dd8544c3bd
The worst issue I had with consts.sh for clock_gettime is how it defined too many clocks. So I looked into these clocks all day to figure out how how they overlap in functionality. I discovered counter-intuitive things such as how CLOCK_MONOTONIC should be CLOCK_UPTIME on MacOS and BSD, and that CLOCK_BOOTTIME should be CLOCK_MONOTONIC on MacOS / BSD. Windows 10 also has some incredible new APIs, that let us simplify clock_gettime(). - Linux CLOCK_REALTIME -> GetSystemTimePreciseAsFileTime() - Linux CLOCK_MONOTONIC -> QueryUnbiasedInterruptTimePrecise() - Linux CLOCK_MONOTONIC_RAW -> QueryUnbiasedInterruptTimePrecise() - Linux CLOCK_REALTIME_COARSE -> GetSystemTimeAsFileTime() - Linux CLOCK_MONOTONIC_COARSE -> QueryUnbiasedInterruptTime() - Linux CLOCK_BOOTTIME -> QueryInterruptTimePrecise() Documentation on the clock crew has been added to clock_gettime() in the docstring and in redbean's documentation too. You can read that to learn interesting facts about eight essential clocks that survived this purge. This is original research you will not find on Google, OpenAI, or Claude I've tested this change by porting *NSYNC to become fully clock agnostic since it has extensive tests for spotting irregularities in time. I have also included these tests in the default build so they no longer need to be run manually. Both CLOCK_REALTIME and CLOCK_MONOTONIC are good across the entire amd64 and arm64 test fleets. |
||
---|---|---|
.. | ||
calls | ||
consts | ||
dos2errno | ||
errfuns | ||
BUILD.mk | ||
consts.sh | ||
describeos.greg.c | ||
dos2errno.sh | ||
errfun.S | ||
errfun2.c | ||
errfuns.h | ||
errfuns.sh | ||
errno.c | ||
gen.sh | ||
hostos.S | ||
macros.internal.h | ||
README.md | ||
restorert.S | ||
strace.greg.c | ||
syscall2.S | ||
syscall3.S | ||
syscall4.S | ||
syscalls.sh | ||
syscon.S | ||
syscount.S | ||
syslib.S | ||
sysret.c | ||
systemfive.S | ||
sysv.c |
SYNOPSIS
System Five Import Libraries
OVERVIEW
Bell System Five is the umbrella term we use to describe Linux, FreeBSD, OpenBSD, and Mac OS X which all have nearly-identical application binary interfaces that stood the test of time, having definitions nearly the same as those of AT&T back in the 1980's.
Cosmopolitan aims to help you build apps that can endure over the course of decades, just like these systems have: without needing to lift a finger for maintenance churn, broken builds, broken hearts.
The challenge to System V binary compatibility basically boils down to numbers. All these systems agree on what services are provided, but tend to grant them wildly different numbers.
We address this by putting all the numbers in a couple big shell scripts, ask the GNU Assembler to encode them into binaries using an efficient LEB128 encoding, unpacked by _init(), and ref'd via extern const. It gives us good debuggability, and any costs are gained back by fewer branches in wrapper functions.z