
|
||
const double kSrgbToXyz[3][3] = {
|
||
{506752 / 1228815., 87881 / 245763., 12673 / 70218.},
|
||
{87098 / 409605., 175762 / 245763., 12673 / 175545.},
|
||
{7918 / 409605., 87881 / 737289., 1001167 / 1053270.},
|
||
};
|
||
|
||
long magikarp_latency_;
|
||
long gyarados_latency_;
|
||
long ycbcr2rgb_latency_;
|
||
struct timespec magikarp_start_;
|
||
|
||
struct YCbCr {
|
||
bool yonly;
|
||
int magnums[8][4];
|
||
int lighting[6][4];
|
||
unsigned char transfer[2][256];
|
||
struct YCbCrSamplingSolution {
|
||
long dyn, dxn;
|
||
long syn, sxn;
|
||
double ry, rx;
|
||
double oy, ox;
|
||
double py, px;
|
||
struct SamplingSolution *cy, *cx;
|
||
} luma, chroma;
|
||
};
|
||
|
||
static unsigned long roundup2pow(unsigned long x) {
|
||
return x > 1 ? 2ul << bsrl(x - 1) : x ? 1 : 0;
|
||
}
|
||
|
||
static unsigned long rounddown2pow(unsigned long x) {
|
||
return x ? 1ul << bsrl(x) : 0;
|
||
}
|
||
|
||
/**
|
||
* Computes magnums for Y′CbCr decoding.
|
||
*
|
||
* @param swing should be 219 for TV, or 255 for JPEG
|
||
* @param M is integer coefficient bits
|
||
*/
|
||
void YCbCrComputeCoefficients(int swing, double gamma,
|
||
const double primaries[3],
|
||
const double illuminant[3], int out_magnums[8][4],
|
||
int out_lighting[6][4],
|
||
unsigned char out_transfer[256]) {
|
||
int i, j;
|
||
double x;
|
||
double f1[6][3];
|
||
long longs[6][6];
|
||
long bitlimit = roundup2pow(swing);
|
||
long wordoffset = rounddown2pow((bitlimit - swing) / 2);
|
||
long chromaswing = swing + 2 * (bitlimit / 2. - swing / 2. - wordoffset);
|
||
long lumamin = wordoffset;
|
||
long lumamax = wordoffset + swing;
|
||
long diffmax = wordoffset + chromaswing - bitlimit / 2;
|
||
long diffmin = -diffmax;
|
||
double rEb = 1 - primaries[2] + primaries[0] + primaries[1];
|
||
double rEgEb = 1 / primaries[1] * primaries[2] * rEb;
|
||
double rEr = 1 - primaries[0] + primaries[1] + primaries[2];
|
||
double rEgEr = 1 / primaries[1] * primaries[0] * rEr;
|
||
double unswing = 1. / swing * bitlimit;
|
||
double digital = 1. / swing * chromaswing;
|
||
double reals[6][6] = {
|
||
{rEr / digital},
|
||
{-rEgEb / digital, -rEgEr / digital},
|
||
{rEb / digital},
|
||
{0, 0, unswing},
|
||
};
|
||
for (i = 0; i < 4; ++i) {
|
||
GetIntegerCoefficients(longs[i], reals[i], M, diffmin, diffmax);
|
||
}
|
||
for (i = 0; i < 4; ++i) {
|
||
for (j = 0; j < 4; ++j) {
|
||
out_magnums[i][j] = longs[i][j];
|
||
}
|
||
}
|
||
out_magnums[3][0] = wordoffset;
|
||
out_magnums[3][1] = bitlimit / 2;
|
||
GetChromaticAdaptationMatrix(f1, kIlluminantD65, illuminant);
|
||
for (i = 0; i < 3; ++i) {
|
||
for (j = 0; j < 3; ++j) {
|
||
reals[i][j] = f1[i][j];
|
||
}
|
||
}
|
||
for (i = 0; i < 6; ++i) {
|
||
GetIntegerCoefficients(longs[i], reals[i], M, diffmin * 2, lumamax * 2);
|
||
}
|
||
for (i = 0; i < 6; ++i) {
|
||
for (j = 0; j < 3; ++j) {
|
||
out_lighting[i][j] = longs[i][j];
|
||
}
|
||
}
|
||
for (i = 0; i < 256; ++i) {
|
||
x = i;
|
||
x /= 255;
|
||
x = tv2pcgamma(x, gamma);
|
||
x *= 255;
|
||
out_transfer[i] = CLAMP(x);
|
||
}
|
||
memset(out_transfer, out_transfer[lumamin], lumamin);
|
||
memset(out_transfer + lumamax + 1, out_transfer[lumamax], bitlimit - lumamax);
|
||
}
|
||
|
||
void YCbCrInit(struct YCbCr **ycbcr, bool yonly, int swing, double gamma,
|
||
const double gamut[3], const double illuminant[3]) {
|
||
int i;
|
||
if (!*ycbcr)
|
||
*ycbcr = xcalloc(1, sizeof(struct YCbCr));
|
||
(*ycbcr)->yonly = yonly;
|
||
bzero((*ycbcr)->magnums, sizeof((*ycbcr)->magnums));
|
||
bzero((*ycbcr)->lighting, sizeof((*ycbcr)->lighting));
|
||
YCbCrComputeCoefficients(swing, gamma, gamut, illuminant, (*ycbcr)->magnums,
|
||
(*ycbcr)->lighting, (*ycbcr)->transfer[0]);
|
||
for (i = 0; i < 256; ++i) {
|
||
(*ycbcr)->transfer[1][i] = i;
|
||
}
|
||
}
|
||
|
||
void YCbCrFree(struct YCbCr **ycbcr) {
|
||
if (*ycbcr) {
|
||
FreeSamplingSolution((*ycbcr)->luma.cy), (*ycbcr)->luma.cy = NULL;
|
||
FreeSamplingSolution((*ycbcr)->luma.cx), (*ycbcr)->luma.cx = NULL;
|
||
FreeSamplingSolution((*ycbcr)->chroma.cy), (*ycbcr)->chroma.cy = NULL;
|
||
FreeSamplingSolution((*ycbcr)->chroma.cx), (*ycbcr)->chroma.cx = NULL;
|
||
free(*ycbcr), *ycbcr = NULL;
|
||
}
|
||
}
|
||
|
||
void *YCbCrReallocPlane(long ys, long xs, const unsigned char p[ys][xs],
|
||
long yn, long xn) {
|
||
long y;
|
||
unsigned char(*res)[yn][xn];
|
||
res = xmemalign(32, yn * xn);
|
||
for (y = 0; y < yn; ++y) {
|
||
memcpy((*res)[y], p[y], xn);
|
||
}
|
||
return res;
|
||
}
|
||
|
||
void YCbCrComputeSamplingSolution(struct YCbCrSamplingSolution *scale, long dyn,
|
||
long dxn, long syn, long sxn, double ry,
|
||
double rx, double oy, double ox, double py,
|
||
double px) {
|
||
if (scale->dyn != dyn || scale->dxn != dxn || scale->syn != syn ||
|
||
scale->sxn != sxn || fabs(scale->ry - ry) > .001 ||
|
||
fabs(scale->rx - rx) > .001 || fabs(scale->oy - oy) > .001 ||
|
||
fabs(scale->ox - ox) > .001 || fabs(scale->py - py) > .001 ||
|
||
fabs(scale->px - px) > .001) {
|
||
INFOF("recomputing sampling solution");
|
||
FreeSamplingSolution(scale->cy), scale->cy = NULL;
|
||
FreeSamplingSolution(scale->cx), scale->cx = NULL;
|
||
scale->cy = ComputeSamplingSolution(dyn, syn, ry, oy, py);
|
||
scale->cx = ComputeSamplingSolution(dxn, sxn, rx, ox, px);
|
||
scale->dyn = dyn, scale->dxn = dxn;
|
||
scale->syn = syn, scale->sxn = sxn;
|
||
scale->ry = ry, scale->rx = rx;
|
||
scale->oy = oy, scale->ox = ox;
|
||
scale->py = py, scale->px = px;
|
||
}
|
||
}
|
||
|
||
void Y2Rgb(long yn, long xn, unsigned char RGB[restrict 3][yn][xn], long yys,
|
||
long yxs, const unsigned char Y[restrict yys][yxs],
|
||
const int K[8][4], const unsigned char T[256]) {
|
||
long i, j;
|
||
for (i = 0; i < yn; ++i) {
|
||
for (j = 0; j < xn; ++j) {
|
||
RGB[0][i][j] = T[Y[i][j]];
|
||
}
|
||
}
|
||
memcpy(RGB[1], RGB[0], yn * xn);
|
||
memcpy(RGB[2], RGB[0], yn * xn);
|
||
}
|
||
|
||
/**
|
||
* Converts Y′CbCr samples to RGB.
|
||
*/
|
||
void YCbCr2Rgb(long yn, long xn, unsigned char RGB[restrict 3][yn][xn],
|
||
long yys, long yxs, const unsigned char Y[restrict yys][yxs],
|
||
long cys, long cxs, const unsigned char Cb[restrict cys][cxs],
|
||
const unsigned char Cr[restrict cys][cxs], const int K[8][4],
|
||
const int L[6][4], const unsigned char T[256]) {
|
||
long i, j;
|
||
short y, u, v, r, g, b;
|
||
for (i = 0; i < yn; ++i) {
|
||
for (j = 0; j < xn; ++j) {
|
||
y = T[Y[i][j]];
|
||
u = Cb[i][j] - K[3][1];
|
||
v = Cr[i][j] - K[3][1];
|
||
r = y + QRS(M, v * K[0][0]);
|
||
g = y + QRS(M, u * K[1][0] + v * K[1][1]);
|
||
b = y + QRS(M, u * K[2][0]);
|
||
r = QRS(M, (MIN(235, MAX(16, r)) - K[3][0]) * K[3][2]);
|
||
g = QRS(M, (MIN(235, MAX(16, g)) - K[3][0]) * K[3][2]);
|
||
b = QRS(M, (MIN(235, MAX(16, b)) - K[3][0]) * K[3][2]);
|
||
RGB[0][i][j] = CLAMP(QRS(M, r * L[0][0] + g * L[0][1] + b * L[0][2]));
|
||
RGB[1][i][j] = CLAMP(QRS(M, r * L[1][0] + g * L[1][1] + b * L[1][2]));
|
||
RGB[2][i][j] = CLAMP(QRS(M, r * L[2][0] + g * L[2][1] + b * L[2][2]));
|
||
}
|
||
}
|
||
}
|
||
|
||
void YCbCrConvert(struct YCbCr *me, long yn, long xn,
|
||
unsigned char RGB[restrict 3][yn][xn], long yys, long yxs,
|
||
const unsigned char Y[restrict yys][yxs], long cys, long cxs,
|
||
unsigned char Cb[restrict cys][cxs],
|
||
unsigned char Cr[restrict cys][cxs]) {
|
||
struct timespec ts = timespec_real();
|
||
if (!me->yonly) {
|
||
YCbCr2Rgb(yn, xn, RGB, yys, yxs, Y, cys, cxs, Cb, Cr, me->magnums,
|
||
me->lighting, me->transfer[pf10_]);
|
||
} else {
|
||
Y2Rgb(yn, xn, RGB, yys, yxs, Y, me->magnums, me->transfer[pf10_]);
|
||
}
|
||
ycbcr2rgb_latency_ = timespec_tomicros(timespec_sub(timespec_real(), ts));
|
||
}
|
||
|
||
void YCbCr2RgbScaler(struct YCbCr *me, long dyn, long dxn,
|
||
unsigned char RGB[restrict 3][dyn][dxn], long yys,
|
||
long yxs, unsigned char Y[restrict yys][yxs], long cys,
|
||
long cxs, unsigned char Cb[restrict cys][cxs],
|
||
unsigned char Cr[restrict cys][cxs], long yyn, long yxn,
|
||
long cyn, long cxn, double syn, double sxn, double pry,
|
||
double prx) {
|
||
long scyn, scxn;
|
||
double yry, yrx, cry, crx, yoy, yox, coy, cox;
|
||
scyn = syn * cyn / yyn;
|
||
scxn = sxn * cxn / yxn;
|
||
if (HALF(yxn) > dxn && HALF(scxn) > dxn) {
|
||
YCbCr2RgbScaler(me, dyn, dxn, RGB, yys, yxs,
|
||
Magikarp2xX(yys, yxs, Y, syn, sxn), cys, cxs,
|
||
Magkern2xX(cys, cxs, Cb, scyn, scxn),
|
||
Magkern2xX(cys, cxs, Cr, scyn, scxn), yyn, HALF(yxn), cyn,
|
||
HALF(cxn), syn, sxn / 2, pry, prx);
|
||
} else if (HALF(yyn) > dyn && HALF(scyn) > dyn) {
|
||
YCbCr2RgbScaler(me, dyn, dxn, RGB, yys, yxs,
|
||
Magikarp2xY(yys, yxs, Y, syn, sxn), cys, cxs,
|
||
Magkern2xY(cys, cxs, Cb, scyn, scxn),
|
||
Magkern2xY(cys, cxs, Cr, scyn, scxn), HALF(yyn), yxn,
|
||
HALF(cyn), scxn, syn / 2, sxn, pry, prx);
|
||
} else {
|
||
struct timespec ts = timespec_real();
|
||
magikarp_latency_ = timespec_tomicros(timespec_sub(ts, magikarp_start_));
|
||
yry = syn / dyn;
|
||
yrx = sxn / dxn;
|
||
cry = syn * cyn / yyn / dyn;
|
||
crx = sxn * cxn / yxn / dxn;
|
||
yoy = syn / scyn / 2 - pry * .5;
|
||
yox = sxn / scxn / 2 - prx * .5;
|
||
coy = syn / scyn / 2 - pry * .5;
|
||
cox = sxn / scxn / 2 - prx * .5;
|
||
INFOF("gyarados pry=%.3f prx=%.3f syn=%.3f sxn=%.3f dyn=%ld dxn=%ld "
|
||
"yyn=%ld "
|
||
"yxn=%ld cyn=%ld cxn=%ld yry=%.3f yrx=%.3f cry=%.3f crx=%.3f "
|
||
"yoy=%.3f "
|
||
"yox=%.3f coy=%.3f cox=%.3f",
|
||
pry, prx, syn, sxn, dyn, dxn, yyn, yxn, cyn, cxn, yry, yrx, cry, crx,
|
||
yoy, yox, coy, cox);
|
||
YCbCrComputeSamplingSolution(&me->luma, dyn, dxn, syn, sxn, yry, yrx, yoy,
|
||
yox, pry, prx);
|
||
YCbCrComputeSamplingSolution(&me->chroma, dyn, dxn, scyn, scxn, cry, crx,
|
||
coy, cox, pry, prx);
|
||
if (pf8_)
|
||
sharpen(1, yys, yxs, (void *)Y, yyn, yxn);
|
||
if (pf9_)
|
||
unsharp(1, yys, yxs, (void *)Y, yyn, yxn);
|
||
GyaradosUint8(yys, yxs, Y, yys, yxs, Y, dyn, dxn, syn, sxn, 0, 255,
|
||
me->luma.cy, me->luma.cx, true);
|
||
GyaradosUint8(cys, cxs, Cb, cys, cxs, Cb, dyn, dxn, scyn, scxn, 0, 255,
|
||
me->chroma.cy, me->chroma.cx, false);
|
||
GyaradosUint8(cys, cxs, Cr, cys, cxs, Cr, dyn, dxn, scyn, scxn, 0, 255,
|
||
me->chroma.cy, me->chroma.cx, false);
|
||
gyarados_latency_ = timespec_tomicros(timespec_sub(timespec_real(), ts));
|
||
YCbCrConvert(me, dyn, dxn, RGB, yys, yxs, Y, cys, cxs, Cb, Cr);
|
||
INFOF("done");
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Converts Y′CbCr frame for PC display.
|
||
*
|
||
* "[The] experiments of Professor J. D. Forbes, which I
|
||
* witnessed… [established] that blue and yellow do not
|
||
* make green but a pinkish tint, when neither prevails
|
||
* in the combination [and the] result of mixing yellow
|
||
* and blue was, I believe, not previously known.
|
||
* — James Clerk Maxwell
|
||
*
|
||
* This function converts TV to PC graphics. We do that by
|
||
*
|
||
* 1. decimating w/ facebook magikarp photoshop cubic sharpen
|
||
* 2. upsampling color difference planes, to be as big as luma plane
|
||
* 3. converting color format
|
||
* 4. expanding dynamic range
|
||
* 5. transferring gamma from TV to PC convention
|
||
* 6. resampling again to exact requested display / pixel geometry
|
||
*
|
||
* @param dyn/dxn is display height/width after scaling/conversion
|
||
* @param RGB points to memory for packed de-interlaced RGB output
|
||
* @param Y′ ∈ [16,235] is the luminance plane a gamma-corrected RGB
|
||
* weighted sum; a.k.a. black/white legacy component part of the
|
||
* TV signal; which may be used independently of the chrominance
|
||
* planes; and decodes to the range [0,1]
|
||
* @param Cb/Cr ∈ [16,240] is blue/red chrominance difference planes
|
||
* which (if sampled at a different rate) will get stretched out
|
||
* over the luma plane appropriately
|
||
* @param yys/yxs dimensions luma sample array
|
||
* @param cys/cxs dimensions chroma sample arrays
|
||
* @param yyn/yxn is number of samples in luma signal
|
||
* @param cyn/cxn is number of samples in each chroma signal
|
||
* @param syn/sxn is size of source signal
|
||
* @param pry/prx is pixel aspect ratio, e.g. 1,1
|
||
* @return RGB
|
||
*/
|
||
void *YCbCr2RgbScale(long dyn, long dxn,
|
||
unsigned char RGB[restrict 3][dyn][dxn], long yys,
|
||
long yxs, unsigned char Y[restrict yys][yxs], long cys,
|
||
long cxs, unsigned char Cb[restrict cys][cxs],
|
||
unsigned char Cr[restrict cys][cxs], long yyn, long yxn,
|
||
long cyn, long cxn, double syn, double sxn, double pry,
|
||
double prx, struct YCbCr **ycbcr) {
|
||
long minyys, minyxs, mincys, mincxs;
|
||
CHECK_LE(yyn, yys);
|
||
CHECK_LE(yxn, yxs);
|
||
CHECK_LE(cyn, cys);
|
||
CHECK_LE(cxn, cxs);
|
||
INFOF("magikarp2x");
|
||
magikarp_start_ = timespec_real();
|
||
minyys = MAX(ceil(syn), MAX(yyn, ceil(dyn * pry)));
|
||
minyxs = MAX(ceil(sxn), MAX(yxn, ceil(dxn * prx)));
|
||
mincys = MAX(cyn, ceil(dyn * pry));
|
||
mincxs = MAX(cxn, ceil(dxn * prx));
|
||
YCbCr2RgbScaler(*ycbcr, dyn, dxn, RGB, MAX(yys, minyys), MAX(yxs, minyxs),
|
||
(yys >= minyys && yxs >= minyxs
|
||
? Y
|
||
: gc(YCbCrReallocPlane(yys, yxs, Y, minyys, minyxs))),
|
||
MAX(cys, mincys), MAX(cxs, mincxs),
|
||
(cys >= mincys && cxs >= mincxs
|
||
? Cb
|
||
: gc(YCbCrReallocPlane(cys, cxs, Cb, mincys, mincxs))),
|
||
(cys >= mincys && cxs >= mincxs
|
||
? Cr
|
||
: gc(YCbCrReallocPlane(cys, cxs, Cr, mincys, mincxs))),
|
||
yyn, yxn, cyn, cxn, syn, sxn, pry, prx);
|
||
return RGB;
|
||
}
|