mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-01 03:53:33 +00:00
e16a7d8f3b
`et` means `expandtab`. ```sh rg 'vi: .* :vi' -l -0 | \ xargs -0 sed -i '' 's/vi: \(.*\) et\(.*\) :vi/vi: \1 xoet\2:vi/' rg 'vi: .* :vi' -l -0 | \ xargs -0 sed -i '' 's/vi: \(.*\)noet\(.*\):vi/vi: \1et\2 :vi/' rg 'vi: .* :vi' -l -0 | \ xargs -0 sed -i '' 's/vi: \(.*\)xoet\(.*\):vi/vi: \1noet\2:vi/' ```
214 lines
7.3 KiB
C
214 lines
7.3 KiB
C
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
|
||
│ vi: set noet ft=c ts=8 tw=8 fenc=utf-8 :vi │
|
||
╚──────────────────────────────────────────────────────────────────────────────╝
|
||
│ │
|
||
│ Musl Libc │
|
||
│ Copyright © 2005-2014 Rich Felker, et al. │
|
||
│ │
|
||
│ Permission is hereby granted, free of charge, to any person obtaining │
|
||
│ a copy of this software and associated documentation files (the │
|
||
│ "Software"), to deal in the Software without restriction, including │
|
||
│ without limitation the rights to use, copy, modify, merge, publish, │
|
||
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
||
│ permit persons to whom the Software is furnished to do so, subject to │
|
||
│ the following conditions: │
|
||
│ │
|
||
│ The above copyright notice and this permission notice shall be │
|
||
│ included in all copies or substantial portions of the Software. │
|
||
│ │
|
||
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
||
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
||
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
||
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
||
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
||
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
||
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
||
│ │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include "libc/math.h"
|
||
#include "libc/tinymath/feval.internal.h"
|
||
#include "libc/tinymath/kernel.internal.h"
|
||
|
||
asm(".ident\t\"\\n\\n\
|
||
Musl libc (MIT License)\\n\
|
||
Copyright 2005-2014 Rich Felker, et. al.\"");
|
||
asm(".include \"libc/disclaimer.inc\"");
|
||
// clang-format off
|
||
|
||
/*
|
||
"A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964)
|
||
"Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001)
|
||
"An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004)
|
||
|
||
approximation method:
|
||
|
||
(x - 0.5) S(x)
|
||
Gamma(x) = (x + g - 0.5) * ----------------
|
||
exp(x + g - 0.5)
|
||
|
||
with
|
||
a1 a2 a3 aN
|
||
S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ]
|
||
x + 1 x + 2 x + 3 x + N
|
||
|
||
with a0, a1, a2, a3,.. aN constants which depend on g.
|
||
|
||
for x < 0 the following reflection formula is used:
|
||
|
||
Gamma(x)*Gamma(-x) = -pi/(x sin(pi x))
|
||
|
||
most ideas and constants are from boost and python
|
||
*/
|
||
|
||
static const double pi = 3.141592653589793238462643383279502884;
|
||
|
||
/* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */
|
||
static double sinpi(double x)
|
||
{
|
||
int n;
|
||
|
||
/* argument reduction: x = |x| mod 2 */
|
||
/* spurious inexact when x is odd int */
|
||
x = x * 0.5;
|
||
x = 2 * (x - floor(x));
|
||
|
||
/* reduce x into [-.25,.25] */
|
||
n = 4 * x;
|
||
n = (n+1)/2;
|
||
x -= n * 0.5;
|
||
|
||
x *= pi;
|
||
switch (n) {
|
||
default: /* case 4 */
|
||
case 0:
|
||
return __sin(x, 0, 0);
|
||
case 1:
|
||
return __cos(x, 0);
|
||
case 2:
|
||
return __sin(-x, 0, 0);
|
||
case 3:
|
||
return -__cos(x, 0);
|
||
}
|
||
}
|
||
|
||
#define N 12
|
||
//static const double g = 6.024680040776729583740234375;
|
||
static const double gmhalf = 5.524680040776729583740234375;
|
||
static const double Snum[N+1] = {
|
||
23531376880.410759688572007674451636754734846804940,
|
||
42919803642.649098768957899047001988850926355848959,
|
||
35711959237.355668049440185451547166705960488635843,
|
||
17921034426.037209699919755754458931112671403265390,
|
||
6039542586.3520280050642916443072979210699388420708,
|
||
1439720407.3117216736632230727949123939715485786772,
|
||
248874557.86205415651146038641322942321632125127801,
|
||
31426415.585400194380614231628318205362874684987640,
|
||
2876370.6289353724412254090516208496135991145378768,
|
||
186056.26539522349504029498971604569928220784236328,
|
||
8071.6720023658162106380029022722506138218516325024,
|
||
210.82427775157934587250973392071336271166969580291,
|
||
2.5066282746310002701649081771338373386264310793408,
|
||
};
|
||
static const double Sden[N+1] = {
|
||
0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535,
|
||
2637558, 357423, 32670, 1925, 66, 1,
|
||
};
|
||
/* n! for small integer n */
|
||
static const double fact[] = {
|
||
1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
|
||
479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0,
|
||
355687428096000.0, 6402373705728000.0, 121645100408832000.0,
|
||
2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0,
|
||
};
|
||
|
||
/* S(x) rational function for positive x */
|
||
static double S(double x)
|
||
{
|
||
double_t num = 0, den = 0;
|
||
int i;
|
||
|
||
/* to avoid overflow handle large x differently */
|
||
if (x < 8)
|
||
for (i = N; i >= 0; i--) {
|
||
num = num * x + Snum[i];
|
||
den = den * x + Sden[i];
|
||
}
|
||
else
|
||
for (i = 0; i <= N; i++) {
|
||
num = num / x + Snum[i];
|
||
den = den / x + Sden[i];
|
||
}
|
||
return num/den;
|
||
}
|
||
|
||
/**
|
||
* Calculates gamma function of 𝑥.
|
||
*/
|
||
double tgamma(double x)
|
||
{
|
||
union {double f; uint64_t i;} u = {x};
|
||
double absx, y;
|
||
double_t dy, z, r;
|
||
uint32_t ix = u.i>>32 & 0x7fffffff;
|
||
int sign = u.i>>63;
|
||
|
||
/* special cases */
|
||
if (ix >= 0x7ff00000)
|
||
/* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
|
||
return x + INFINITY;
|
||
if (ix < (0x3ff-54)<<20)
|
||
/* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
|
||
return 1/x;
|
||
|
||
/* integer arguments */
|
||
/* raise inexact when non-integer */
|
||
if (x == floor(x)) {
|
||
if (sign)
|
||
return 0/0.0;
|
||
if (x <= sizeof fact/sizeof *fact)
|
||
return fact[(int)x - 1];
|
||
}
|
||
|
||
/* x >= 172: tgamma(x)=inf with overflow */
|
||
/* x =< -184: tgamma(x)=+-0 with underflow */
|
||
if (ix >= 0x40670000) { /* |x| >= 184 */
|
||
if (sign) {
|
||
fevalf(0x1p-126/x);
|
||
if (floor(x) * 0.5 == floor(x * 0.5))
|
||
return 0;
|
||
return -0.0;
|
||
}
|
||
x *= 0x1p1023;
|
||
return x;
|
||
}
|
||
|
||
absx = sign ? -x : x;
|
||
|
||
/* handle the error of x + g - 0.5 */
|
||
y = absx + gmhalf;
|
||
if (absx > gmhalf) {
|
||
dy = y - absx;
|
||
dy -= gmhalf;
|
||
} else {
|
||
dy = y - gmhalf;
|
||
dy -= absx;
|
||
}
|
||
|
||
z = absx - 0.5;
|
||
r = S(absx) * exp(-y);
|
||
if (x < 0) {
|
||
/* reflection formula for negative x */
|
||
/* sinpi(absx) is not 0, integers are already handled */
|
||
r = -pi / (sinpi(absx) * absx * r);
|
||
dy = -dy;
|
||
z = -z;
|
||
}
|
||
r += dy * (gmhalf+0.5) * r / y;
|
||
z = pow(y, 0.5*z);
|
||
y = r * z * z;
|
||
return y;
|
||
}
|
||
|
||
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
||
__weak_reference(tgamma, tgammal);
|
||
#endif
|