mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-04-03 14:28:45 +00:00
If pthread_create() is linked into the binary, then the cosmo runtime will create an independent dlmalloc arena for each core. Whenever the malloc() function is used it will index `g_heaps[sched_getcpu() / 2]` to find the arena with the greatest hyperthread / numa locality. This may be configured via an environment variable. For example if you say `export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways. Your process may be configured to have anywhere between 1 - 128 heaps We need this revision because it makes multithreaded C++ applications faster. For example, an HTTP server I'm working on that makes extreme use of the STL went from 16k to 2000k requests per second, after this change was made. To understand why, try out the malloc_test benchmark which calls malloc() + realloc() in a loop across many threads, which sees a a 250x improvement in process clock time and 200x on wall time The tradeoff is this adds ~25ns of latency to individual malloc calls compared to MODE=tiny, once the cosmo runtime has transitioned into a fully multi-threaded state. If you don't need malloc() to be scalable then cosmo provides many options for you. For starters the heap count variable above can be set to put the process back in single heap mode plus you can go even faster still, if you include tinymalloc.inc like many of the programs in tool/build/.. are already doing since that'll shave tens of kb off your binary footprint too. Theres also MODE=tiny which is configured to use just 1 plain old dlmalloc arena by default Another tradeoff is we need more memory now (except in MODE=tiny), to track the provenance of memory allocation. This is so allocations can be freely shared across threads, and because OSes can reschedule code to different CPUs at any time.
1137 lines
32 KiB
C
1137 lines
32 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
|
||
╞══════════════════════════════════════════════════════════════════════════════╡
|
||
│ Copyright 2020 Justine Alexandra Roberts Tunney │
|
||
│ │
|
||
│ Permission to use, copy, modify, and/or distribute this software for │
|
||
│ any purpose with or without fee is hereby granted, provided that the │
|
||
│ above copyright notice and this permission notice appear in all copies. │
|
||
│ │
|
||
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
|
||
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
|
||
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
|
||
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
|
||
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
|
||
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
|
||
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
||
│ PERFORMANCE OF THIS SOFTWARE. │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include "libc/calls/state.internal.h"
|
||
#include "libc/calls/struct/rlimit.h"
|
||
#include "libc/calls/struct/rlimit.internal.h"
|
||
#include "libc/calls/syscall-sysv.internal.h"
|
||
#include "libc/dce.h"
|
||
#include "libc/errno.h"
|
||
#include "libc/intrin/asan.internal.h"
|
||
#include "libc/intrin/atomic.h"
|
||
#include "libc/intrin/cmpxchg.h"
|
||
#include "libc/intrin/describebacktrace.internal.h"
|
||
#include "libc/intrin/directmap.internal.h"
|
||
#include "libc/intrin/kprintf.h"
|
||
#include "libc/intrin/leaky.internal.h"
|
||
#include "libc/intrin/likely.h"
|
||
#include "libc/intrin/strace.internal.h"
|
||
#include "libc/intrin/weaken.h"
|
||
#include "libc/log/libfatal.internal.h"
|
||
#include "libc/log/log.h"
|
||
#include "libc/macros.internal.h"
|
||
#include "libc/mem/mem.h"
|
||
#include "libc/nexgen32e/gc.internal.h"
|
||
#include "libc/nexgen32e/stackframe.h"
|
||
#include "libc/runtime/memtrack.internal.h"
|
||
#include "libc/runtime/runtime.h"
|
||
#include "libc/runtime/stack.h"
|
||
#include "libc/runtime/symbols.internal.h"
|
||
#include "libc/serialize.h"
|
||
#include "libc/stdckdint.h"
|
||
#include "libc/str/str.h"
|
||
#include "libc/str/tab.internal.h"
|
||
#include "libc/sysv/consts/auxv.h"
|
||
#include "libc/sysv/consts/map.h"
|
||
#include "libc/sysv/consts/prot.h"
|
||
#include "libc/sysv/consts/rlim.h"
|
||
#include "libc/sysv/consts/rlimit.h"
|
||
#include "libc/sysv/errfuns.h"
|
||
#include "libc/thread/tls.h"
|
||
#include "third_party/dlmalloc/dlmalloc.h"
|
||
#ifdef __x86_64__
|
||
#ifdef __SANITIZE_ADDRESS__
|
||
|
||
__static_yoink("_init_asan");
|
||
|
||
/**
|
||
* @fileoverview Cosmopolitan Address Sanitizer Runtime.
|
||
*
|
||
* Someone brilliant at Google figured out a way to improve upon memory
|
||
* protection. Rather than invent another Java or Rust they changed GCC
|
||
* so it can emit fast code, that checks the validity of each memory op
|
||
* with byte granularity, by probing shadow memory.
|
||
*
|
||
* - AddressSanitizer dedicates one-eighth of the virtual address space
|
||
* to its shadow memory and uses a direct mapping with a scale and
|
||
* offset to translate an application address to its corresponding
|
||
* shadow address. Given the application memory address Addr, the
|
||
* address of the shadow byte is computed as (Addr>>3)+Offset."
|
||
*
|
||
* - We use the following encoding for each shadow byte: 0 means that
|
||
* all 8 bytes of the corresponding application memory region are
|
||
* addressable; k (1 ≤ k ≤ 7) means that the first k bytes are
|
||
* addressible; any negative value indicates that the entire 8-byte
|
||
* word is unaddressable. We use different negative values to
|
||
* distinguish between different kinds of unaddressable memory (heap
|
||
* redzones, stack redzones, global redzones, freed memory).
|
||
*
|
||
* Here's what the generated code looks like for 64-bit reads:
|
||
*
|
||
* movq %addr,%tmp
|
||
* shrq $3,%tmp
|
||
* cmpb $0,0x7fff8000(%tmp)
|
||
* jnz abort
|
||
* movq (%addr),%dst
|
||
*/
|
||
|
||
#define RBP __builtin_frame_address(0)
|
||
|
||
#define ASAN_LOG(...) (void)0 // kprintf(__VA_ARGS__)
|
||
|
||
#define REQUIRE(FUNC) \
|
||
do { \
|
||
if (!_weaken(FUNC)) { \
|
||
__asan_require_failed(#FUNC); \
|
||
} \
|
||
} while (0)
|
||
|
||
struct AsanSourceLocation {
|
||
char *filename;
|
||
int line;
|
||
int column;
|
||
};
|
||
|
||
struct AsanAccessInfo {
|
||
char *addr;
|
||
const uintptr_t first_bad_addr;
|
||
size_t size;
|
||
bool iswrite;
|
||
unsigned long ip;
|
||
};
|
||
|
||
struct AsanGlobal {
|
||
char *addr;
|
||
size_t size;
|
||
size_t size_with_redzone;
|
||
const void *name;
|
||
const void *module_name;
|
||
unsigned long has_cxx_init;
|
||
struct AsanSourceLocation *location;
|
||
char *odr_indicator;
|
||
};
|
||
|
||
int __asan_option_detect_stack_use_after_return = 0;
|
||
|
||
void __asan_version_mismatch_check_v8(void) {
|
||
}
|
||
|
||
static bool __asan_once(void) {
|
||
int want = false;
|
||
static atomic_int once;
|
||
return atomic_compare_exchange_strong_explicit(
|
||
&once, &want, true, memory_order_relaxed, memory_order_relaxed);
|
||
}
|
||
|
||
static int __asan_bsf(uint64_t x) {
|
||
_Static_assert(sizeof(long long) == sizeof(uint64_t), "");
|
||
return __builtin_ctzll(x);
|
||
}
|
||
|
||
static char *__asan_utf8cpy(char *p, unsigned c) {
|
||
uint64_t z;
|
||
z = tpenc(c);
|
||
do
|
||
*p++ = z;
|
||
while ((z >>= 8));
|
||
return p;
|
||
}
|
||
|
||
static char *__asan_stpcpy(char *d, const char *s) {
|
||
size_t i;
|
||
for (i = 0;; ++i) {
|
||
if (!(d[i] = s[i])) {
|
||
return d + i;
|
||
}
|
||
}
|
||
}
|
||
|
||
void __asan_memset(void *p, char c, size_t n) {
|
||
char *b;
|
||
size_t i;
|
||
uint64_t x;
|
||
b = p;
|
||
x = 0x0101010101010101ul * (c & 255);
|
||
switch (n) {
|
||
case 0:
|
||
break;
|
||
case 1:
|
||
__builtin_memcpy(b, &x, 1);
|
||
break;
|
||
case 2:
|
||
__builtin_memcpy(b, &x, 2);
|
||
break;
|
||
case 3:
|
||
__builtin_memcpy(b, &x, 2);
|
||
__builtin_memcpy(b + 1, &x, 2);
|
||
break;
|
||
case 4:
|
||
__builtin_memcpy(b, &x, 4);
|
||
break;
|
||
case 5:
|
||
case 6:
|
||
case 7:
|
||
__builtin_memcpy(b, &x, 4);
|
||
__builtin_memcpy(b + n - 4, &x, 4);
|
||
break;
|
||
case 8:
|
||
__builtin_memcpy(b, &x, 8);
|
||
break;
|
||
case 9:
|
||
case 10:
|
||
case 11:
|
||
case 12:
|
||
case 13:
|
||
case 14:
|
||
case 15:
|
||
case 16:
|
||
__builtin_memcpy(b, &x, 8);
|
||
__builtin_memcpy(b + n - 8, &x, 8);
|
||
break;
|
||
default:
|
||
i = 0;
|
||
do {
|
||
__builtin_memcpy(b + i, &x, 8);
|
||
asm volatile("" ::: "memory");
|
||
__builtin_memcpy(b + i + 8, &x, 8);
|
||
} while ((i += 16) + 16 <= n);
|
||
for (; i < n; ++i)
|
||
b[i] = x;
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void *__asan_mempcpy(void *dst, const void *src, size_t n) {
|
||
size_t i;
|
||
char *d;
|
||
const char *s;
|
||
uint64_t a, b;
|
||
d = dst;
|
||
s = src;
|
||
switch (n) {
|
||
case 0:
|
||
return d;
|
||
case 1:
|
||
*d = *s;
|
||
return d + 1;
|
||
case 2:
|
||
__builtin_memcpy(&a, s, 2);
|
||
__builtin_memcpy(d, &a, 2);
|
||
return d + 2;
|
||
case 3:
|
||
__builtin_memcpy(&a, s, 2);
|
||
__builtin_memcpy(&b, s + 1, 2);
|
||
__builtin_memcpy(d, &a, 2);
|
||
__builtin_memcpy(d + 1, &b, 2);
|
||
return d + 3;
|
||
case 4:
|
||
__builtin_memcpy(&a, s, 4);
|
||
__builtin_memcpy(d, &a, 4);
|
||
return d + 4;
|
||
case 5:
|
||
case 6:
|
||
case 7:
|
||
__builtin_memcpy(&a, s, 4);
|
||
__builtin_memcpy(&b, s + n - 4, 4);
|
||
__builtin_memcpy(d, &a, 4);
|
||
__builtin_memcpy(d + n - 4, &b, 4);
|
||
return d + n;
|
||
case 8:
|
||
__builtin_memcpy(&a, s, 8);
|
||
__builtin_memcpy(d, &a, 8);
|
||
return d + 8;
|
||
case 9:
|
||
case 10:
|
||
case 11:
|
||
case 12:
|
||
case 13:
|
||
case 14:
|
||
case 15:
|
||
case 16:
|
||
__builtin_memcpy(&a, s, 8);
|
||
__builtin_memcpy(&b, s + n - 8, 8);
|
||
__builtin_memcpy(d, &a, 8);
|
||
__builtin_memcpy(d + n - 8, &b, 8);
|
||
return d + n;
|
||
default:
|
||
i = 0;
|
||
do {
|
||
__builtin_memcpy(&a, s + i, 8);
|
||
asm volatile("" ::: "memory");
|
||
__builtin_memcpy(d + i, &a, 8);
|
||
} while ((i += 8) + 8 <= n);
|
||
for (; i < n; ++i)
|
||
d[i] = s[i];
|
||
return d + i;
|
||
}
|
||
}
|
||
|
||
void *__asan_memcpy(void *dst, const void *src, size_t n) {
|
||
__asan_mempcpy(dst, src, n);
|
||
return dst;
|
||
}
|
||
|
||
static char *__asan_hexcpy(char *p, uint64_t x, uint8_t k) {
|
||
while (k)
|
||
*p++ = "0123456789abcdef"[(x >> (k -= 4)) & 15];
|
||
return p;
|
||
}
|
||
|
||
static void __asan_exit(void) {
|
||
kprintf("your asan runtime needs\n"
|
||
"\t__static_yoink(\"__die\");\n"
|
||
"in order to show you backtraces\n");
|
||
_Exit(99);
|
||
}
|
||
|
||
__wur __asan_die_f *__asan_die(void) {
|
||
if (_weaken(__die)) {
|
||
return _weaken(__die);
|
||
} else {
|
||
return __asan_exit;
|
||
}
|
||
}
|
||
|
||
static wontreturn void __asan_require_failed(const char *func) {
|
||
kprintf("error: asan needs %s\n", func);
|
||
__asan_die()();
|
||
__asan_unreachable();
|
||
}
|
||
|
||
void __asan_poison(void *p, long n, signed char t) {
|
||
signed char k, *s;
|
||
s = (signed char *)(((intptr_t)p >> 3) + 0x7fff8000);
|
||
if ((k = (intptr_t)p & 7)) {
|
||
if ((!*s && n >= 8 - k) || *s > k)
|
||
*s = k;
|
||
n -= MIN(8 - k, n);
|
||
s += 1;
|
||
}
|
||
__asan_memset(s, t, n >> 3);
|
||
if ((k = n & 7)) {
|
||
s += n >> 3;
|
||
if (*s < 0 || (*s > 0 && *s <= k))
|
||
*s = t;
|
||
}
|
||
}
|
||
|
||
void __asan_unpoison(void *p, long n) {
|
||
signed char k, *s;
|
||
k = (intptr_t)p & 7;
|
||
s = (signed char *)(((intptr_t)p >> 3) + 0x7fff8000);
|
||
if (UNLIKELY(k)) {
|
||
if (k + n < 8) {
|
||
if (n > 0)
|
||
*s = MAX(*s, k + n);
|
||
return;
|
||
}
|
||
n -= MIN(8 - k, n);
|
||
*s++ = 0;
|
||
}
|
||
__asan_memset(s, 0, n >> 3);
|
||
if ((k = n & 7)) {
|
||
s += n >> 3;
|
||
if (*s < 0)
|
||
*s = k;
|
||
if (*s > 0)
|
||
*s = MAX(*s, k);
|
||
}
|
||
}
|
||
|
||
bool __asan_is_mapped(int x) {
|
||
// xxx: we can't lock because no reentrant locks yet
|
||
int i;
|
||
bool res;
|
||
__mmi_lock();
|
||
i = __find_memory(&_mmi, x);
|
||
res = i < _mmi.i && x >= _mmi.p[i].x;
|
||
__mmi_unlock();
|
||
return res;
|
||
}
|
||
|
||
static bool __asan_is_image(const unsigned char *p) {
|
||
return __executable_start <= p && p < _end;
|
||
}
|
||
|
||
static bool __asan_exists(const void *x) {
|
||
return !kisdangerous(x);
|
||
}
|
||
|
||
static struct AsanFault __asan_fault(const signed char *s, signed char dflt) {
|
||
struct AsanFault r;
|
||
if (s[0] < 0) {
|
||
r.kind = s[0];
|
||
} else if (((uintptr_t)(s + 1) & 4095) && s[1] < 0) {
|
||
r.kind = s[1];
|
||
} else {
|
||
r.kind = dflt;
|
||
}
|
||
r.shadow = s;
|
||
return r;
|
||
}
|
||
|
||
static struct AsanFault __asan_checka(const signed char *s, long ndiv8) {
|
||
uint64_t w;
|
||
const signed char *e = s + ndiv8;
|
||
for (; ((intptr_t)s & 7) && s < e; ++s) {
|
||
if (*s)
|
||
return __asan_fault(s - 1, kAsanHeapOverrun);
|
||
}
|
||
for (; s + 8 <= e; s += 8) {
|
||
if (UNLIKELY(!((intptr_t)s & (FRAMESIZE - 1))) && kisdangerous(s)) {
|
||
return (struct AsanFault){kAsanUnmapped, s};
|
||
}
|
||
if ((w = READ64LE(s))) {
|
||
s += __asan_bsf(w) >> 3;
|
||
return __asan_fault(s, kAsanHeapOverrun);
|
||
}
|
||
}
|
||
for (; s < e; ++s) {
|
||
if (*s)
|
||
return __asan_fault(s - 1, kAsanHeapOverrun);
|
||
}
|
||
return (struct AsanFault){0};
|
||
}
|
||
|
||
/**
|
||
* Checks validity of memory range.
|
||
*
|
||
* This is normally abstracted by the compiler. In some cases, it may be
|
||
* desirable to perform an ASAN memory safety check explicitly, e.g. for
|
||
* system call wrappers that need to vet memory passed to the kernel, or
|
||
* string library routines that use the `dontasan` keyword due to compiler
|
||
* generated ASAN being too costly. This function is fast especially for
|
||
* large memory ranges since this takes a few picoseconds for each byte.
|
||
*
|
||
* @param p is starting virtual address
|
||
* @param n is number of bytes to check
|
||
* @return kind is 0 on success or <0 if invalid
|
||
* @return shadow points to first poisoned shadow byte
|
||
*/
|
||
struct AsanFault __asan_check(const void *p, long n) {
|
||
struct AsanFault f;
|
||
signed char c, k, *s;
|
||
if (n > 0) {
|
||
k = (intptr_t)p & 7;
|
||
s = SHADOW(p);
|
||
if (OverlapsShadowSpace(p, n)) {
|
||
return (struct AsanFault){kAsanProtected, s};
|
||
} else if (kisdangerous(s)) {
|
||
return (struct AsanFault){kAsanUnmapped, s};
|
||
}
|
||
if (UNLIKELY(k)) {
|
||
if (!(c = *s)) {
|
||
n -= MIN(8 - k, n);
|
||
s += 1;
|
||
} else if (c > 0 && n < 8 && c >= k + n) {
|
||
return (struct AsanFault){0};
|
||
} else {
|
||
return __asan_fault(s, kAsanHeapOverrun);
|
||
}
|
||
}
|
||
k = n & 7;
|
||
n >>= 3;
|
||
if ((f = __asan_checka(s, n)).kind) {
|
||
return f;
|
||
} else if (!k || !(c = s[n]) || k <= c) {
|
||
return (struct AsanFault){0};
|
||
} else {
|
||
return __asan_fault(s, kAsanHeapOverrun);
|
||
}
|
||
} else if (!n) {
|
||
return (struct AsanFault){0};
|
||
} else {
|
||
return (struct AsanFault){kAsanNullPage, 0};
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Checks validity of nul-terminated string.
|
||
*
|
||
* This is similar to `__asan_check(p, 1)` except it checks the validity
|
||
* of the entire string including its trailing nul byte, and goes faster
|
||
* than calling strlen() beforehand.
|
||
*
|
||
* @param p is starting virtual address
|
||
* @param n is number of bytes to check
|
||
* @return kind is 0 on success or <0 if invalid
|
||
* @return shadow points to first poisoned shadow byte
|
||
*/
|
||
struct AsanFault __asan_check_str(const char *p) {
|
||
uint64_t w;
|
||
signed char c, k, *s;
|
||
s = SHADOW(p);
|
||
if (OverlapsShadowSpace(p, 1)) {
|
||
return (struct AsanFault){kAsanProtected, s};
|
||
}
|
||
if (kisdangerous(s)) {
|
||
return (struct AsanFault){kAsanUnmapped, s};
|
||
}
|
||
if ((k = (intptr_t)p & 7)) {
|
||
do {
|
||
if ((c = *s) && c < k + 1) {
|
||
return __asan_fault(s, kAsanHeapOverrun);
|
||
}
|
||
if (!*p++) {
|
||
return (struct AsanFault){0};
|
||
}
|
||
} while ((k = (intptr_t)p & 7));
|
||
++s;
|
||
}
|
||
for (;; ++s, p += 8) {
|
||
if (UNLIKELY(!((intptr_t)s & (FRAMESIZE - 1))) && kisdangerous(s)) {
|
||
return (struct AsanFault){kAsanUnmapped, s};
|
||
}
|
||
if ((c = *s) < 0) {
|
||
return (struct AsanFault){c, s};
|
||
}
|
||
w = *(const uint64_t *)p;
|
||
if (!(w = ~w & (w - 0x0101010101010101) & 0x8080808080808080)) {
|
||
if (c > 0) {
|
||
return __asan_fault(s, kAsanHeapOverrun);
|
||
}
|
||
} else {
|
||
k = (unsigned)__builtin_ctzll(w) >> 3;
|
||
if (!c || c > k) {
|
||
return (struct AsanFault){0};
|
||
} else {
|
||
return __asan_fault(s, kAsanHeapOverrun);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Checks memory validity of memory region.
|
||
*/
|
||
bool __asan_is_valid(const void *p, long n) {
|
||
struct AsanFault f;
|
||
f = __asan_check(p, n);
|
||
return !f.kind;
|
||
}
|
||
|
||
/**
|
||
* Checks memory validity of nul-terminated string.
|
||
*/
|
||
bool __asan_is_valid_str(const char *p) {
|
||
struct AsanFault f;
|
||
f = __asan_check_str(p);
|
||
return !f.kind;
|
||
}
|
||
|
||
/**
|
||
* Checks memory validity of null-terminated nul-terminated string list.
|
||
*/
|
||
bool __asan_is_valid_strlist(char *const *p) {
|
||
for (;; ++p) {
|
||
if (!__asan_is_valid(p, sizeof(char *)))
|
||
return false;
|
||
if (!*p)
|
||
return true;
|
||
if (!__asan_is_valid_str(*p))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Checks memory validity of `iov` array and each buffer it describes.
|
||
*/
|
||
bool __asan_is_valid_iov(const struct iovec *iov, int iovlen) {
|
||
int i;
|
||
size_t size;
|
||
if (iovlen >= 0 && !ckd_mul(&size, iovlen, sizeof(struct iovec)) &&
|
||
__asan_is_valid(iov, size)) {
|
||
for (i = 0; i < iovlen; ++i) {
|
||
if (!__asan_is_valid(iov[i].iov_base, iov[i].iov_len)) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static wint_t __asan_symbolize_access_poison(signed char kind) {
|
||
switch (kind) {
|
||
case kAsanNullPage:
|
||
return L'∅';
|
||
case kAsanProtected:
|
||
return L'P';
|
||
case kAsanHeapFree:
|
||
return L'F';
|
||
case kAsanHeapRelocated:
|
||
return L'R';
|
||
case kAsanAllocaOverrun:
|
||
return L'𝑂';
|
||
case kAsanHeapUnderrun:
|
||
return L'U';
|
||
case kAsanHeapOverrun:
|
||
return L'O';
|
||
case kAsanStackUnscoped:
|
||
return L's';
|
||
case kAsanStackOverflow:
|
||
return L'!';
|
||
case kAsanGlobalOrder:
|
||
return L'I';
|
||
case kAsanStackFree:
|
||
return L'r';
|
||
case kAsanStackPartial:
|
||
return L'p';
|
||
case kAsanStackOverrun:
|
||
return L'o';
|
||
case kAsanStackMiddle:
|
||
return L'm';
|
||
case kAsanStackUnderrun:
|
||
return L'u';
|
||
case kAsanAllocaUnderrun:
|
||
return L'𝑈';
|
||
case kAsanUnmapped:
|
||
return L'M';
|
||
case kAsanGlobalRedzone:
|
||
return L'G';
|
||
case kAsanGlobalGone:
|
||
return L'𝐺';
|
||
case kAsanGlobalUnderrun:
|
||
return L'μ';
|
||
case kAsanGlobalOverrun:
|
||
return L'Ω';
|
||
case kAsanMmapSizeOverrun:
|
||
return L'Z';
|
||
default:
|
||
return L'?';
|
||
}
|
||
}
|
||
|
||
static const char *__asan_describe_access_poison(signed char kind) {
|
||
switch (kind) {
|
||
case kAsanNullPage:
|
||
return "null pointer dereference";
|
||
case kAsanProtected:
|
||
return "protected";
|
||
case kAsanHeapFree:
|
||
return "heap use after free";
|
||
case kAsanHeapRelocated:
|
||
return "heap use after relocate";
|
||
case kAsanAllocaOverrun:
|
||
return "alloca overflow";
|
||
case kAsanHeapUnderrun:
|
||
return "heap underrun";
|
||
case kAsanHeapOverrun:
|
||
return "heap overrun";
|
||
case kAsanStackUnscoped:
|
||
return "stack use after scope";
|
||
case kAsanStackOverflow:
|
||
return "stack overflow";
|
||
case kAsanGlobalOrder:
|
||
return "global init order";
|
||
case kAsanStackFree:
|
||
return "stack use after return";
|
||
case kAsanStackPartial:
|
||
return "stack partial";
|
||
case kAsanStackOverrun:
|
||
return "stack overrun";
|
||
case kAsanStackMiddle:
|
||
return "stack middle";
|
||
case kAsanStackUnderrun:
|
||
return "stack underflow";
|
||
case kAsanAllocaUnderrun:
|
||
return "alloca underflow";
|
||
case kAsanUnmapped:
|
||
return "unmapped";
|
||
case kAsanGlobalRedzone:
|
||
return "global redzone";
|
||
case kAsanGlobalGone:
|
||
return "global gone";
|
||
case kAsanGlobalUnderrun:
|
||
return "global underrun";
|
||
case kAsanGlobalOverrun:
|
||
return "global overrun";
|
||
default:
|
||
return "poisoned";
|
||
}
|
||
}
|
||
|
||
static char *__asan_format_interval(char *p, intptr_t a, intptr_t b) {
|
||
p = __asan_hexcpy(p, a, 48), *p++ = '-';
|
||
p = __asan_hexcpy(p, b, 48);
|
||
return p;
|
||
}
|
||
|
||
static char *__asan_format_section(char *p, const void *p1, const void *p2,
|
||
const char *name, const void *addr) {
|
||
intptr_t a, b;
|
||
if ((a = (intptr_t)p1) < (b = (intptr_t)p2)) {
|
||
p = __asan_format_interval(p, a, b), *p++ = ' ';
|
||
p = __asan_stpcpy(p, name);
|
||
if (a <= (intptr_t)addr && (intptr_t)addr <= b) {
|
||
p = __asan_stpcpy(p, " ←address");
|
||
}
|
||
*p++ = '\n';
|
||
}
|
||
return p;
|
||
}
|
||
|
||
void __asan_report_memory_origin_image(intptr_t a, int z) {
|
||
unsigned l, m, r, n, k;
|
||
struct SymbolTable *st;
|
||
kprintf("\nthe memory belongs to image symbols\n");
|
||
if (_weaken(GetSymbolTable)) {
|
||
if ((st = _weaken(GetSymbolTable)())) {
|
||
l = 0;
|
||
r = n = st->count;
|
||
k = a - st->addr_base;
|
||
while (l < r) {
|
||
m = (l & r) + ((l ^ r) >> 1); // floor((a+b)/2)
|
||
if (st->symbols[m].y < k) {
|
||
l = m + 1;
|
||
} else {
|
||
r = m;
|
||
}
|
||
}
|
||
for (; l < n; ++l) {
|
||
if ((st->symbols[l].x <= k && k <= st->symbols[l].y) ||
|
||
(st->symbols[l].x <= k + z && k + z <= st->symbols[l].y) ||
|
||
(k < st->symbols[l].x && st->symbols[l].y < k + z)) {
|
||
kprintf("\t%s [%#x,%#x] size %'d\n", st->name_base + st->names[l],
|
||
st->addr_base + st->symbols[l].x,
|
||
st->addr_base + st->symbols[l].y,
|
||
st->symbols[l].y - st->symbols[l].x + 1);
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
} else {
|
||
kprintf("\tunknown please supply .dbg symbols or set COMDBG\n");
|
||
}
|
||
} else {
|
||
kprintf("\tunknown please __static_yoink(\"GetSymbolTable\");\n");
|
||
}
|
||
}
|
||
|
||
void __asan_report_memory_origin(const unsigned char *addr, int size,
|
||
signed char kind) {
|
||
switch (kind) {
|
||
case kAsanStackOverrun:
|
||
case kAsanGlobalOverrun:
|
||
case kAsanAllocaOverrun:
|
||
case kAsanHeapOverrun:
|
||
addr -= 1;
|
||
size += 1;
|
||
break;
|
||
case kAsanHeapUnderrun:
|
||
case kAsanStackUnderrun:
|
||
case kAsanAllocaUnderrun:
|
||
case kAsanGlobalUnderrun:
|
||
size += 1;
|
||
break;
|
||
case kAsanGlobalRedzone:
|
||
addr -= 1;
|
||
size += 2;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
if (__executable_start <= addr && addr < _end) {
|
||
__asan_report_memory_origin_image((intptr_t)addr, size);
|
||
} else if (IsAutoFrame((intptr_t)addr >> 16)) {
|
||
if (_weaken(__asan_report_memory_origin_heap))
|
||
_weaken(__asan_report_memory_origin_heap)(addr, size);
|
||
}
|
||
}
|
||
|
||
static __wur __asan_die_f *__asan_report(const void *addr, int size,
|
||
const char *message,
|
||
signed char kind) {
|
||
#pragma GCC push_options
|
||
#pragma GCC diagnostic ignored "-Wframe-larger-than="
|
||
char buf[8192];
|
||
CheckLargeStackAllocation(buf, sizeof(buf));
|
||
#pragma GCC pop_options
|
||
int i;
|
||
wint_t c;
|
||
signed char t;
|
||
uint64_t x, y, z;
|
||
char *base, *q, *p = buf;
|
||
struct MemoryIntervals *m;
|
||
ftrace_enabled(-1);
|
||
kprintf("\n\e[J\e[1;31masan error\e[0m: %s %d-byte %s at %p shadow %p\n",
|
||
__asan_describe_access_poison(kind), size, message, addr,
|
||
SHADOW(addr));
|
||
if (0 < size && size < 80) {
|
||
base = (char *)addr - ((80 >> 1) - (size >> 1));
|
||
for (i = 0; i < 80; ++i) {
|
||
if ((char *)addr <= base + i && base + i < (char *)addr + size) {
|
||
if (__asan_is_valid(base + i, 1)) {
|
||
*p++ = '*';
|
||
} else {
|
||
*p++ = 'x';
|
||
}
|
||
} else {
|
||
*p++ = ' ';
|
||
}
|
||
}
|
||
*p++ = '\n';
|
||
for (c = i = 0; i < 80; ++i) {
|
||
if (!(t = __asan_check(base + i, 1).kind)) {
|
||
if (c != 32) {
|
||
*p++ = '\e', *p++ = '[', *p++ = '3', *p++ = '2', *p++ = 'm';
|
||
c = 32;
|
||
}
|
||
*p++ = '.';
|
||
} else {
|
||
if (c != 31) {
|
||
*p++ = '\e', *p++ = '[', *p++ = '3', *p++ = '1', *p++ = 'm';
|
||
c = 31;
|
||
}
|
||
p = __asan_utf8cpy(p, __asan_symbolize_access_poison(t));
|
||
}
|
||
}
|
||
*p++ = '\e', *p++ = '[', *p++ = '3', *p++ = '9', *p++ = 'm';
|
||
*p++ = '\n';
|
||
for (i = 0; (intptr_t)(base + i) & 7; ++i)
|
||
*p++ = ' ';
|
||
for (; i + 8 <= 80; i += 8) {
|
||
q = p + 8;
|
||
*p++ = '|';
|
||
z = ((intptr_t)(base + i) >> 3) + 0x7fff8000;
|
||
if (!kisdangerous((void *)z)) {
|
||
p = __intcpy(p, *(signed char *)z);
|
||
} else {
|
||
*p++ = '!';
|
||
}
|
||
while (p < q) {
|
||
*p++ = ' ';
|
||
}
|
||
}
|
||
for (; i < 80; ++i)
|
||
*p++ = ' ';
|
||
*p++ = '\n';
|
||
for (i = 0; i < 80; ++i) {
|
||
p = __asan_utf8cpy(p, __asan_exists(base + i)
|
||
? kCp437[((unsigned char *)base)[i]]
|
||
: L'⋅');
|
||
}
|
||
*p++ = '\n';
|
||
}
|
||
p = __asan_format_section(p, __executable_start, _etext, ".text", addr);
|
||
p = __asan_format_section(p, _etext, _edata, ".data", addr);
|
||
p = __asan_format_section(p, _end, _edata, ".bss", addr);
|
||
__mmi_lock();
|
||
for (m = &_mmi, i = 0; i < m->i; ++i) {
|
||
x = m->p[i].x;
|
||
y = m->p[i].y;
|
||
p = __asan_format_interval(p, x << 16, (y << 16) + (FRAMESIZE - 1));
|
||
z = (intptr_t)addr >> 16;
|
||
if (x <= z && z <= y)
|
||
p = __asan_stpcpy(p, " ←address");
|
||
z = (((intptr_t)addr >> 3) + 0x7fff8000) >> 16;
|
||
if (x <= z && z <= y)
|
||
p = __asan_stpcpy(p, " ←shadow");
|
||
*p++ = '\n';
|
||
}
|
||
__mmi_unlock();
|
||
*p = 0;
|
||
kprintf("%s", buf);
|
||
__asan_report_memory_origin(addr, size, kind);
|
||
kprintf("\nthe crash was caused by %s\n", program_invocation_name);
|
||
ftrace_enabled(+1);
|
||
return __asan_die();
|
||
}
|
||
|
||
static wontreturn void __asan_verify_failed(const void *p, size_t n,
|
||
struct AsanFault f) {
|
||
const char *q;
|
||
q = UNSHADOW(f.shadow);
|
||
if ((uintptr_t)q != ((uintptr_t)p & -8) && (uintptr_t)q - (uintptr_t)p < n) {
|
||
n -= (uintptr_t)q - (uintptr_t)p;
|
||
p = q;
|
||
}
|
||
__asan_report(p, n, "verify", f.kind)();
|
||
__asan_unreachable();
|
||
}
|
||
|
||
void __asan_verify(const void *p, size_t n) {
|
||
struct AsanFault f;
|
||
if (!(f = __asan_check(p, n)).kind)
|
||
return;
|
||
__asan_verify_failed(p, n, f);
|
||
}
|
||
|
||
void __asan_verify_str(const char *p) {
|
||
struct AsanFault f;
|
||
if (!(f = __asan_check_str(p)).kind)
|
||
return;
|
||
__asan_verify_failed(UNSHADOW(f.shadow), 8, f);
|
||
}
|
||
|
||
static __wur __asan_die_f *__asan_report_memory_fault(void *addr, int size,
|
||
const char *message) {
|
||
return __asan_report(addr, size, message,
|
||
__asan_fault(SHADOW(addr), -128).kind);
|
||
}
|
||
|
||
void __asan_rawtrace(struct AsanTrace *bt, const struct StackFrame *bp) {
|
||
size_t i;
|
||
for (i = 0; bp && i < ARRAYLEN(bt->p); ++i, bp = bp->next) {
|
||
if (kisdangerous(bp))
|
||
break;
|
||
bt->p[i] = bp->addr;
|
||
}
|
||
for (; i < ARRAYLEN(bt->p); ++i) {
|
||
bt->p[i] = 0;
|
||
}
|
||
}
|
||
|
||
static void __asan_trace(struct AsanTrace *bt, const struct StackFrame *bp) {
|
||
int f1, f2;
|
||
size_t i, gi;
|
||
intptr_t addr;
|
||
struct Garbages *garbage;
|
||
garbage = __tls_enabled ? __get_tls()->tib_garbages : 0;
|
||
gi = garbage ? garbage->i : 0;
|
||
for (f1 = -1, i = 0; bp && i < ARRAYLEN(bt->p); ++i, bp = bp->next) {
|
||
if (f1 != (f2 = ((intptr_t)bp >> 16))) {
|
||
if (kisdangerous(bp))
|
||
break;
|
||
f1 = f2;
|
||
}
|
||
if (!__asan_checka(SHADOW(bp), sizeof(*bp) >> 3).kind) {
|
||
addr = bp->addr;
|
||
#ifdef __x86_64__
|
||
if (addr == (uintptr_t)_weaken(__gc) && (uintptr_t)_weaken(__gc)) {
|
||
do
|
||
--gi;
|
||
while ((addr = garbage->p[gi].ret) == (uintptr_t)_weaken(__gc));
|
||
}
|
||
#endif
|
||
bt->p[i] = addr;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
for (; i < ARRAYLEN(bt->p); ++i) {
|
||
bt->p[i] = 0;
|
||
}
|
||
}
|
||
|
||
void __asan_register_globals(struct AsanGlobal g[], int n) {
|
||
int i;
|
||
__asan_poison(g, sizeof(*g) * n, kAsanProtected);
|
||
for (i = 0; i < n; ++i) {
|
||
__asan_poison(g[i].addr + g[i].size, g[i].size_with_redzone - g[i].size,
|
||
kAsanGlobalRedzone);
|
||
if (g[i].location) {
|
||
__asan_poison(g[i].location, sizeof(*g[i].location), kAsanProtected);
|
||
}
|
||
}
|
||
}
|
||
|
||
void __asan_unregister_globals(struct AsanGlobal g[], int n) {
|
||
int i;
|
||
for (i = 0; i < n; ++i) {
|
||
__asan_poison(g[i].addr, g[i].size, kAsanGlobalGone);
|
||
}
|
||
}
|
||
|
||
void __asan_evil(uint8_t *addr, int size, const char *s) {
|
||
struct AsanTrace tr;
|
||
__asan_rawtrace(&tr, RBP);
|
||
kprintf("WARNING: ASAN bad %d byte %s at %lx bt %x %x %x\n", size, s, addr,
|
||
tr.p[0], tr.p[1], tr.p[2], tr.p[3]);
|
||
}
|
||
|
||
void __asan_report_load(uint8_t *addr, int size) {
|
||
__asan_evil(addr, size, "load");
|
||
if (!__vforked && __asan_once()) {
|
||
__asan_report_memory_fault(addr, size, "load")();
|
||
}
|
||
__asan_unreachable();
|
||
}
|
||
|
||
void __asan_report_store(uint8_t *addr, int size) {
|
||
__asan_evil(addr, size, "store");
|
||
if (!__vforked && __asan_once()) {
|
||
__asan_report_memory_fault(addr, size, "store")();
|
||
}
|
||
__asan_unreachable();
|
||
}
|
||
|
||
void __asan_handle_no_return(void) {
|
||
// this check is stupid and has far-reaching toilsome ramifications
|
||
}
|
||
|
||
void __asan_poison_stack_memory(char *addr, size_t size) {
|
||
ASAN_LOG("__asan_poison_stack_memory(%p, %zu)\n", addr, size);
|
||
__asan_poison(addr, size, kAsanStackFree);
|
||
}
|
||
|
||
void __asan_unpoison_stack_memory(char *addr, size_t size) {
|
||
ASAN_LOG("__asan_unpoison_stack_memory(%p, %zu)\n", addr, size);
|
||
__asan_unpoison(addr, size);
|
||
}
|
||
|
||
void __asan_alloca_poison(char *addr, uintptr_t size) {
|
||
ASAN_LOG("__asan_alloca_poison(%p, %zu)\n", addr, size);
|
||
size_t rounded_up_size = ROUNDUP(size, 8);
|
||
size_t padding_size = ROUNDUP(size, 32) - rounded_up_size;
|
||
size_t rounded_down_size = ROUNDDOWN(size, 8);
|
||
char *left_redzone = addr - 32;
|
||
void *right_redzone = addr + rounded_up_size;
|
||
__asan_unpoison(addr + rounded_down_size, size - rounded_down_size);
|
||
__asan_poison(left_redzone, 32, kAsanAllocaUnderrun);
|
||
__asan_poison(right_redzone, padding_size + 32, kAsanAllocaOverrun);
|
||
}
|
||
|
||
void __asan_allocas_unpoison(uintptr_t x, uintptr_t y) {
|
||
ASAN_LOG("__asan_allocas_unpoison(%p, %p)\n", x, y);
|
||
if (!x || x > y)
|
||
return;
|
||
__asan_unpoison((char *)x, y - x);
|
||
}
|
||
|
||
void *__asan_addr_is_in_fake_stack(void *fakestack, void *addr, void **beg,
|
||
void **end) {
|
||
ASAN_LOG("__asan_addr_is_in_fake_stack(%p)\n", addr);
|
||
return 0;
|
||
}
|
||
|
||
void *__asan_get_current_fake_stack(void) {
|
||
ASAN_LOG("__asan_get_current_fake_stack()\n");
|
||
return 0;
|
||
}
|
||
|
||
void __sanitizer_annotate_contiguous_container(char *beg, char *end,
|
||
char *old_mid, char *new_mid) {
|
||
ASAN_LOG("__sanitizer_annotate_contiguous_container()\n");
|
||
// the c++ stl uses this
|
||
// TODO(jart): make me faster
|
||
__asan_unpoison(beg, new_mid - beg);
|
||
__asan_poison(new_mid, end - new_mid, kAsanHeapOverrun);
|
||
}
|
||
|
||
void __asan_before_dynamic_init(const char *module_name) {
|
||
ASAN_LOG("__asan_before_dynamic_init()\n");
|
||
}
|
||
|
||
void __asan_after_dynamic_init(void) {
|
||
ASAN_LOG("__asan_after_dynamic_init()\n");
|
||
}
|
||
|
||
void __asan_map_shadow(uintptr_t p, size_t n) {
|
||
// assume _mmi.lock is held
|
||
void *addr;
|
||
int i, a, b;
|
||
size_t size;
|
||
int prot, flag;
|
||
struct DirectMap sm;
|
||
struct MemoryIntervals *m;
|
||
if (OverlapsShadowSpace((void *)p, n)) {
|
||
kprintf("error: %p size %'zu overlaps shadow space: %s\n", p, n,
|
||
DescribeBacktrace(__builtin_frame_address(0)));
|
||
_Exit(1);
|
||
}
|
||
m = &_mmi;
|
||
a = (0x7fff8000 + (p >> 3)) >> 16;
|
||
b = (0x7fff8000 + (p >> 3) + (n >> 3) + 0xffff) >> 16;
|
||
for (; a <= b; a += i) {
|
||
i = 1;
|
||
if (__asan_is_mapped(a)) {
|
||
continue;
|
||
}
|
||
for (; a + i <= b; ++i) {
|
||
if (__asan_is_mapped(a + i)) {
|
||
break;
|
||
}
|
||
}
|
||
size = (size_t)i << 16;
|
||
addr = (void *)ADDR_32_TO_48(a);
|
||
prot = PROT_READ | PROT_WRITE;
|
||
flag = MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS;
|
||
sm = sys_mmap(addr, size, prot, flag, -1, 0);
|
||
if (sm.addr == MAP_FAILED ||
|
||
__track_memory(m, a, a + i - 1, sm.maphandle, PROT_READ | PROT_WRITE,
|
||
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, false, false, 0,
|
||
size) == -1) {
|
||
kprintf("error: could not map asan shadow memory\n");
|
||
__asan_die()();
|
||
__asan_unreachable();
|
||
}
|
||
__repstosb(addr, kAsanUnmapped, size);
|
||
}
|
||
__asan_unpoison((char *)p, n);
|
||
}
|
||
|
||
static textstartup void __asan_shadow_mapping(struct MemoryIntervals *m,
|
||
size_t i) {
|
||
uintptr_t x, y;
|
||
if (i < m->i) {
|
||
x = m->p[i].x;
|
||
y = m->p[i].y;
|
||
__asan_shadow_mapping(m, i + 1);
|
||
__asan_map_shadow(x << 16, (y - x + 1) << 16);
|
||
}
|
||
}
|
||
|
||
static textstartup void __asan_shadow_existing_mappings(void) {
|
||
__asan_shadow_mapping(&_mmi, 0);
|
||
if (!IsWindows()) {
|
||
int guard;
|
||
void *addr;
|
||
size_t size;
|
||
__get_main_stack(&addr, &size, &guard);
|
||
__asan_map_shadow((uintptr_t)addr, size);
|
||
__asan_poison(addr, guard, kAsanStackOverflow);
|
||
}
|
||
}
|
||
|
||
static size_t __asan_strlen(const char *s) {
|
||
size_t i = 0;
|
||
while (s[i])
|
||
++i;
|
||
return i;
|
||
}
|
||
|
||
forceinline ssize_t __write_str(const char *s) {
|
||
return sys_write(2, s, __asan_strlen(s));
|
||
}
|
||
|
||
void __asan_init(int argc, char **argv, char **envp, unsigned long *auxv) {
|
||
static bool once;
|
||
if (!_cmpxchg(&once, false, true))
|
||
return;
|
||
__asan_shadow_existing_mappings();
|
||
__asan_map_shadow((uintptr_t)__executable_start, _end - __executable_start);
|
||
__asan_map_shadow(0, 4096);
|
||
__asan_poison((void *)__veil("r", 0L), getauxval(AT_PAGESZ), kAsanNullPage);
|
||
if (!IsWindows()) {
|
||
sys_mprotect((void *)0x7fff8000, 0x10000, PROT_READ);
|
||
}
|
||
STRACE(" _ ____ _ _ _ ");
|
||
STRACE(" / \\ / ___| / \\ | \\ | |");
|
||
STRACE(" / _ \\ \\___ \\ / _ \\ | \\| |");
|
||
STRACE(" / ___ \\ ___) / ___ \\| |\\ |");
|
||
STRACE("/_/ \\_\\____/_/ \\_\\_| \\_|");
|
||
STRACE("cosmopolitan memory safety module initialized");
|
||
}
|
||
|
||
__weak_reference(__asan_poison, __asan_poison_memory_region);
|
||
__weak_reference(__asan_unpoison, __asan_unpoison_memory_region);
|
||
|
||
#endif /* __SANITIZE_ADDRESS__ */
|
||
#endif /* __x86_64__ */
|