mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-04-04 06:48:45 +00:00
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker appears to have changed things so that only a single de-duplicated str table is present in the binary, and it gets placed wherever the linker wants, regardless of what the linker script says. To cope with that we need to stop using .ident to embed licenses. As such, this change does significant work to revamp how third party licenses are defined in the codebase, using `.section .notice,"aR",@progbits`. This new GCC 12.3 toolchain has support for GNU indirect functions. It lets us support __target_clones__ for the first time. This is used for optimizing the performance of libc string functions such as strlen and friends so far on x86, by ensuring AVX systems favor a second codepath that uses VEX encoding. It shaves some latency off certain operations. It's a useful feature to have for scientific computing for the reasons explained by the test/libcxx/openmp_test.cc example which compiles for fifteen different microarchitectures. Thanks to the upgrades, it's now also possible to use newer instruction sets, such as AVX512FP16, VNNI. Cosmo now uses the %gs register on x86 by default for TLS. Doing it is helpful for any program that links `cosmo_dlopen()`. Such programs had to recompile their binaries at startup to change the TLS instructions. That's not great, since it means every page in the executable needs to be faulted. The work of rewriting TLS-related x86 opcodes, is moved to fixupobj.com instead. This is great news for MacOS x86 users, since we previously needed to morph the binary every time for that platform but now that's no longer necessary. The only platforms where we need fixup of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the kernels do not allow us to specify a value for the %gs register. OpenBSD users are now required to use APE Loader to run Cosmo binaries and assimilation is no longer possible. OpenBSD kernel needs to change to allow programs to specify a value for the %gs register, or it needs to stop marking executable pages loaded by the kernel as mimmutable(). This release fixes __constructor__, .ctor, .init_array, and lastly the .preinit_array so they behave the exact same way as glibc. We no longer use hex constants to define math.h symbols like M_PI.
157 lines
4.4 KiB
C
157 lines
4.4 KiB
C
#ifndef COSMOPOLITAN_LIBC_TINYMATH_SINCOSF_INTERNAL_H_
|
|
#define COSMOPOLITAN_LIBC_TINYMATH_SINCOSF_INTERNAL_H_
|
|
#include "libc/tinymath/internal.h"
|
|
COSMOPOLITAN_C_START_
|
|
|
|
/*
|
|
* Header for sinf, cosf and sincosf.
|
|
*
|
|
* Copyright (c) 2018-2021, Arm Limited.
|
|
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
|
|
*/
|
|
|
|
/* 2PI * 2^-64. */
|
|
static const double pi63 = 0x1.921FB54442D18p-62;
|
|
/* PI / 4. */
|
|
static const float pio4f = 0x1.921FB6p-1f;
|
|
|
|
/* The constants and polynomials for sine and cosine. */
|
|
typedef struct
|
|
{
|
|
double sign[4]; /* Sign of sine in quadrants 0..3. */
|
|
double hpi_inv; /* 2 / PI ( * 2^24 if !TOINT_INTRINSICS). */
|
|
double hpi; /* PI / 2. */
|
|
double c0, c1, c2, c3, c4; /* Cosine polynomial. */
|
|
double s1, s2, s3; /* Sine polynomial. */
|
|
} sincos_t;
|
|
|
|
/* Polynomial data (the cosine polynomial is negated in the 2nd entry). */
|
|
extern const sincos_t __sincosf_table[2] ;
|
|
|
|
/* Table with 4/PI to 192 bit precision. */
|
|
extern const uint32_t __inv_pio4[] ;
|
|
|
|
/* Top 12 bits of the float representation with the sign bit cleared. */
|
|
static inline uint32_t
|
|
abstop12 (float x)
|
|
{
|
|
return (asuint (x) >> 20) & 0x7ff;
|
|
}
|
|
|
|
/* Compute the sine and cosine of inputs X and X2 (X squared), using the
|
|
polynomial P and store the results in SINP and COSP. N is the quadrant,
|
|
if odd the cosine and sine polynomials are swapped. */
|
|
static inline void
|
|
sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp,
|
|
float *cosp)
|
|
{
|
|
double x3, x4, x5, x6, s, c, c1, c2, s1;
|
|
|
|
x4 = x2 * x2;
|
|
x3 = x2 * x;
|
|
c2 = p->c3 + x2 * p->c4;
|
|
s1 = p->s2 + x2 * p->s3;
|
|
|
|
/* Swap sin/cos result based on quadrant. */
|
|
float *tmp = (n & 1 ? cosp : sinp);
|
|
cosp = (n & 1 ? sinp : cosp);
|
|
sinp = tmp;
|
|
|
|
c1 = p->c0 + x2 * p->c1;
|
|
x5 = x3 * x2;
|
|
x6 = x4 * x2;
|
|
|
|
s = x + x3 * p->s1;
|
|
c = c1 + x4 * p->c2;
|
|
|
|
*sinp = s + x5 * s1;
|
|
*cosp = c + x6 * c2;
|
|
}
|
|
|
|
/* Return the sine of inputs X and X2 (X squared) using the polynomial P.
|
|
N is the quadrant, and if odd the cosine polynomial is used. */
|
|
static inline float
|
|
sinf_poly (double x, double x2, const sincos_t *p, int n)
|
|
{
|
|
double x3, x4, x6, x7, s, c, c1, c2, s1;
|
|
|
|
if ((n & 1) == 0)
|
|
{
|
|
x3 = x * x2;
|
|
s1 = p->s2 + x2 * p->s3;
|
|
|
|
x7 = x3 * x2;
|
|
s = x + x3 * p->s1;
|
|
|
|
return s + x7 * s1;
|
|
}
|
|
else
|
|
{
|
|
x4 = x2 * x2;
|
|
c2 = p->c3 + x2 * p->c4;
|
|
c1 = p->c0 + x2 * p->c1;
|
|
|
|
x6 = x4 * x2;
|
|
c = c1 + x4 * p->c2;
|
|
|
|
return c + x6 * c2;
|
|
}
|
|
}
|
|
|
|
/* Fast range reduction using single multiply-subtract. Return the modulo of
|
|
X as a value between -PI/4 and PI/4 and store the quadrant in NP.
|
|
The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double
|
|
is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4,
|
|
the result is accurate for |X| <= 120.0. */
|
|
static inline double
|
|
reduce_fast (double x, const sincos_t *p, int *np)
|
|
{
|
|
double r;
|
|
#if TOINT_INTRINSICS
|
|
/* Use fast round and lround instructions when available. */
|
|
r = x * p->hpi_inv;
|
|
*np = converttoint (r);
|
|
return x - roundtoint (r) * p->hpi;
|
|
#else
|
|
/* Use scaled float to int conversion with explicit rounding.
|
|
hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31.
|
|
This avoids inaccuracies introduced by truncating negative values. */
|
|
r = x * p->hpi_inv;
|
|
int n = ((int32_t)r + 0x800000) >> 24;
|
|
*np = n;
|
|
return x - n * p->hpi;
|
|
#endif
|
|
}
|
|
|
|
/* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic.
|
|
XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored).
|
|
Return the modulo between -PI/4 and PI/4 and store the quadrant in NP.
|
|
Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit
|
|
multiply computes the exact 2.62-bit fixed-point modulo. Since the result
|
|
can have at most 29 leading zeros after the binary point, the double
|
|
precision result is accurate to 33 bits. */
|
|
static inline double
|
|
reduce_large (uint32_t xi, int *np)
|
|
{
|
|
const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15];
|
|
int shift = (xi >> 23) & 7;
|
|
uint64_t n, res0, res1, res2;
|
|
|
|
xi = (xi & 0xffffff) | 0x800000;
|
|
xi <<= shift;
|
|
|
|
res0 = xi * arr[0];
|
|
res1 = (uint64_t)xi * arr[4];
|
|
res2 = (uint64_t)xi * arr[8];
|
|
res0 = (res2 >> 32) | (res0 << 32);
|
|
res0 += res1;
|
|
|
|
n = (res0 + (1ULL << 61)) >> 62;
|
|
res0 -= n << 62;
|
|
double x = (int64_t)res0;
|
|
*np = n;
|
|
return x * pi63;
|
|
}
|
|
|
|
COSMOPOLITAN_C_END_
|
|
#endif /* COSMOPOLITAN_LIBC_TINYMATH_SINCOSF_INTERNAL_H_ */
|