mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 03:27:39 +00:00
5597 lines
186 KiB
C++
5597 lines
186 KiB
C++
/*
|
|
* kmp_affinity.cpp -- affinity management
|
|
*/
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "kmp.h"
|
|
#include "kmp_affinity.h"
|
|
#include "kmp_i18n.h"
|
|
#include "kmp_io.h"
|
|
#include "kmp_str.h"
|
|
#include "kmp_wrapper_getpid.h"
|
|
#if KMP_USE_HIER_SCHED
|
|
#include "kmp_dispatch_hier.h"
|
|
#endif
|
|
#if KMP_USE_HWLOC
|
|
// Copied from hwloc
|
|
#define HWLOC_GROUP_KIND_INTEL_MODULE 102
|
|
#define HWLOC_GROUP_KIND_INTEL_TILE 103
|
|
#define HWLOC_GROUP_KIND_INTEL_DIE 104
|
|
#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
|
|
#endif
|
|
#include <ctype.h>
|
|
|
|
// The machine topology
|
|
kmp_topology_t *__kmp_topology = nullptr;
|
|
// KMP_HW_SUBSET environment variable
|
|
kmp_hw_subset_t *__kmp_hw_subset = nullptr;
|
|
|
|
// Store the real or imagined machine hierarchy here
|
|
static hierarchy_info machine_hierarchy;
|
|
|
|
void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
// Helper class to see if place lists further restrict the fullMask
|
|
class kmp_full_mask_modifier_t {
|
|
kmp_affin_mask_t *mask;
|
|
|
|
public:
|
|
kmp_full_mask_modifier_t() {
|
|
KMP_CPU_ALLOC(mask);
|
|
KMP_CPU_ZERO(mask);
|
|
}
|
|
~kmp_full_mask_modifier_t() {
|
|
KMP_CPU_FREE(mask);
|
|
mask = nullptr;
|
|
}
|
|
void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); }
|
|
// If the new full mask is different from the current full mask,
|
|
// then switch them. Returns true if full mask was affected, false otherwise.
|
|
bool restrict_to_mask() {
|
|
// See if the new mask further restricts or changes the full mask
|
|
if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask))
|
|
return false;
|
|
return __kmp_topology->restrict_to_mask(mask);
|
|
}
|
|
};
|
|
|
|
static inline const char *
|
|
__kmp_get_affinity_env_var(const kmp_affinity_t &affinity,
|
|
bool for_binding = false) {
|
|
if (affinity.flags.omp_places) {
|
|
if (for_binding)
|
|
return "OMP_PROC_BIND";
|
|
return "OMP_PLACES";
|
|
}
|
|
return affinity.env_var;
|
|
}
|
|
#endif // KMP_AFFINITY_SUPPORTED
|
|
|
|
void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
|
|
kmp_uint32 depth;
|
|
// The test below is true if affinity is available, but set to "none". Need to
|
|
// init on first use of hierarchical barrier.
|
|
if (TCR_1(machine_hierarchy.uninitialized))
|
|
machine_hierarchy.init(nproc);
|
|
|
|
// Adjust the hierarchy in case num threads exceeds original
|
|
if (nproc > machine_hierarchy.base_num_threads)
|
|
machine_hierarchy.resize(nproc);
|
|
|
|
depth = machine_hierarchy.depth;
|
|
KMP_DEBUG_ASSERT(depth > 0);
|
|
|
|
thr_bar->depth = depth;
|
|
__kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
|
|
&(thr_bar->base_leaf_kids));
|
|
thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
|
|
}
|
|
|
|
static int nCoresPerPkg, nPackages;
|
|
static int __kmp_nThreadsPerCore;
|
|
#ifndef KMP_DFLT_NTH_CORES
|
|
static int __kmp_ncores;
|
|
#endif
|
|
|
|
const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
|
|
switch (type) {
|
|
case KMP_HW_SOCKET:
|
|
return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
|
|
case KMP_HW_DIE:
|
|
return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
|
|
case KMP_HW_MODULE:
|
|
return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
|
|
case KMP_HW_TILE:
|
|
return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
|
|
case KMP_HW_NUMA:
|
|
return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
|
|
case KMP_HW_L3:
|
|
return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
|
|
case KMP_HW_L2:
|
|
return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
|
|
case KMP_HW_L1:
|
|
return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
|
|
case KMP_HW_LLC:
|
|
return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
|
|
case KMP_HW_CORE:
|
|
return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
|
|
case KMP_HW_THREAD:
|
|
return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
|
|
case KMP_HW_PROC_GROUP:
|
|
return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
|
|
case KMP_HW_UNKNOWN:
|
|
case KMP_HW_LAST:
|
|
return KMP_I18N_STR(Unknown);
|
|
}
|
|
KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
|
|
KMP_BUILTIN_UNREACHABLE;
|
|
}
|
|
|
|
const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
|
|
switch (type) {
|
|
case KMP_HW_SOCKET:
|
|
return ((plural) ? "sockets" : "socket");
|
|
case KMP_HW_DIE:
|
|
return ((plural) ? "dice" : "die");
|
|
case KMP_HW_MODULE:
|
|
return ((plural) ? "modules" : "module");
|
|
case KMP_HW_TILE:
|
|
return ((plural) ? "tiles" : "tile");
|
|
case KMP_HW_NUMA:
|
|
return ((plural) ? "numa_domains" : "numa_domain");
|
|
case KMP_HW_L3:
|
|
return ((plural) ? "l3_caches" : "l3_cache");
|
|
case KMP_HW_L2:
|
|
return ((plural) ? "l2_caches" : "l2_cache");
|
|
case KMP_HW_L1:
|
|
return ((plural) ? "l1_caches" : "l1_cache");
|
|
case KMP_HW_LLC:
|
|
return ((plural) ? "ll_caches" : "ll_cache");
|
|
case KMP_HW_CORE:
|
|
return ((plural) ? "cores" : "core");
|
|
case KMP_HW_THREAD:
|
|
return ((plural) ? "threads" : "thread");
|
|
case KMP_HW_PROC_GROUP:
|
|
return ((plural) ? "proc_groups" : "proc_group");
|
|
case KMP_HW_UNKNOWN:
|
|
case KMP_HW_LAST:
|
|
return ((plural) ? "unknowns" : "unknown");
|
|
}
|
|
KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
|
|
KMP_BUILTIN_UNREACHABLE;
|
|
}
|
|
|
|
const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
|
|
switch (type) {
|
|
case KMP_HW_CORE_TYPE_UNKNOWN:
|
|
case KMP_HW_MAX_NUM_CORE_TYPES:
|
|
return "unknown";
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
case KMP_HW_CORE_TYPE_ATOM:
|
|
return "Intel Atom(R) processor";
|
|
case KMP_HW_CORE_TYPE_CORE:
|
|
return "Intel(R) Core(TM) processor";
|
|
#endif
|
|
}
|
|
KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration");
|
|
KMP_BUILTIN_UNREACHABLE;
|
|
}
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
// If affinity is supported, check the affinity
|
|
// verbose and warning flags before printing warning
|
|
#define KMP_AFF_WARNING(s, ...) \
|
|
if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \
|
|
KMP_WARNING(__VA_ARGS__); \
|
|
}
|
|
#else
|
|
#define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__)
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// kmp_hw_thread_t methods
|
|
int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
|
|
const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
|
|
const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
|
|
int depth = __kmp_topology->get_depth();
|
|
for (int level = 0; level < depth; ++level) {
|
|
if (ahwthread->ids[level] < bhwthread->ids[level])
|
|
return -1;
|
|
else if (ahwthread->ids[level] > bhwthread->ids[level])
|
|
return 1;
|
|
}
|
|
if (ahwthread->os_id < bhwthread->os_id)
|
|
return -1;
|
|
else if (ahwthread->os_id > bhwthread->os_id)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
|
|
int i;
|
|
const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
|
|
const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
|
|
int depth = __kmp_topology->get_depth();
|
|
int compact = __kmp_topology->compact;
|
|
KMP_DEBUG_ASSERT(compact >= 0);
|
|
KMP_DEBUG_ASSERT(compact <= depth);
|
|
for (i = 0; i < compact; i++) {
|
|
int j = depth - i - 1;
|
|
if (aa->sub_ids[j] < bb->sub_ids[j])
|
|
return -1;
|
|
if (aa->sub_ids[j] > bb->sub_ids[j])
|
|
return 1;
|
|
}
|
|
for (; i < depth; i++) {
|
|
int j = i - compact;
|
|
if (aa->sub_ids[j] < bb->sub_ids[j])
|
|
return -1;
|
|
if (aa->sub_ids[j] > bb->sub_ids[j])
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void kmp_hw_thread_t::print() const {
|
|
int depth = __kmp_topology->get_depth();
|
|
printf("%4d ", os_id);
|
|
for (int i = 0; i < depth; ++i) {
|
|
printf("%4d ", ids[i]);
|
|
}
|
|
if (attrs) {
|
|
if (attrs.is_core_type_valid())
|
|
printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
|
|
if (attrs.is_core_eff_valid())
|
|
printf(" (eff=%d)", attrs.get_core_eff());
|
|
}
|
|
if (leader)
|
|
printf(" (leader)");
|
|
printf("\n");
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// kmp_topology_t methods
|
|
|
|
// Add a layer to the topology based on the ids. Assume the topology
|
|
// is perfectly nested (i.e., so no object has more than one parent)
|
|
void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
|
|
// Figure out where the layer should go by comparing the ids of the current
|
|
// layers with the new ids
|
|
int target_layer;
|
|
int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
|
|
int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
|
|
|
|
// Start from the highest layer and work down to find target layer
|
|
// If new layer is equal to another layer then put the new layer above
|
|
for (target_layer = 0; target_layer < depth; ++target_layer) {
|
|
bool layers_equal = true;
|
|
bool strictly_above_target_layer = false;
|
|
for (int i = 0; i < num_hw_threads; ++i) {
|
|
int id = hw_threads[i].ids[target_layer];
|
|
int new_id = ids[i];
|
|
if (id != previous_id && new_id == previous_new_id) {
|
|
// Found the layer we are strictly above
|
|
strictly_above_target_layer = true;
|
|
layers_equal = false;
|
|
break;
|
|
} else if (id == previous_id && new_id != previous_new_id) {
|
|
// Found a layer we are below. Move to next layer and check.
|
|
layers_equal = false;
|
|
break;
|
|
}
|
|
previous_id = id;
|
|
previous_new_id = new_id;
|
|
}
|
|
if (strictly_above_target_layer || layers_equal)
|
|
break;
|
|
}
|
|
|
|
// Found the layer we are above. Now move everything to accommodate the new
|
|
// layer. And put the new ids and type into the topology.
|
|
for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
|
|
types[j] = types[i];
|
|
types[target_layer] = type;
|
|
for (int k = 0; k < num_hw_threads; ++k) {
|
|
for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
|
|
hw_threads[k].ids[j] = hw_threads[k].ids[i];
|
|
hw_threads[k].ids[target_layer] = ids[k];
|
|
}
|
|
equivalent[type] = type;
|
|
depth++;
|
|
}
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
// Insert the Windows Processor Group structure into the topology
|
|
void kmp_topology_t::_insert_windows_proc_groups() {
|
|
// Do not insert the processor group structure for a single group
|
|
if (__kmp_num_proc_groups == 1)
|
|
return;
|
|
kmp_affin_mask_t *mask;
|
|
int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
|
|
KMP_CPU_ALLOC(mask);
|
|
for (int i = 0; i < num_hw_threads; ++i) {
|
|
KMP_CPU_ZERO(mask);
|
|
KMP_CPU_SET(hw_threads[i].os_id, mask);
|
|
ids[i] = __kmp_get_proc_group(mask);
|
|
}
|
|
KMP_CPU_FREE(mask);
|
|
_insert_layer(KMP_HW_PROC_GROUP, ids);
|
|
__kmp_free(ids);
|
|
}
|
|
#endif
|
|
|
|
// Remove layers that don't add information to the topology.
|
|
// This is done by having the layer take on the id = UNKNOWN_ID (-1)
|
|
void kmp_topology_t::_remove_radix1_layers() {
|
|
int preference[KMP_HW_LAST];
|
|
int top_index1, top_index2;
|
|
// Set up preference associative array
|
|
preference[KMP_HW_SOCKET] = 110;
|
|
preference[KMP_HW_PROC_GROUP] = 100;
|
|
preference[KMP_HW_CORE] = 95;
|
|
preference[KMP_HW_THREAD] = 90;
|
|
preference[KMP_HW_NUMA] = 85;
|
|
preference[KMP_HW_DIE] = 80;
|
|
preference[KMP_HW_TILE] = 75;
|
|
preference[KMP_HW_MODULE] = 73;
|
|
preference[KMP_HW_L3] = 70;
|
|
preference[KMP_HW_L2] = 65;
|
|
preference[KMP_HW_L1] = 60;
|
|
preference[KMP_HW_LLC] = 5;
|
|
top_index1 = 0;
|
|
top_index2 = 1;
|
|
while (top_index1 < depth - 1 && top_index2 < depth) {
|
|
kmp_hw_t type1 = types[top_index1];
|
|
kmp_hw_t type2 = types[top_index2];
|
|
KMP_ASSERT_VALID_HW_TYPE(type1);
|
|
KMP_ASSERT_VALID_HW_TYPE(type2);
|
|
// Do not allow the three main topology levels (sockets, cores, threads) to
|
|
// be compacted down
|
|
if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
|
|
type1 == KMP_HW_SOCKET) &&
|
|
(type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
|
|
type2 == KMP_HW_SOCKET)) {
|
|
top_index1 = top_index2++;
|
|
continue;
|
|
}
|
|
bool radix1 = true;
|
|
bool all_same = true;
|
|
int id1 = hw_threads[0].ids[top_index1];
|
|
int id2 = hw_threads[0].ids[top_index2];
|
|
int pref1 = preference[type1];
|
|
int pref2 = preference[type2];
|
|
for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
|
|
if (hw_threads[hwidx].ids[top_index1] == id1 &&
|
|
hw_threads[hwidx].ids[top_index2] != id2) {
|
|
radix1 = false;
|
|
break;
|
|
}
|
|
if (hw_threads[hwidx].ids[top_index2] != id2)
|
|
all_same = false;
|
|
id1 = hw_threads[hwidx].ids[top_index1];
|
|
id2 = hw_threads[hwidx].ids[top_index2];
|
|
}
|
|
if (radix1) {
|
|
// Select the layer to remove based on preference
|
|
kmp_hw_t remove_type, keep_type;
|
|
int remove_layer, remove_layer_ids;
|
|
if (pref1 > pref2) {
|
|
remove_type = type2;
|
|
remove_layer = remove_layer_ids = top_index2;
|
|
keep_type = type1;
|
|
} else {
|
|
remove_type = type1;
|
|
remove_layer = remove_layer_ids = top_index1;
|
|
keep_type = type2;
|
|
}
|
|
// If all the indexes for the second (deeper) layer are the same.
|
|
// e.g., all are zero, then make sure to keep the first layer's ids
|
|
if (all_same)
|
|
remove_layer_ids = top_index2;
|
|
// Remove radix one type by setting the equivalence, removing the id from
|
|
// the hw threads and removing the layer from types and depth
|
|
set_equivalent_type(remove_type, keep_type);
|
|
for (int idx = 0; idx < num_hw_threads; ++idx) {
|
|
kmp_hw_thread_t &hw_thread = hw_threads[idx];
|
|
for (int d = remove_layer_ids; d < depth - 1; ++d)
|
|
hw_thread.ids[d] = hw_thread.ids[d + 1];
|
|
}
|
|
for (int idx = remove_layer; idx < depth - 1; ++idx)
|
|
types[idx] = types[idx + 1];
|
|
depth--;
|
|
} else {
|
|
top_index1 = top_index2++;
|
|
}
|
|
}
|
|
KMP_ASSERT(depth > 0);
|
|
}
|
|
|
|
void kmp_topology_t::_set_last_level_cache() {
|
|
if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
|
|
set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
|
|
else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
|
|
set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
|
|
#if KMP_MIC_SUPPORTED
|
|
else if (__kmp_mic_type == mic3) {
|
|
if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
|
|
set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
|
|
else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
|
|
set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
|
|
// L2/Tile wasn't detected so just say L1
|
|
else
|
|
set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
|
|
}
|
|
#endif
|
|
else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
|
|
set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
|
|
// Fallback is to set last level cache to socket or core
|
|
if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
|
|
if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
|
|
set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
|
|
else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
|
|
set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
|
|
}
|
|
KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
|
|
}
|
|
|
|
// Gather the count of each topology layer and the ratio
|
|
void kmp_topology_t::_gather_enumeration_information() {
|
|
int previous_id[KMP_HW_LAST];
|
|
int max[KMP_HW_LAST];
|
|
|
|
for (int i = 0; i < depth; ++i) {
|
|
previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
|
|
max[i] = 0;
|
|
count[i] = 0;
|
|
ratio[i] = 0;
|
|
}
|
|
int core_level = get_level(KMP_HW_CORE);
|
|
for (int i = 0; i < num_hw_threads; ++i) {
|
|
kmp_hw_thread_t &hw_thread = hw_threads[i];
|
|
for (int layer = 0; layer < depth; ++layer) {
|
|
int id = hw_thread.ids[layer];
|
|
if (id != previous_id[layer]) {
|
|
// Add an additional increment to each count
|
|
for (int l = layer; l < depth; ++l)
|
|
count[l]++;
|
|
// Keep track of topology layer ratio statistics
|
|
max[layer]++;
|
|
for (int l = layer + 1; l < depth; ++l) {
|
|
if (max[l] > ratio[l])
|
|
ratio[l] = max[l];
|
|
max[l] = 1;
|
|
}
|
|
// Figure out the number of different core types
|
|
// and efficiencies for hybrid CPUs
|
|
if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
|
|
if (hw_thread.attrs.is_core_eff_valid() &&
|
|
hw_thread.attrs.core_eff >= num_core_efficiencies) {
|
|
// Because efficiencies can range from 0 to max efficiency - 1,
|
|
// the number of efficiencies is max efficiency + 1
|
|
num_core_efficiencies = hw_thread.attrs.core_eff + 1;
|
|
}
|
|
if (hw_thread.attrs.is_core_type_valid()) {
|
|
bool found = false;
|
|
for (int j = 0; j < num_core_types; ++j) {
|
|
if (hw_thread.attrs.get_core_type() == core_types[j]) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
|
|
core_types[num_core_types++] = hw_thread.attrs.get_core_type();
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
for (int layer = 0; layer < depth; ++layer) {
|
|
previous_id[layer] = hw_thread.ids[layer];
|
|
}
|
|
}
|
|
for (int layer = 0; layer < depth; ++layer) {
|
|
if (max[layer] > ratio[layer])
|
|
ratio[layer] = max[layer];
|
|
}
|
|
}
|
|
|
|
int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
|
|
int above_level,
|
|
bool find_all) const {
|
|
int current, current_max;
|
|
int previous_id[KMP_HW_LAST];
|
|
for (int i = 0; i < depth; ++i)
|
|
previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
|
|
int core_level = get_level(KMP_HW_CORE);
|
|
if (find_all)
|
|
above_level = -1;
|
|
KMP_ASSERT(above_level < core_level);
|
|
current_max = 0;
|
|
current = 0;
|
|
for (int i = 0; i < num_hw_threads; ++i) {
|
|
kmp_hw_thread_t &hw_thread = hw_threads[i];
|
|
if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
|
|
if (current > current_max)
|
|
current_max = current;
|
|
current = hw_thread.attrs.contains(attr);
|
|
} else {
|
|
for (int level = above_level + 1; level <= core_level; ++level) {
|
|
if (hw_thread.ids[level] != previous_id[level]) {
|
|
if (hw_thread.attrs.contains(attr))
|
|
current++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (int level = 0; level < depth; ++level)
|
|
previous_id[level] = hw_thread.ids[level];
|
|
}
|
|
if (current > current_max)
|
|
current_max = current;
|
|
return current_max;
|
|
}
|
|
|
|
// Find out if the topology is uniform
|
|
void kmp_topology_t::_discover_uniformity() {
|
|
int num = 1;
|
|
for (int level = 0; level < depth; ++level)
|
|
num *= ratio[level];
|
|
flags.uniform = (num == count[depth - 1]);
|
|
}
|
|
|
|
// Set all the sub_ids for each hardware thread
|
|
void kmp_topology_t::_set_sub_ids() {
|
|
int previous_id[KMP_HW_LAST];
|
|
int sub_id[KMP_HW_LAST];
|
|
|
|
for (int i = 0; i < depth; ++i) {
|
|
previous_id[i] = -1;
|
|
sub_id[i] = -1;
|
|
}
|
|
for (int i = 0; i < num_hw_threads; ++i) {
|
|
kmp_hw_thread_t &hw_thread = hw_threads[i];
|
|
// Setup the sub_id
|
|
for (int j = 0; j < depth; ++j) {
|
|
if (hw_thread.ids[j] != previous_id[j]) {
|
|
sub_id[j]++;
|
|
for (int k = j + 1; k < depth; ++k) {
|
|
sub_id[k] = 0;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// Set previous_id
|
|
for (int j = 0; j < depth; ++j) {
|
|
previous_id[j] = hw_thread.ids[j];
|
|
}
|
|
// Set the sub_ids field
|
|
for (int j = 0; j < depth; ++j) {
|
|
hw_thread.sub_ids[j] = sub_id[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void kmp_topology_t::_set_globals() {
|
|
// Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
|
|
int core_level, thread_level, package_level;
|
|
package_level = get_level(KMP_HW_SOCKET);
|
|
#if KMP_GROUP_AFFINITY
|
|
if (package_level == -1)
|
|
package_level = get_level(KMP_HW_PROC_GROUP);
|
|
#endif
|
|
core_level = get_level(KMP_HW_CORE);
|
|
thread_level = get_level(KMP_HW_THREAD);
|
|
|
|
KMP_ASSERT(core_level != -1);
|
|
KMP_ASSERT(thread_level != -1);
|
|
|
|
__kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
|
|
if (package_level != -1) {
|
|
nCoresPerPkg = calculate_ratio(core_level, package_level);
|
|
nPackages = get_count(package_level);
|
|
} else {
|
|
// assume one socket
|
|
nCoresPerPkg = get_count(core_level);
|
|
nPackages = 1;
|
|
}
|
|
#ifndef KMP_DFLT_NTH_CORES
|
|
__kmp_ncores = get_count(core_level);
|
|
#endif
|
|
}
|
|
|
|
kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
|
|
const kmp_hw_t *types) {
|
|
kmp_topology_t *retval;
|
|
// Allocate all data in one large allocation
|
|
size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
|
|
sizeof(int) * (size_t)KMP_HW_LAST * 3;
|
|
char *bytes = (char *)__kmp_allocate(size);
|
|
retval = (kmp_topology_t *)bytes;
|
|
if (nproc > 0) {
|
|
retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
|
|
} else {
|
|
retval->hw_threads = nullptr;
|
|
}
|
|
retval->num_hw_threads = nproc;
|
|
retval->depth = ndepth;
|
|
int *arr =
|
|
(int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
|
|
retval->types = (kmp_hw_t *)arr;
|
|
retval->ratio = arr + (size_t)KMP_HW_LAST;
|
|
retval->count = arr + 2 * (size_t)KMP_HW_LAST;
|
|
retval->num_core_efficiencies = 0;
|
|
retval->num_core_types = 0;
|
|
retval->compact = 0;
|
|
for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
|
|
retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
|
|
KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
|
|
for (int i = 0; i < ndepth; ++i) {
|
|
retval->types[i] = types[i];
|
|
retval->equivalent[types[i]] = types[i];
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
void kmp_topology_t::deallocate(kmp_topology_t *topology) {
|
|
if (topology)
|
|
__kmp_free(topology);
|
|
}
|
|
|
|
bool kmp_topology_t::check_ids() const {
|
|
// Assume ids have been sorted
|
|
if (num_hw_threads == 0)
|
|
return true;
|
|
for (int i = 1; i < num_hw_threads; ++i) {
|
|
kmp_hw_thread_t ¤t_thread = hw_threads[i];
|
|
kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
|
|
bool unique = false;
|
|
for (int j = 0; j < depth; ++j) {
|
|
if (previous_thread.ids[j] != current_thread.ids[j]) {
|
|
unique = true;
|
|
break;
|
|
}
|
|
}
|
|
if (unique)
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void kmp_topology_t::dump() const {
|
|
printf("***********************\n");
|
|
printf("*** __kmp_topology: ***\n");
|
|
printf("***********************\n");
|
|
printf("* depth: %d\n", depth);
|
|
|
|
printf("* types: ");
|
|
for (int i = 0; i < depth; ++i)
|
|
printf("%15s ", __kmp_hw_get_keyword(types[i]));
|
|
printf("\n");
|
|
|
|
printf("* ratio: ");
|
|
for (int i = 0; i < depth; ++i) {
|
|
printf("%15d ", ratio[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
printf("* count: ");
|
|
for (int i = 0; i < depth; ++i) {
|
|
printf("%15d ", count[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
printf("* num_core_eff: %d\n", num_core_efficiencies);
|
|
printf("* num_core_types: %d\n", num_core_types);
|
|
printf("* core_types: ");
|
|
for (int i = 0; i < num_core_types; ++i)
|
|
printf("%3d ", core_types[i]);
|
|
printf("\n");
|
|
|
|
printf("* equivalent map:\n");
|
|
KMP_FOREACH_HW_TYPE(i) {
|
|
const char *key = __kmp_hw_get_keyword(i);
|
|
const char *value = __kmp_hw_get_keyword(equivalent[i]);
|
|
printf("%-15s -> %-15s\n", key, value);
|
|
}
|
|
|
|
printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
|
|
|
|
printf("* num_hw_threads: %d\n", num_hw_threads);
|
|
printf("* hw_threads:\n");
|
|
for (int i = 0; i < num_hw_threads; ++i) {
|
|
hw_threads[i].print();
|
|
}
|
|
printf("***********************\n");
|
|
}
|
|
|
|
void kmp_topology_t::print(const char *env_var) const {
|
|
kmp_str_buf_t buf;
|
|
int print_types_depth;
|
|
__kmp_str_buf_init(&buf);
|
|
kmp_hw_t print_types[KMP_HW_LAST + 2];
|
|
|
|
// Num Available Threads
|
|
if (num_hw_threads) {
|
|
KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
|
|
} else {
|
|
KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc);
|
|
}
|
|
|
|
// Uniform or not
|
|
if (is_uniform()) {
|
|
KMP_INFORM(Uniform, env_var);
|
|
} else {
|
|
KMP_INFORM(NonUniform, env_var);
|
|
}
|
|
|
|
// Equivalent types
|
|
KMP_FOREACH_HW_TYPE(type) {
|
|
kmp_hw_t eq_type = equivalent[type];
|
|
if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
|
|
KMP_INFORM(AffEqualTopologyTypes, env_var,
|
|
__kmp_hw_get_catalog_string(type),
|
|
__kmp_hw_get_catalog_string(eq_type));
|
|
}
|
|
}
|
|
|
|
// Quick topology
|
|
KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
|
|
// Create a print types array that always guarantees printing
|
|
// the core and thread level
|
|
print_types_depth = 0;
|
|
for (int level = 0; level < depth; ++level)
|
|
print_types[print_types_depth++] = types[level];
|
|
if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
|
|
// Force in the core level for quick topology
|
|
if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
|
|
// Force core before thread e.g., 1 socket X 2 threads/socket
|
|
// becomes 1 socket X 1 core/socket X 2 threads/socket
|
|
print_types[print_types_depth - 1] = KMP_HW_CORE;
|
|
print_types[print_types_depth++] = KMP_HW_THREAD;
|
|
} else {
|
|
print_types[print_types_depth++] = KMP_HW_CORE;
|
|
}
|
|
}
|
|
// Always put threads at very end of quick topology
|
|
if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
|
|
print_types[print_types_depth++] = KMP_HW_THREAD;
|
|
|
|
__kmp_str_buf_clear(&buf);
|
|
kmp_hw_t numerator_type;
|
|
kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
|
|
int core_level = get_level(KMP_HW_CORE);
|
|
int ncores = get_count(core_level);
|
|
|
|
for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
|
|
int c;
|
|
bool plural;
|
|
numerator_type = print_types[plevel];
|
|
KMP_ASSERT_VALID_HW_TYPE(numerator_type);
|
|
if (equivalent[numerator_type] != numerator_type)
|
|
c = 1;
|
|
else
|
|
c = get_ratio(level++);
|
|
plural = (c > 1);
|
|
if (plevel == 0) {
|
|
__kmp_str_buf_print(&buf, "%d %s", c,
|
|
__kmp_hw_get_catalog_string(numerator_type, plural));
|
|
} else {
|
|
__kmp_str_buf_print(&buf, " x %d %s/%s", c,
|
|
__kmp_hw_get_catalog_string(numerator_type, plural),
|
|
__kmp_hw_get_catalog_string(denominator_type));
|
|
}
|
|
denominator_type = numerator_type;
|
|
}
|
|
KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
|
|
|
|
// Hybrid topology information
|
|
if (__kmp_is_hybrid_cpu()) {
|
|
for (int i = 0; i < num_core_types; ++i) {
|
|
kmp_hw_core_type_t core_type = core_types[i];
|
|
kmp_hw_attr_t attr;
|
|
attr.clear();
|
|
attr.set_core_type(core_type);
|
|
int ncores = get_ncores_with_attr(attr);
|
|
if (ncores > 0) {
|
|
KMP_INFORM(TopologyHybrid, env_var, ncores,
|
|
__kmp_hw_get_core_type_string(core_type));
|
|
KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
|
|
for (int eff = 0; eff < num_core_efficiencies; ++eff) {
|
|
attr.set_core_eff(eff);
|
|
int ncores_with_eff = get_ncores_with_attr(attr);
|
|
if (ncores_with_eff > 0) {
|
|
KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (num_hw_threads <= 0) {
|
|
__kmp_str_buf_free(&buf);
|
|
return;
|
|
}
|
|
|
|
// Full OS proc to hardware thread map
|
|
KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
|
|
for (int i = 0; i < num_hw_threads; i++) {
|
|
__kmp_str_buf_clear(&buf);
|
|
for (int level = 0; level < depth; ++level) {
|
|
kmp_hw_t type = types[level];
|
|
__kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
|
|
__kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
|
|
}
|
|
if (__kmp_is_hybrid_cpu())
|
|
__kmp_str_buf_print(
|
|
&buf, "(%s)",
|
|
__kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
|
|
KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
|
|
}
|
|
|
|
__kmp_str_buf_free(&buf);
|
|
}
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
|
|
const char *env_var = __kmp_get_affinity_env_var(affinity);
|
|
// If requested hybrid CPU attributes for granularity (either OMP_PLACES or
|
|
// KMP_AFFINITY), but none exist, then reset granularity and have below method
|
|
// select a granularity and warn user.
|
|
if (!__kmp_is_hybrid_cpu()) {
|
|
if (affinity.core_attr_gran.valid) {
|
|
// OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores
|
|
// instead
|
|
KMP_AFF_WARNING(
|
|
affinity, AffIgnoringNonHybrid, env_var,
|
|
__kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
|
|
affinity.gran = KMP_HW_CORE;
|
|
affinity.gran_levels = -1;
|
|
affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
|
|
affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
|
|
} else if (affinity.flags.core_types_gran ||
|
|
affinity.flags.core_effs_gran) {
|
|
// OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead
|
|
if (affinity.flags.omp_places) {
|
|
KMP_AFF_WARNING(
|
|
affinity, AffIgnoringNonHybrid, env_var,
|
|
__kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
|
|
} else {
|
|
// KMP_AFFINITY=granularity=core_type|core_eff,...
|
|
KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
|
|
"Intel(R) Hybrid Technology core attribute",
|
|
__kmp_hw_get_catalog_string(KMP_HW_CORE));
|
|
}
|
|
affinity.gran = KMP_HW_CORE;
|
|
affinity.gran_levels = -1;
|
|
affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
|
|
affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
|
|
}
|
|
}
|
|
// Set the number of affinity granularity levels
|
|
if (affinity.gran_levels < 0) {
|
|
kmp_hw_t gran_type = get_equivalent_type(affinity.gran);
|
|
// Check if user's granularity request is valid
|
|
if (gran_type == KMP_HW_UNKNOWN) {
|
|
// First try core, then thread, then package
|
|
kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
|
|
for (auto g : gran_types) {
|
|
if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
|
|
gran_type = g;
|
|
break;
|
|
}
|
|
}
|
|
KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
|
|
// Warn user what granularity setting will be used instead
|
|
KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
|
|
__kmp_hw_get_catalog_string(affinity.gran),
|
|
__kmp_hw_get_catalog_string(gran_type));
|
|
affinity.gran = gran_type;
|
|
}
|
|
#if KMP_GROUP_AFFINITY
|
|
// If more than one processor group exists, and the level of
|
|
// granularity specified by the user is too coarse, then the
|
|
// granularity must be adjusted "down" to processor group affinity
|
|
// because threads can only exist within one processor group.
|
|
// For example, if a user sets granularity=socket and there are two
|
|
// processor groups that cover a socket, then the runtime must
|
|
// restrict the granularity down to the processor group level.
|
|
if (__kmp_num_proc_groups > 1) {
|
|
int gran_depth = get_level(gran_type);
|
|
int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
|
|
if (gran_depth >= 0 && proc_group_depth >= 0 &&
|
|
gran_depth < proc_group_depth) {
|
|
KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,
|
|
__kmp_hw_get_catalog_string(affinity.gran));
|
|
affinity.gran = gran_type = KMP_HW_PROC_GROUP;
|
|
}
|
|
}
|
|
#endif
|
|
affinity.gran_levels = 0;
|
|
for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
|
|
affinity.gran_levels++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void kmp_topology_t::canonicalize() {
|
|
#if KMP_GROUP_AFFINITY
|
|
_insert_windows_proc_groups();
|
|
#endif
|
|
_remove_radix1_layers();
|
|
_gather_enumeration_information();
|
|
_discover_uniformity();
|
|
_set_sub_ids();
|
|
_set_globals();
|
|
_set_last_level_cache();
|
|
|
|
#if KMP_MIC_SUPPORTED
|
|
// Manually Add L2 = Tile equivalence
|
|
if (__kmp_mic_type == mic3) {
|
|
if (get_level(KMP_HW_L2) != -1)
|
|
set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
|
|
else if (get_level(KMP_HW_TILE) != -1)
|
|
set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
|
|
}
|
|
#endif
|
|
|
|
// Perform post canonicalization checking
|
|
KMP_ASSERT(depth > 0);
|
|
for (int level = 0; level < depth; ++level) {
|
|
// All counts, ratios, and types must be valid
|
|
KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
|
|
KMP_ASSERT_VALID_HW_TYPE(types[level]);
|
|
// Detected types must point to themselves
|
|
KMP_ASSERT(equivalent[types[level]] == types[level]);
|
|
}
|
|
}
|
|
|
|
// Canonicalize an explicit packages X cores/pkg X threads/core topology
|
|
void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
|
|
int nthreads_per_core, int ncores) {
|
|
int ndepth = 3;
|
|
depth = ndepth;
|
|
KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
|
|
for (int level = 0; level < depth; ++level) {
|
|
count[level] = 0;
|
|
ratio[level] = 0;
|
|
}
|
|
count[0] = npackages;
|
|
count[1] = ncores;
|
|
count[2] = __kmp_xproc;
|
|
ratio[0] = npackages;
|
|
ratio[1] = ncores_per_pkg;
|
|
ratio[2] = nthreads_per_core;
|
|
equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
|
|
equivalent[KMP_HW_CORE] = KMP_HW_CORE;
|
|
equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
|
|
types[0] = KMP_HW_SOCKET;
|
|
types[1] = KMP_HW_CORE;
|
|
types[2] = KMP_HW_THREAD;
|
|
//__kmp_avail_proc = __kmp_xproc;
|
|
_discover_uniformity();
|
|
}
|
|
|
|
// Represents running sub IDs for a single core attribute where
|
|
// attribute values have SIZE possibilities.
|
|
template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t {
|
|
int last_level; // last level in topology to consider for sub_ids
|
|
int sub_id[SIZE]; // The sub ID for a given attribute value
|
|
int prev_sub_id[KMP_HW_LAST];
|
|
IndexFunc indexer;
|
|
|
|
public:
|
|
kmp_sub_ids_t(int last_level) : last_level(last_level) {
|
|
KMP_ASSERT(last_level < KMP_HW_LAST);
|
|
for (size_t i = 0; i < SIZE; ++i)
|
|
sub_id[i] = -1;
|
|
for (size_t i = 0; i < KMP_HW_LAST; ++i)
|
|
prev_sub_id[i] = -1;
|
|
}
|
|
void update(const kmp_hw_thread_t &hw_thread) {
|
|
int idx = indexer(hw_thread);
|
|
KMP_ASSERT(idx < (int)SIZE);
|
|
for (int level = 0; level <= last_level; ++level) {
|
|
if (hw_thread.sub_ids[level] != prev_sub_id[level]) {
|
|
if (level < last_level)
|
|
sub_id[idx] = -1;
|
|
sub_id[idx]++;
|
|
break;
|
|
}
|
|
}
|
|
for (int level = 0; level <= last_level; ++level)
|
|
prev_sub_id[level] = hw_thread.sub_ids[level];
|
|
}
|
|
int get_sub_id(const kmp_hw_thread_t &hw_thread) const {
|
|
return sub_id[indexer(hw_thread)];
|
|
}
|
|
};
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
static kmp_str_buf_t *
|
|
__kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
|
|
bool plural) {
|
|
__kmp_str_buf_init(buf);
|
|
if (attr.is_core_type_valid())
|
|
__kmp_str_buf_print(buf, "%s %s",
|
|
__kmp_hw_get_core_type_string(attr.get_core_type()),
|
|
__kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
|
|
else
|
|
__kmp_str_buf_print(buf, "%s eff=%d",
|
|
__kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
|
|
attr.get_core_eff());
|
|
return buf;
|
|
}
|
|
|
|
bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) {
|
|
// Apply the filter
|
|
bool affected;
|
|
int new_index = 0;
|
|
for (int i = 0; i < num_hw_threads; ++i) {
|
|
int os_id = hw_threads[i].os_id;
|
|
if (KMP_CPU_ISSET(os_id, mask)) {
|
|
if (i != new_index)
|
|
hw_threads[new_index] = hw_threads[i];
|
|
new_index++;
|
|
} else {
|
|
KMP_CPU_CLR(os_id, __kmp_affin_fullMask);
|
|
__kmp_avail_proc--;
|
|
}
|
|
}
|
|
|
|
KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
|
|
affected = (num_hw_threads != new_index);
|
|
num_hw_threads = new_index;
|
|
|
|
// Post hardware subset canonicalization
|
|
if (affected) {
|
|
_gather_enumeration_information();
|
|
_discover_uniformity();
|
|
_set_globals();
|
|
_set_last_level_cache();
|
|
#if KMP_OS_WINDOWS
|
|
// Copy filtered full mask if topology has single processor group
|
|
if (__kmp_num_proc_groups <= 1)
|
|
#endif
|
|
__kmp_affin_origMask->copy(__kmp_affin_fullMask);
|
|
}
|
|
return affected;
|
|
}
|
|
|
|
// Apply the KMP_HW_SUBSET envirable to the topology
|
|
// Returns true if KMP_HW_SUBSET filtered any processors
|
|
// otherwise, returns false
|
|
bool kmp_topology_t::filter_hw_subset() {
|
|
// If KMP_HW_SUBSET wasn't requested, then do nothing.
|
|
if (!__kmp_hw_subset)
|
|
return false;
|
|
|
|
// First, sort the KMP_HW_SUBSET items by the machine topology
|
|
__kmp_hw_subset->sort();
|
|
|
|
// Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
|
|
bool using_core_types = false;
|
|
bool using_core_effs = false;
|
|
int hw_subset_depth = __kmp_hw_subset->get_depth();
|
|
kmp_hw_t specified[KMP_HW_LAST];
|
|
int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
|
|
KMP_ASSERT(hw_subset_depth > 0);
|
|
KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
|
|
int core_level = get_level(KMP_HW_CORE);
|
|
for (int i = 0; i < hw_subset_depth; ++i) {
|
|
int max_count;
|
|
const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
|
|
int num = item.num[0];
|
|
int offset = item.offset[0];
|
|
kmp_hw_t type = item.type;
|
|
kmp_hw_t equivalent_type = equivalent[type];
|
|
int level = get_level(type);
|
|
topology_levels[i] = level;
|
|
|
|
// Check to see if current layer is in detected machine topology
|
|
if (equivalent_type != KMP_HW_UNKNOWN) {
|
|
__kmp_hw_subset->at(i).type = equivalent_type;
|
|
} else {
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,
|
|
__kmp_hw_get_catalog_string(type));
|
|
return false;
|
|
}
|
|
|
|
// Check to see if current layer has already been
|
|
// specified either directly or through an equivalent type
|
|
if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,
|
|
__kmp_hw_get_catalog_string(type),
|
|
__kmp_hw_get_catalog_string(specified[equivalent_type]));
|
|
return false;
|
|
}
|
|
specified[equivalent_type] = type;
|
|
|
|
// Check to see if each layer's num & offset parameters are valid
|
|
max_count = get_ratio(level);
|
|
if (max_count < 0 ||
|
|
(num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
|
|
bool plural = (num > 1);
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,
|
|
__kmp_hw_get_catalog_string(type, plural));
|
|
return false;
|
|
}
|
|
|
|
// Check to see if core attributes are consistent
|
|
if (core_level == level) {
|
|
// Determine which core attributes are specified
|
|
for (int j = 0; j < item.num_attrs; ++j) {
|
|
if (item.attr[j].is_core_type_valid())
|
|
using_core_types = true;
|
|
if (item.attr[j].is_core_eff_valid())
|
|
using_core_effs = true;
|
|
}
|
|
|
|
// Check if using a single core attribute on non-hybrid arch.
|
|
// Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
|
|
//
|
|
// Check if using multiple core attributes on non-hyrbid arch.
|
|
// Ignore all of KMP_HW_SUBSET if this is the case.
|
|
if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
|
|
if (item.num_attrs == 1) {
|
|
if (using_core_effs) {
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
|
|
"efficiency");
|
|
} else {
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
|
|
"core_type");
|
|
}
|
|
using_core_effs = false;
|
|
using_core_types = false;
|
|
} else {
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check if using both core types and core efficiencies together
|
|
if (using_core_types && using_core_effs) {
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",
|
|
"efficiency");
|
|
return false;
|
|
}
|
|
|
|
// Check that core efficiency values are valid
|
|
if (using_core_effs) {
|
|
for (int j = 0; j < item.num_attrs; ++j) {
|
|
if (item.attr[j].is_core_eff_valid()) {
|
|
int core_eff = item.attr[j].get_core_eff();
|
|
if (core_eff < 0 || core_eff >= num_core_efficiencies) {
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
__kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
|
|
__kmp_msg(kmp_ms_warning,
|
|
KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
|
|
KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
|
|
__kmp_msg_null);
|
|
__kmp_str_buf_free(&buf);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that the number of requested cores with attributes is valid
|
|
if (using_core_types || using_core_effs) {
|
|
for (int j = 0; j < item.num_attrs; ++j) {
|
|
int num = item.num[j];
|
|
int offset = item.offset[j];
|
|
int level_above = core_level - 1;
|
|
if (level_above >= 0) {
|
|
max_count = get_ncores_with_attr_per(item.attr[j], level_above);
|
|
if (max_count <= 0 ||
|
|
(num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
|
|
kmp_str_buf_t buf;
|
|
__kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str);
|
|
__kmp_str_buf_free(&buf);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
|
|
for (int j = 0; j < item.num_attrs; ++j) {
|
|
// Ambiguous use of specific core attribute + generic core
|
|
// e.g., 4c & 3c:intel_core or 4c & 3c:eff1
|
|
if (!item.attr[j]) {
|
|
kmp_hw_attr_t other_attr;
|
|
for (int k = 0; k < item.num_attrs; ++k) {
|
|
if (item.attr[k] != item.attr[j]) {
|
|
other_attr = item.attr[k];
|
|
break;
|
|
}
|
|
}
|
|
kmp_str_buf_t buf;
|
|
__kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,
|
|
__kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
|
|
__kmp_str_buf_free(&buf);
|
|
return false;
|
|
}
|
|
// Allow specifying a specific core type or core eff exactly once
|
|
for (int k = 0; k < j; ++k) {
|
|
if (!item.attr[j] || !item.attr[k])
|
|
continue;
|
|
if (item.attr[k] == item.attr[j]) {
|
|
kmp_str_buf_t buf;
|
|
__kmp_hw_get_catalog_core_string(item.attr[j], &buf,
|
|
item.num[j] > 0);
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str);
|
|
__kmp_str_buf_free(&buf);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct core_type_indexer {
|
|
int operator()(const kmp_hw_thread_t &t) const {
|
|
switch (t.attrs.get_core_type()) {
|
|
case KMP_HW_CORE_TYPE_UNKNOWN:
|
|
case KMP_HW_MAX_NUM_CORE_TYPES:
|
|
return 0;
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
case KMP_HW_CORE_TYPE_ATOM:
|
|
return 1;
|
|
case KMP_HW_CORE_TYPE_CORE:
|
|
return 2;
|
|
#endif
|
|
}
|
|
KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration");
|
|
KMP_BUILTIN_UNREACHABLE;
|
|
}
|
|
};
|
|
struct core_eff_indexer {
|
|
int operator()(const kmp_hw_thread_t &t) const {
|
|
return t.attrs.get_core_eff();
|
|
}
|
|
};
|
|
|
|
kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids(
|
|
core_level);
|
|
kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids(
|
|
core_level);
|
|
|
|
// Determine which hardware threads should be filtered.
|
|
int num_filtered = 0;
|
|
kmp_affin_mask_t *filtered_mask;
|
|
KMP_CPU_ALLOC(filtered_mask);
|
|
KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask);
|
|
for (int i = 0; i < num_hw_threads; ++i) {
|
|
kmp_hw_thread_t &hw_thread = hw_threads[i];
|
|
// Update type_sub_id
|
|
if (using_core_types)
|
|
core_type_sub_ids.update(hw_thread);
|
|
if (using_core_effs)
|
|
core_eff_sub_ids.update(hw_thread);
|
|
|
|
// Check to see if this hardware thread should be filtered
|
|
bool should_be_filtered = false;
|
|
for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
|
|
++hw_subset_index) {
|
|
const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
|
|
int level = topology_levels[hw_subset_index];
|
|
if (level == -1)
|
|
continue;
|
|
if ((using_core_effs || using_core_types) && level == core_level) {
|
|
// Look for the core attribute in KMP_HW_SUBSET which corresponds
|
|
// to this hardware thread's core attribute. Use this num,offset plus
|
|
// the running sub_id for the particular core attribute of this hardware
|
|
// thread to determine if the hardware thread should be filtered or not.
|
|
int attr_idx;
|
|
kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
|
|
int core_eff = hw_thread.attrs.get_core_eff();
|
|
for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
|
|
if (using_core_types &&
|
|
hw_subset_item.attr[attr_idx].get_core_type() == core_type)
|
|
break;
|
|
if (using_core_effs &&
|
|
hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
|
|
break;
|
|
}
|
|
// This core attribute isn't in the KMP_HW_SUBSET so always filter it.
|
|
if (attr_idx == hw_subset_item.num_attrs) {
|
|
should_be_filtered = true;
|
|
break;
|
|
}
|
|
int sub_id;
|
|
int num = hw_subset_item.num[attr_idx];
|
|
int offset = hw_subset_item.offset[attr_idx];
|
|
if (using_core_types)
|
|
sub_id = core_type_sub_ids.get_sub_id(hw_thread);
|
|
else
|
|
sub_id = core_eff_sub_ids.get_sub_id(hw_thread);
|
|
if (sub_id < offset ||
|
|
(num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
|
|
should_be_filtered = true;
|
|
break;
|
|
}
|
|
} else {
|
|
int num = hw_subset_item.num[0];
|
|
int offset = hw_subset_item.offset[0];
|
|
if (hw_thread.sub_ids[level] < offset ||
|
|
(num != kmp_hw_subset_t::USE_ALL &&
|
|
hw_thread.sub_ids[level] >= offset + num)) {
|
|
should_be_filtered = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Collect filtering information
|
|
if (should_be_filtered) {
|
|
KMP_CPU_CLR(hw_thread.os_id, filtered_mask);
|
|
num_filtered++;
|
|
}
|
|
}
|
|
|
|
// One last check that we shouldn't allow filtering entire machine
|
|
if (num_filtered == num_hw_threads) {
|
|
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered);
|
|
return false;
|
|
}
|
|
|
|
// Apply the filter
|
|
restrict_to_mask(filtered_mask);
|
|
return true;
|
|
}
|
|
|
|
bool kmp_topology_t::is_close(int hwt1, int hwt2,
|
|
const kmp_affinity_t &stgs) const {
|
|
int hw_level = stgs.gran_levels;
|
|
if (hw_level >= depth)
|
|
return true;
|
|
bool retval = true;
|
|
const kmp_hw_thread_t &t1 = hw_threads[hwt1];
|
|
const kmp_hw_thread_t &t2 = hw_threads[hwt2];
|
|
if (stgs.flags.core_types_gran)
|
|
return t1.attrs.get_core_type() == t2.attrs.get_core_type();
|
|
if (stgs.flags.core_effs_gran)
|
|
return t1.attrs.get_core_eff() == t2.attrs.get_core_eff();
|
|
for (int i = 0; i < (depth - hw_level); ++i) {
|
|
if (t1.ids[i] != t2.ids[i])
|
|
return false;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool KMPAffinity::picked_api = false;
|
|
|
|
void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
|
|
void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
|
|
void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
|
|
void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
|
|
void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
|
|
void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
|
|
|
|
void KMPAffinity::pick_api() {
|
|
KMPAffinity *affinity_dispatch;
|
|
if (picked_api)
|
|
return;
|
|
#if KMP_USE_HWLOC
|
|
// Only use Hwloc if affinity isn't explicitly disabled and
|
|
// user requests Hwloc topology method
|
|
if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
|
|
__kmp_affinity.type != affinity_disabled) {
|
|
affinity_dispatch = new KMPHwlocAffinity();
|
|
} else
|
|
#endif
|
|
{
|
|
affinity_dispatch = new KMPNativeAffinity();
|
|
}
|
|
__kmp_affinity_dispatch = affinity_dispatch;
|
|
picked_api = true;
|
|
}
|
|
|
|
void KMPAffinity::destroy_api() {
|
|
if (__kmp_affinity_dispatch != NULL) {
|
|
delete __kmp_affinity_dispatch;
|
|
__kmp_affinity_dispatch = NULL;
|
|
picked_api = false;
|
|
}
|
|
}
|
|
|
|
#define KMP_ADVANCE_SCAN(scan) \
|
|
while (*scan != '\0') { \
|
|
scan++; \
|
|
}
|
|
|
|
// Print the affinity mask to the character array in a pretty format.
|
|
// The format is a comma separated list of non-negative integers or integer
|
|
// ranges: e.g., 1,2,3-5,7,9-15
|
|
// The format can also be the string "{<empty>}" if no bits are set in mask
|
|
char *__kmp_affinity_print_mask(char *buf, int buf_len,
|
|
kmp_affin_mask_t *mask) {
|
|
int start = 0, finish = 0, previous = 0;
|
|
bool first_range;
|
|
KMP_ASSERT(buf);
|
|
KMP_ASSERT(buf_len >= 40);
|
|
KMP_ASSERT(mask);
|
|
char *scan = buf;
|
|
char *end = buf + buf_len - 1;
|
|
|
|
// Check for empty set.
|
|
if (mask->begin() == mask->end()) {
|
|
KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
|
|
KMP_ADVANCE_SCAN(scan);
|
|
KMP_ASSERT(scan <= end);
|
|
return buf;
|
|
}
|
|
|
|
first_range = true;
|
|
start = mask->begin();
|
|
while (1) {
|
|
// Find next range
|
|
// [start, previous] is inclusive range of contiguous bits in mask
|
|
for (finish = mask->next(start), previous = start;
|
|
finish == previous + 1 && finish != mask->end();
|
|
finish = mask->next(finish)) {
|
|
previous = finish;
|
|
}
|
|
|
|
// The first range does not need a comma printed before it, but the rest
|
|
// of the ranges do need a comma beforehand
|
|
if (!first_range) {
|
|
KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
|
|
KMP_ADVANCE_SCAN(scan);
|
|
} else {
|
|
first_range = false;
|
|
}
|
|
// Range with three or more contiguous bits in the affinity mask
|
|
if (previous - start > 1) {
|
|
KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
|
|
} else {
|
|
// Range with one or two contiguous bits in the affinity mask
|
|
KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
|
|
KMP_ADVANCE_SCAN(scan);
|
|
if (previous - start > 0) {
|
|
KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
|
|
}
|
|
}
|
|
KMP_ADVANCE_SCAN(scan);
|
|
// Start over with new start point
|
|
start = finish;
|
|
if (start == mask->end())
|
|
break;
|
|
// Check for overflow
|
|
if (end - scan < 2)
|
|
break;
|
|
}
|
|
|
|
// Check for overflow
|
|
KMP_ASSERT(scan <= end);
|
|
return buf;
|
|
}
|
|
#undef KMP_ADVANCE_SCAN
|
|
|
|
// Print the affinity mask to the string buffer object in a pretty format
|
|
// The format is a comma separated list of non-negative integers or integer
|
|
// ranges: e.g., 1,2,3-5,7,9-15
|
|
// The format can also be the string "{<empty>}" if no bits are set in mask
|
|
kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
|
|
kmp_affin_mask_t *mask) {
|
|
int start = 0, finish = 0, previous = 0;
|
|
bool first_range;
|
|
KMP_ASSERT(buf);
|
|
KMP_ASSERT(mask);
|
|
|
|
__kmp_str_buf_clear(buf);
|
|
|
|
// Check for empty set.
|
|
if (mask->begin() == mask->end()) {
|
|
__kmp_str_buf_print(buf, "%s", "{<empty>}");
|
|
return buf;
|
|
}
|
|
|
|
first_range = true;
|
|
start = mask->begin();
|
|
while (1) {
|
|
// Find next range
|
|
// [start, previous] is inclusive range of contiguous bits in mask
|
|
for (finish = mask->next(start), previous = start;
|
|
finish == previous + 1 && finish != mask->end();
|
|
finish = mask->next(finish)) {
|
|
previous = finish;
|
|
}
|
|
|
|
// The first range does not need a comma printed before it, but the rest
|
|
// of the ranges do need a comma beforehand
|
|
if (!first_range) {
|
|
__kmp_str_buf_print(buf, "%s", ",");
|
|
} else {
|
|
first_range = false;
|
|
}
|
|
// Range with three or more contiguous bits in the affinity mask
|
|
if (previous - start > 1) {
|
|
__kmp_str_buf_print(buf, "%u-%u", start, previous);
|
|
} else {
|
|
// Range with one or two contiguous bits in the affinity mask
|
|
__kmp_str_buf_print(buf, "%u", start);
|
|
if (previous - start > 0) {
|
|
__kmp_str_buf_print(buf, ",%u", previous);
|
|
}
|
|
}
|
|
// Start over with new start point
|
|
start = finish;
|
|
if (start == mask->end())
|
|
break;
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
// Return (possibly empty) affinity mask representing the offline CPUs
|
|
// Caller must free the mask
|
|
kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
|
|
kmp_affin_mask_t *offline;
|
|
KMP_CPU_ALLOC(offline);
|
|
KMP_CPU_ZERO(offline);
|
|
int n, begin_cpu, end_cpu;
|
|
kmp_safe_raii_file_t offline_file;
|
|
auto skip_ws = [](FILE *f) {
|
|
int c;
|
|
do {
|
|
c = fgetc(f);
|
|
} while (isspace(c));
|
|
if (c != EOF)
|
|
ungetc(c, f);
|
|
};
|
|
// File contains CSV of integer ranges representing the offline CPUs
|
|
// e.g., 1,2,4-7,9,11-15
|
|
int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
|
|
if (status != 0)
|
|
return offline;
|
|
while (!feof(offline_file)) {
|
|
skip_ws(offline_file);
|
|
n = fscanf(offline_file, "%d", &begin_cpu);
|
|
if (n != 1)
|
|
break;
|
|
skip_ws(offline_file);
|
|
int c = fgetc(offline_file);
|
|
if (c == EOF || c == ',') {
|
|
// Just single CPU
|
|
end_cpu = begin_cpu;
|
|
} else if (c == '-') {
|
|
// Range of CPUs
|
|
skip_ws(offline_file);
|
|
n = fscanf(offline_file, "%d", &end_cpu);
|
|
if (n != 1)
|
|
break;
|
|
skip_ws(offline_file);
|
|
c = fgetc(offline_file); // skip ','
|
|
} else {
|
|
// Syntax problem
|
|
break;
|
|
}
|
|
// Ensure a valid range of CPUs
|
|
if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
|
|
end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
|
|
continue;
|
|
}
|
|
// Insert [begin_cpu, end_cpu] into offline mask
|
|
for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
|
|
KMP_CPU_SET(cpu, offline);
|
|
}
|
|
}
|
|
return offline;
|
|
}
|
|
|
|
// Return the number of available procs
|
|
int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
|
|
int avail_proc = 0;
|
|
KMP_CPU_ZERO(mask);
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
|
|
if (__kmp_num_proc_groups > 1) {
|
|
int group;
|
|
KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
|
|
for (group = 0; group < __kmp_num_proc_groups; group++) {
|
|
int i;
|
|
int num = __kmp_GetActiveProcessorCount(group);
|
|
for (i = 0; i < num; i++) {
|
|
KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
|
|
avail_proc++;
|
|
}
|
|
}
|
|
} else
|
|
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
|
|
{
|
|
int proc;
|
|
kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
|
|
for (proc = 0; proc < __kmp_xproc; proc++) {
|
|
// Skip offline CPUs
|
|
if (KMP_CPU_ISSET(proc, offline_cpus))
|
|
continue;
|
|
KMP_CPU_SET(proc, mask);
|
|
avail_proc++;
|
|
}
|
|
KMP_CPU_FREE(offline_cpus);
|
|
}
|
|
|
|
return avail_proc;
|
|
}
|
|
|
|
// All of the __kmp_affinity_create_*_map() routines should allocate the
|
|
// internal topology object and set the layer ids for it. Each routine
|
|
// returns a boolean on whether it was successful at doing so.
|
|
kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
|
|
// Original mask is a subset of full mask in multiple processor groups topology
|
|
kmp_affin_mask_t *__kmp_affin_origMask = NULL;
|
|
|
|
#if KMP_USE_HWLOC
|
|
static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
|
|
#if HWLOC_API_VERSION >= 0x00020000
|
|
return hwloc_obj_type_is_cache(obj->type);
|
|
#else
|
|
return obj->type == HWLOC_OBJ_CACHE;
|
|
#endif
|
|
}
|
|
|
|
// Returns KMP_HW_* type derived from HWLOC_* type
|
|
static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
|
|
|
|
if (__kmp_hwloc_is_cache_type(obj)) {
|
|
if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
|
|
return KMP_HW_UNKNOWN;
|
|
switch (obj->attr->cache.depth) {
|
|
case 1:
|
|
return KMP_HW_L1;
|
|
case 2:
|
|
#if KMP_MIC_SUPPORTED
|
|
if (__kmp_mic_type == mic3) {
|
|
return KMP_HW_TILE;
|
|
}
|
|
#endif
|
|
return KMP_HW_L2;
|
|
case 3:
|
|
return KMP_HW_L3;
|
|
}
|
|
return KMP_HW_UNKNOWN;
|
|
}
|
|
|
|
switch (obj->type) {
|
|
case HWLOC_OBJ_PACKAGE:
|
|
return KMP_HW_SOCKET;
|
|
case HWLOC_OBJ_NUMANODE:
|
|
return KMP_HW_NUMA;
|
|
case HWLOC_OBJ_CORE:
|
|
return KMP_HW_CORE;
|
|
case HWLOC_OBJ_PU:
|
|
return KMP_HW_THREAD;
|
|
case HWLOC_OBJ_GROUP:
|
|
#if HWLOC_API_VERSION >= 0x00020000
|
|
if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
|
|
return KMP_HW_DIE;
|
|
else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
|
|
return KMP_HW_TILE;
|
|
else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
|
|
return KMP_HW_MODULE;
|
|
else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
|
|
return KMP_HW_PROC_GROUP;
|
|
#endif
|
|
return KMP_HW_UNKNOWN;
|
|
#if HWLOC_API_VERSION >= 0x00020100
|
|
case HWLOC_OBJ_DIE:
|
|
return KMP_HW_DIE;
|
|
#endif
|
|
}
|
|
return KMP_HW_UNKNOWN;
|
|
}
|
|
|
|
// Returns the number of objects of type 'type' below 'obj' within the topology
|
|
// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
|
|
// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
|
|
// object.
|
|
static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
|
|
hwloc_obj_type_t type) {
|
|
int retval = 0;
|
|
hwloc_obj_t first;
|
|
for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
|
|
obj->logical_index, type, 0);
|
|
first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
|
|
obj->type, first) == obj;
|
|
first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
|
|
first)) {
|
|
++retval;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
// This gets the sub_id for a lower object under a higher object in the
|
|
// topology tree
|
|
static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
|
|
hwloc_obj_t lower) {
|
|
hwloc_obj_t obj;
|
|
hwloc_obj_type_t ltype = lower->type;
|
|
int lindex = lower->logical_index - 1;
|
|
int sub_id = 0;
|
|
// Get the previous lower object
|
|
obj = hwloc_get_obj_by_type(t, ltype, lindex);
|
|
while (obj && lindex >= 0 &&
|
|
hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
|
|
if (obj->userdata) {
|
|
sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
|
|
break;
|
|
}
|
|
sub_id++;
|
|
lindex--;
|
|
obj = hwloc_get_obj_by_type(t, ltype, lindex);
|
|
}
|
|
// store sub_id + 1 so that 0 is differed from NULL
|
|
lower->userdata = RCAST(void *, sub_id + 1);
|
|
return sub_id;
|
|
}
|
|
|
|
static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
|
|
kmp_hw_t type;
|
|
int hw_thread_index, sub_id;
|
|
int depth;
|
|
hwloc_obj_t pu, obj, root, prev;
|
|
kmp_hw_t types[KMP_HW_LAST];
|
|
hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
|
|
|
|
hwloc_topology_t tp = __kmp_hwloc_topology;
|
|
*msg_id = kmp_i18n_null;
|
|
if (__kmp_affinity.flags.verbose) {
|
|
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
|
|
}
|
|
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
// Hack to try and infer the machine topology using only the data
|
|
// available from hwloc on the current thread, and __kmp_xproc.
|
|
KMP_ASSERT(__kmp_affinity.type == affinity_none);
|
|
// hwloc only guarantees existance of PU object, so check PACKAGE and CORE
|
|
hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
|
|
if (o != NULL)
|
|
nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
|
|
else
|
|
nCoresPerPkg = 1; // no PACKAGE found
|
|
o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
|
|
if (o != NULL)
|
|
__kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
|
|
else
|
|
__kmp_nThreadsPerCore = 1; // no CORE found
|
|
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
|
|
if (nCoresPerPkg == 0)
|
|
nCoresPerPkg = 1; // to prevent possible division by 0
|
|
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
|
|
return true;
|
|
}
|
|
|
|
#if HWLOC_API_VERSION >= 0x00020400
|
|
// Handle multiple types of cores if they exist on the system
|
|
int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
|
|
|
|
typedef struct kmp_hwloc_cpukinds_info_t {
|
|
int efficiency;
|
|
kmp_hw_core_type_t core_type;
|
|
hwloc_bitmap_t mask;
|
|
} kmp_hwloc_cpukinds_info_t;
|
|
kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
|
|
|
|
if (nr_cpu_kinds > 0) {
|
|
unsigned nr_infos;
|
|
struct hwloc_info_s *infos;
|
|
cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
|
|
sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
|
|
for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
|
|
cpukinds[idx].efficiency = -1;
|
|
cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
|
|
cpukinds[idx].mask = hwloc_bitmap_alloc();
|
|
if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
|
|
&cpukinds[idx].efficiency, &nr_infos, &infos,
|
|
0) == 0) {
|
|
for (unsigned i = 0; i < nr_infos; ++i) {
|
|
if (__kmp_str_match("CoreType", 8, infos[i].name)) {
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
|
|
cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
|
|
break;
|
|
} else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
|
|
cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
root = hwloc_get_root_obj(tp);
|
|
|
|
// Figure out the depth and types in the topology
|
|
depth = 0;
|
|
pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
|
|
KMP_ASSERT(pu);
|
|
obj = pu;
|
|
types[depth] = KMP_HW_THREAD;
|
|
hwloc_types[depth] = obj->type;
|
|
depth++;
|
|
while (obj != root && obj != NULL) {
|
|
obj = obj->parent;
|
|
#if HWLOC_API_VERSION >= 0x00020000
|
|
if (obj->memory_arity) {
|
|
hwloc_obj_t memory;
|
|
for (memory = obj->memory_first_child; memory;
|
|
memory = hwloc_get_next_child(tp, obj, memory)) {
|
|
if (memory->type == HWLOC_OBJ_NUMANODE)
|
|
break;
|
|
}
|
|
if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
|
|
types[depth] = KMP_HW_NUMA;
|
|
hwloc_types[depth] = memory->type;
|
|
depth++;
|
|
}
|
|
}
|
|
#endif
|
|
type = __kmp_hwloc_type_2_topology_type(obj);
|
|
if (type != KMP_HW_UNKNOWN) {
|
|
types[depth] = type;
|
|
hwloc_types[depth] = obj->type;
|
|
depth++;
|
|
}
|
|
}
|
|
KMP_ASSERT(depth > 0);
|
|
|
|
// Get the order for the types correct
|
|
for (int i = 0, j = depth - 1; i < j; ++i, --j) {
|
|
hwloc_obj_type_t hwloc_temp = hwloc_types[i];
|
|
kmp_hw_t temp = types[i];
|
|
types[i] = types[j];
|
|
types[j] = temp;
|
|
hwloc_types[i] = hwloc_types[j];
|
|
hwloc_types[j] = hwloc_temp;
|
|
}
|
|
|
|
// Allocate the data structure to be returned.
|
|
__kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
|
|
|
|
hw_thread_index = 0;
|
|
pu = NULL;
|
|
while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
|
|
int index = depth - 1;
|
|
bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
|
|
kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
|
|
if (included) {
|
|
hw_thread.clear();
|
|
hw_thread.ids[index] = pu->logical_index;
|
|
hw_thread.os_id = pu->os_index;
|
|
// If multiple core types, then set that attribute for the hardware thread
|
|
#if HWLOC_API_VERSION >= 0x00020400
|
|
if (cpukinds) {
|
|
int cpukind_index = -1;
|
|
for (int i = 0; i < nr_cpu_kinds; ++i) {
|
|
if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
|
|
cpukind_index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (cpukind_index >= 0) {
|
|
hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
|
|
hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
|
|
}
|
|
}
|
|
#endif
|
|
index--;
|
|
}
|
|
obj = pu;
|
|
prev = obj;
|
|
while (obj != root && obj != NULL) {
|
|
obj = obj->parent;
|
|
#if HWLOC_API_VERSION >= 0x00020000
|
|
// NUMA Nodes are handled differently since they are not within the
|
|
// parent/child structure anymore. They are separate children
|
|
// of obj (memory_first_child points to first memory child)
|
|
if (obj->memory_arity) {
|
|
hwloc_obj_t memory;
|
|
for (memory = obj->memory_first_child; memory;
|
|
memory = hwloc_get_next_child(tp, obj, memory)) {
|
|
if (memory->type == HWLOC_OBJ_NUMANODE)
|
|
break;
|
|
}
|
|
if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
|
|
sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
|
|
if (included) {
|
|
hw_thread.ids[index] = memory->logical_index;
|
|
hw_thread.ids[index + 1] = sub_id;
|
|
index--;
|
|
}
|
|
prev = memory;
|
|
}
|
|
prev = obj;
|
|
}
|
|
#endif
|
|
type = __kmp_hwloc_type_2_topology_type(obj);
|
|
if (type != KMP_HW_UNKNOWN) {
|
|
sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
|
|
if (included) {
|
|
hw_thread.ids[index] = obj->logical_index;
|
|
hw_thread.ids[index + 1] = sub_id;
|
|
index--;
|
|
}
|
|
prev = obj;
|
|
}
|
|
}
|
|
if (included)
|
|
hw_thread_index++;
|
|
}
|
|
|
|
#if HWLOC_API_VERSION >= 0x00020400
|
|
// Free the core types information
|
|
if (cpukinds) {
|
|
for (int idx = 0; idx < nr_cpu_kinds; ++idx)
|
|
hwloc_bitmap_free(cpukinds[idx].mask);
|
|
__kmp_free(cpukinds);
|
|
}
|
|
#endif
|
|
__kmp_topology->sort_ids();
|
|
return true;
|
|
}
|
|
#endif // KMP_USE_HWLOC
|
|
|
|
// If we don't know how to retrieve the machine's processor topology, or
|
|
// encounter an error in doing so, this routine is called to form a "flat"
|
|
// mapping of os thread id's <-> processor id's.
|
|
static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
|
|
*msg_id = kmp_i18n_null;
|
|
int depth = 3;
|
|
kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
|
|
|
|
if (__kmp_affinity.flags.verbose) {
|
|
KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
|
|
}
|
|
|
|
// Even if __kmp_affinity.type == affinity_none, this routine might still
|
|
// be called to set __kmp_ncores, as well as
|
|
// __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
KMP_ASSERT(__kmp_affinity.type == affinity_none);
|
|
__kmp_ncores = nPackages = __kmp_xproc;
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
|
|
return true;
|
|
}
|
|
|
|
// When affinity is off, this routine will still be called to set
|
|
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
|
|
// Make sure all these vars are set correctly, and return now if affinity is
|
|
// not enabled.
|
|
__kmp_ncores = nPackages = __kmp_avail_proc;
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
|
|
|
|
// Construct the data structure to be returned.
|
|
__kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
|
|
int avail_ct = 0;
|
|
int i;
|
|
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
|
|
hw_thread.clear();
|
|
hw_thread.os_id = i;
|
|
hw_thread.ids[0] = i;
|
|
hw_thread.ids[1] = 0;
|
|
hw_thread.ids[2] = 0;
|
|
avail_ct++;
|
|
}
|
|
if (__kmp_affinity.flags.verbose) {
|
|
KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
// If multiple Windows* OS processor groups exist, we can create a 2-level
|
|
// topology map with the groups at level 0 and the individual procs at level 1.
|
|
// This facilitates letting the threads float among all procs in a group,
|
|
// if granularity=group (the default when there are multiple groups).
|
|
static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
|
|
*msg_id = kmp_i18n_null;
|
|
int depth = 3;
|
|
kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
|
|
const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
|
|
|
|
if (__kmp_affinity.flags.verbose) {
|
|
KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
|
|
}
|
|
|
|
// If we aren't affinity capable, then use flat topology
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
KMP_ASSERT(__kmp_affinity.type == affinity_none);
|
|
nPackages = __kmp_num_proc_groups;
|
|
__kmp_nThreadsPerCore = 1;
|
|
__kmp_ncores = __kmp_xproc;
|
|
nCoresPerPkg = nPackages / __kmp_ncores;
|
|
return true;
|
|
}
|
|
|
|
// Construct the data structure to be returned.
|
|
__kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
|
|
int avail_ct = 0;
|
|
int i;
|
|
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
|
|
hw_thread.clear();
|
|
hw_thread.os_id = i;
|
|
hw_thread.ids[0] = i / BITS_PER_GROUP;
|
|
hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
|
|
}
|
|
return true;
|
|
}
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
|
|
template <kmp_uint32 LSB, kmp_uint32 MSB>
|
|
static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
|
|
const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
|
|
const kmp_uint32 SHIFT_RIGHT = LSB;
|
|
kmp_uint32 retval = v;
|
|
retval <<= SHIFT_LEFT;
|
|
retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
|
|
return retval;
|
|
}
|
|
|
|
static int __kmp_cpuid_mask_width(int count) {
|
|
int r = 0;
|
|
|
|
while ((1 << r) < count)
|
|
++r;
|
|
return r;
|
|
}
|
|
|
|
class apicThreadInfo {
|
|
public:
|
|
unsigned osId; // param to __kmp_affinity_bind_thread
|
|
unsigned apicId; // from cpuid after binding
|
|
unsigned maxCoresPerPkg; // ""
|
|
unsigned maxThreadsPerPkg; // ""
|
|
unsigned pkgId; // inferred from above values
|
|
unsigned coreId; // ""
|
|
unsigned threadId; // ""
|
|
};
|
|
|
|
static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
|
|
const void *b) {
|
|
const apicThreadInfo *aa = (const apicThreadInfo *)a;
|
|
const apicThreadInfo *bb = (const apicThreadInfo *)b;
|
|
if (aa->pkgId < bb->pkgId)
|
|
return -1;
|
|
if (aa->pkgId > bb->pkgId)
|
|
return 1;
|
|
if (aa->coreId < bb->coreId)
|
|
return -1;
|
|
if (aa->coreId > bb->coreId)
|
|
return 1;
|
|
if (aa->threadId < bb->threadId)
|
|
return -1;
|
|
if (aa->threadId > bb->threadId)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
class kmp_cache_info_t {
|
|
public:
|
|
struct info_t {
|
|
unsigned level, mask;
|
|
};
|
|
kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
|
|
size_t get_depth() const { return depth; }
|
|
info_t &operator[](size_t index) { return table[index]; }
|
|
const info_t &operator[](size_t index) const { return table[index]; }
|
|
|
|
static kmp_hw_t get_topology_type(unsigned level) {
|
|
KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
|
|
switch (level) {
|
|
case 1:
|
|
return KMP_HW_L1;
|
|
case 2:
|
|
return KMP_HW_L2;
|
|
case 3:
|
|
return KMP_HW_L3;
|
|
}
|
|
return KMP_HW_UNKNOWN;
|
|
}
|
|
|
|
private:
|
|
static const int MAX_CACHE_LEVEL = 3;
|
|
|
|
size_t depth;
|
|
info_t table[MAX_CACHE_LEVEL];
|
|
|
|
void get_leaf4_levels() {
|
|
unsigned level = 0;
|
|
while (depth < MAX_CACHE_LEVEL) {
|
|
unsigned cache_type, max_threads_sharing;
|
|
unsigned cache_level, cache_mask_width;
|
|
kmp_cpuid buf2;
|
|
__kmp_x86_cpuid(4, level, &buf2);
|
|
cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
|
|
if (!cache_type)
|
|
break;
|
|
// Skip instruction caches
|
|
if (cache_type == 2) {
|
|
level++;
|
|
continue;
|
|
}
|
|
max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
|
|
cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
|
|
cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
|
|
table[depth].level = cache_level;
|
|
table[depth].mask = ((-1) << cache_mask_width);
|
|
depth++;
|
|
level++;
|
|
}
|
|
}
|
|
};
|
|
|
|
// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
|
|
// an algorithm which cycles through the available os threads, setting
|
|
// the current thread's affinity mask to that thread, and then retrieves
|
|
// the Apic Id for each thread context using the cpuid instruction.
|
|
static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
|
|
kmp_cpuid buf;
|
|
*msg_id = kmp_i18n_null;
|
|
|
|
if (__kmp_affinity.flags.verbose) {
|
|
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
|
|
}
|
|
|
|
// Check if cpuid leaf 4 is supported.
|
|
__kmp_x86_cpuid(0, 0, &buf);
|
|
if (buf.eax < 4) {
|
|
*msg_id = kmp_i18n_str_NoLeaf4Support;
|
|
return false;
|
|
}
|
|
|
|
// The algorithm used starts by setting the affinity to each available thread
|
|
// and retrieving info from the cpuid instruction, so if we are not capable of
|
|
// calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
|
|
// need to do something else - use the defaults that we calculated from
|
|
// issuing cpuid without binding to each proc.
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
// Hack to try and infer the machine topology using only the data
|
|
// available from cpuid on the current thread, and __kmp_xproc.
|
|
KMP_ASSERT(__kmp_affinity.type == affinity_none);
|
|
|
|
// Get an upper bound on the number of threads per package using cpuid(1).
|
|
// On some OS/chps combinations where HT is supported by the chip but is
|
|
// disabled, this value will be 2 on a single core chip. Usually, it will be
|
|
// 2 if HT is enabled and 1 if HT is disabled.
|
|
__kmp_x86_cpuid(1, 0, &buf);
|
|
int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
|
|
if (maxThreadsPerPkg == 0) {
|
|
maxThreadsPerPkg = 1;
|
|
}
|
|
|
|
// The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
|
|
// value.
|
|
//
|
|
// The author of cpu_count.cpp treated this only an upper bound on the
|
|
// number of cores, but I haven't seen any cases where it was greater than
|
|
// the actual number of cores, so we will treat it as exact in this block of
|
|
// code.
|
|
//
|
|
// First, we need to check if cpuid(4) is supported on this chip. To see if
|
|
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
|
|
// greater.
|
|
__kmp_x86_cpuid(0, 0, &buf);
|
|
if (buf.eax >= 4) {
|
|
__kmp_x86_cpuid(4, 0, &buf);
|
|
nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
|
|
} else {
|
|
nCoresPerPkg = 1;
|
|
}
|
|
|
|
// There is no way to reliably tell if HT is enabled without issuing the
|
|
// cpuid instruction from every thread, can correlating the cpuid info, so
|
|
// if the machine is not affinity capable, we assume that HT is off. We have
|
|
// seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
|
|
// does not support HT.
|
|
//
|
|
// - Older OSes are usually found on machines with older chips, which do not
|
|
// support HT.
|
|
// - The performance penalty for mistakenly identifying a machine as HT when
|
|
// it isn't (which results in blocktime being incorrectly set to 0) is
|
|
// greater than the penalty when for mistakenly identifying a machine as
|
|
// being 1 thread/core when it is really HT enabled (which results in
|
|
// blocktime being incorrectly set to a positive value).
|
|
__kmp_ncores = __kmp_xproc;
|
|
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
|
|
__kmp_nThreadsPerCore = 1;
|
|
return true;
|
|
}
|
|
|
|
// From here on, we can assume that it is safe to call
|
|
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
|
|
// __kmp_affinity.type = affinity_none.
|
|
|
|
// Save the affinity mask for the current thread.
|
|
kmp_affinity_raii_t previous_affinity;
|
|
|
|
// Run through each of the available contexts, binding the current thread
|
|
// to it, and obtaining the pertinent information using the cpuid instr.
|
|
//
|
|
// The relevant information is:
|
|
// - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
|
|
// has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
|
|
// - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
|
|
// of this field determines the width of the core# + thread# fields in the
|
|
// Apic Id. It is also an upper bound on the number of threads per
|
|
// package, but it has been verified that situations happen were it is not
|
|
// exact. In particular, on certain OS/chip combinations where Intel(R)
|
|
// Hyper-Threading Technology is supported by the chip but has been
|
|
// disabled, the value of this field will be 2 (for a single core chip).
|
|
// On other OS/chip combinations supporting Intel(R) Hyper-Threading
|
|
// Technology, the value of this field will be 1 when Intel(R)
|
|
// Hyper-Threading Technology is disabled and 2 when it is enabled.
|
|
// - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
|
|
// of this field (+1) determines the width of the core# field in the Apic
|
|
// Id. The comments in "cpucount.cpp" say that this value is an upper
|
|
// bound, but the IA-32 architecture manual says that it is exactly the
|
|
// number of cores per package, and I haven't seen any case where it
|
|
// wasn't.
|
|
//
|
|
// From this information, deduce the package Id, core Id, and thread Id,
|
|
// and set the corresponding fields in the apicThreadInfo struct.
|
|
unsigned i;
|
|
apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
|
|
__kmp_avail_proc * sizeof(apicThreadInfo));
|
|
unsigned nApics = 0;
|
|
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
|
|
|
|
__kmp_affinity_dispatch->bind_thread(i);
|
|
threadInfo[nApics].osId = i;
|
|
|
|
// The apic id and max threads per pkg come from cpuid(1).
|
|
__kmp_x86_cpuid(1, 0, &buf);
|
|
if (((buf.edx >> 9) & 1) == 0) {
|
|
__kmp_free(threadInfo);
|
|
*msg_id = kmp_i18n_str_ApicNotPresent;
|
|
return false;
|
|
}
|
|
threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
|
|
threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
|
|
if (threadInfo[nApics].maxThreadsPerPkg == 0) {
|
|
threadInfo[nApics].maxThreadsPerPkg = 1;
|
|
}
|
|
|
|
// Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
|
|
// value.
|
|
//
|
|
// First, we need to check if cpuid(4) is supported on this chip. To see if
|
|
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
|
|
// or greater.
|
|
__kmp_x86_cpuid(0, 0, &buf);
|
|
if (buf.eax >= 4) {
|
|
__kmp_x86_cpuid(4, 0, &buf);
|
|
threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
|
|
} else {
|
|
threadInfo[nApics].maxCoresPerPkg = 1;
|
|
}
|
|
|
|
// Infer the pkgId / coreId / threadId using only the info obtained locally.
|
|
int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
|
|
threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
|
|
|
|
int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
|
|
int widthT = widthCT - widthC;
|
|
if (widthT < 0) {
|
|
// I've never seen this one happen, but I suppose it could, if the cpuid
|
|
// instruction on a chip was really screwed up. Make sure to restore the
|
|
// affinity mask before the tail call.
|
|
__kmp_free(threadInfo);
|
|
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
|
|
return false;
|
|
}
|
|
|
|
int maskC = (1 << widthC) - 1;
|
|
threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
|
|
|
|
int maskT = (1 << widthT) - 1;
|
|
threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
|
|
|
|
nApics++;
|
|
}
|
|
|
|
// We've collected all the info we need.
|
|
// Restore the old affinity mask for this thread.
|
|
previous_affinity.restore();
|
|
|
|
// Sort the threadInfo table by physical Id.
|
|
qsort(threadInfo, nApics, sizeof(*threadInfo),
|
|
__kmp_affinity_cmp_apicThreadInfo_phys_id);
|
|
|
|
// The table is now sorted by pkgId / coreId / threadId, but we really don't
|
|
// know the radix of any of the fields. pkgId's may be sparsely assigned among
|
|
// the chips on a system. Although coreId's are usually assigned
|
|
// [0 .. coresPerPkg-1] and threadId's are usually assigned
|
|
// [0..threadsPerCore-1], we don't want to make any such assumptions.
|
|
//
|
|
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
|
|
// total # packages) are at this point - we want to determine that now. We
|
|
// only have an upper bound on the first two figures.
|
|
//
|
|
// We also perform a consistency check at this point: the values returned by
|
|
// the cpuid instruction for any thread bound to a given package had better
|
|
// return the same info for maxThreadsPerPkg and maxCoresPerPkg.
|
|
nPackages = 1;
|
|
nCoresPerPkg = 1;
|
|
__kmp_nThreadsPerCore = 1;
|
|
unsigned nCores = 1;
|
|
|
|
unsigned pkgCt = 1; // to determine radii
|
|
unsigned lastPkgId = threadInfo[0].pkgId;
|
|
unsigned coreCt = 1;
|
|
unsigned lastCoreId = threadInfo[0].coreId;
|
|
unsigned threadCt = 1;
|
|
unsigned lastThreadId = threadInfo[0].threadId;
|
|
|
|
// intra-pkg consist checks
|
|
unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
|
|
unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
|
|
|
|
for (i = 1; i < nApics; i++) {
|
|
if (threadInfo[i].pkgId != lastPkgId) {
|
|
nCores++;
|
|
pkgCt++;
|
|
lastPkgId = threadInfo[i].pkgId;
|
|
if ((int)coreCt > nCoresPerPkg)
|
|
nCoresPerPkg = coreCt;
|
|
coreCt = 1;
|
|
lastCoreId = threadInfo[i].coreId;
|
|
if ((int)threadCt > __kmp_nThreadsPerCore)
|
|
__kmp_nThreadsPerCore = threadCt;
|
|
threadCt = 1;
|
|
lastThreadId = threadInfo[i].threadId;
|
|
|
|
// This is a different package, so go on to the next iteration without
|
|
// doing any consistency checks. Reset the consistency check vars, though.
|
|
prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
|
|
prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
|
|
continue;
|
|
}
|
|
|
|
if (threadInfo[i].coreId != lastCoreId) {
|
|
nCores++;
|
|
coreCt++;
|
|
lastCoreId = threadInfo[i].coreId;
|
|
if ((int)threadCt > __kmp_nThreadsPerCore)
|
|
__kmp_nThreadsPerCore = threadCt;
|
|
threadCt = 1;
|
|
lastThreadId = threadInfo[i].threadId;
|
|
} else if (threadInfo[i].threadId != lastThreadId) {
|
|
threadCt++;
|
|
lastThreadId = threadInfo[i].threadId;
|
|
} else {
|
|
__kmp_free(threadInfo);
|
|
*msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
|
|
return false;
|
|
}
|
|
|
|
// Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
|
|
// fields agree between all the threads bounds to a given package.
|
|
if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
|
|
(prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
|
|
__kmp_free(threadInfo);
|
|
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
|
|
return false;
|
|
}
|
|
}
|
|
// When affinity is off, this routine will still be called to set
|
|
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
|
|
// Make sure all these vars are set correctly
|
|
nPackages = pkgCt;
|
|
if ((int)coreCt > nCoresPerPkg)
|
|
nCoresPerPkg = coreCt;
|
|
if ((int)threadCt > __kmp_nThreadsPerCore)
|
|
__kmp_nThreadsPerCore = threadCt;
|
|
__kmp_ncores = nCores;
|
|
KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
|
|
|
|
// Now that we've determined the number of packages, the number of cores per
|
|
// package, and the number of threads per core, we can construct the data
|
|
// structure that is to be returned.
|
|
int idx = 0;
|
|
int pkgLevel = 0;
|
|
int coreLevel = 1;
|
|
int threadLevel = 2;
|
|
//(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
|
|
int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
|
|
kmp_hw_t types[3];
|
|
if (pkgLevel >= 0)
|
|
types[idx++] = KMP_HW_SOCKET;
|
|
if (coreLevel >= 0)
|
|
types[idx++] = KMP_HW_CORE;
|
|
if (threadLevel >= 0)
|
|
types[idx++] = KMP_HW_THREAD;
|
|
|
|
KMP_ASSERT(depth > 0);
|
|
__kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
|
|
|
|
for (i = 0; i < nApics; ++i) {
|
|
idx = 0;
|
|
unsigned os = threadInfo[i].osId;
|
|
kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
|
|
hw_thread.clear();
|
|
|
|
if (pkgLevel >= 0) {
|
|
hw_thread.ids[idx++] = threadInfo[i].pkgId;
|
|
}
|
|
if (coreLevel >= 0) {
|
|
hw_thread.ids[idx++] = threadInfo[i].coreId;
|
|
}
|
|
if (threadLevel >= 0) {
|
|
hw_thread.ids[idx++] = threadInfo[i].threadId;
|
|
}
|
|
hw_thread.os_id = os;
|
|
}
|
|
|
|
__kmp_free(threadInfo);
|
|
__kmp_topology->sort_ids();
|
|
if (!__kmp_topology->check_ids()) {
|
|
kmp_topology_t::deallocate(__kmp_topology);
|
|
__kmp_topology = nullptr;
|
|
*msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Hybrid cpu detection using CPUID.1A
|
|
// Thread should be pinned to processor already
|
|
static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
|
|
unsigned *native_model_id) {
|
|
kmp_cpuid buf;
|
|
__kmp_x86_cpuid(0x1a, 0, &buf);
|
|
*type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
|
|
switch (*type) {
|
|
case KMP_HW_CORE_TYPE_ATOM:
|
|
*efficiency = 0;
|
|
break;
|
|
case KMP_HW_CORE_TYPE_CORE:
|
|
*efficiency = 1;
|
|
break;
|
|
default:
|
|
*efficiency = 0;
|
|
}
|
|
*native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
|
|
}
|
|
|
|
// Intel(R) microarchitecture code name Nehalem, Dunnington and later
|
|
// architectures support a newer interface for specifying the x2APIC Ids,
|
|
// based on CPUID.B or CPUID.1F
|
|
/*
|
|
* CPUID.B or 1F, Input ECX (sub leaf # aka level number)
|
|
Bits Bits Bits Bits
|
|
31-16 15-8 7-4 4-0
|
|
---+-----------+--------------+-------------+-----------------+
|
|
EAX| reserved | reserved | reserved | Bits to Shift |
|
|
---+-----------|--------------+-------------+-----------------|
|
|
EBX| reserved | Num logical processors at level (16 bits) |
|
|
---+-----------|--------------+-------------------------------|
|
|
ECX| reserved | Level Type | Level Number (8 bits) |
|
|
---+-----------+--------------+-------------------------------|
|
|
EDX| X2APIC ID (32 bits) |
|
|
---+----------------------------------------------------------+
|
|
*/
|
|
|
|
enum {
|
|
INTEL_LEVEL_TYPE_INVALID = 0, // Package level
|
|
INTEL_LEVEL_TYPE_SMT = 1,
|
|
INTEL_LEVEL_TYPE_CORE = 2,
|
|
INTEL_LEVEL_TYPE_MODULE = 3,
|
|
INTEL_LEVEL_TYPE_TILE = 4,
|
|
INTEL_LEVEL_TYPE_DIE = 5,
|
|
INTEL_LEVEL_TYPE_LAST = 6,
|
|
};
|
|
|
|
struct cpuid_level_info_t {
|
|
unsigned level_type, mask, mask_width, nitems, cache_mask;
|
|
};
|
|
|
|
static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
|
|
switch (intel_type) {
|
|
case INTEL_LEVEL_TYPE_INVALID:
|
|
return KMP_HW_SOCKET;
|
|
case INTEL_LEVEL_TYPE_SMT:
|
|
return KMP_HW_THREAD;
|
|
case INTEL_LEVEL_TYPE_CORE:
|
|
return KMP_HW_CORE;
|
|
case INTEL_LEVEL_TYPE_TILE:
|
|
return KMP_HW_TILE;
|
|
case INTEL_LEVEL_TYPE_MODULE:
|
|
return KMP_HW_MODULE;
|
|
case INTEL_LEVEL_TYPE_DIE:
|
|
return KMP_HW_DIE;
|
|
}
|
|
return KMP_HW_UNKNOWN;
|
|
}
|
|
|
|
// This function takes the topology leaf, a levels array to store the levels
|
|
// detected and a bitmap of the known levels.
|
|
// Returns the number of levels in the topology
|
|
static unsigned
|
|
__kmp_x2apicid_get_levels(int leaf,
|
|
cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
|
|
kmp_uint64 known_levels) {
|
|
unsigned level, levels_index;
|
|
unsigned level_type, mask_width, nitems;
|
|
kmp_cpuid buf;
|
|
|
|
// New algorithm has known topology layers act as highest unknown topology
|
|
// layers when unknown topology layers exist.
|
|
// e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
|
|
// are unknown topology layers, Then SMT will take the characteristics of
|
|
// (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
|
|
// This eliminates unknown portions of the topology while still keeping the
|
|
// correct structure.
|
|
level = levels_index = 0;
|
|
do {
|
|
__kmp_x86_cpuid(leaf, level, &buf);
|
|
level_type = __kmp_extract_bits<8, 15>(buf.ecx);
|
|
mask_width = __kmp_extract_bits<0, 4>(buf.eax);
|
|
nitems = __kmp_extract_bits<0, 15>(buf.ebx);
|
|
if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
|
|
return 0;
|
|
|
|
if (known_levels & (1ull << level_type)) {
|
|
// Add a new level to the topology
|
|
KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
|
|
levels[levels_index].level_type = level_type;
|
|
levels[levels_index].mask_width = mask_width;
|
|
levels[levels_index].nitems = nitems;
|
|
levels_index++;
|
|
} else {
|
|
// If it is an unknown level, then logically move the previous layer up
|
|
if (levels_index > 0) {
|
|
levels[levels_index - 1].mask_width = mask_width;
|
|
levels[levels_index - 1].nitems = nitems;
|
|
}
|
|
}
|
|
level++;
|
|
} while (level_type != INTEL_LEVEL_TYPE_INVALID);
|
|
|
|
// Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first
|
|
if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID)
|
|
return 0;
|
|
|
|
// Set the masks to & with apicid
|
|
for (unsigned i = 0; i < levels_index; ++i) {
|
|
if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
|
|
levels[i].mask = ~((-1) << levels[i].mask_width);
|
|
levels[i].cache_mask = (-1) << levels[i].mask_width;
|
|
for (unsigned j = 0; j < i; ++j)
|
|
levels[i].mask ^= levels[j].mask;
|
|
} else {
|
|
KMP_DEBUG_ASSERT(i > 0);
|
|
levels[i].mask = (-1) << levels[i - 1].mask_width;
|
|
levels[i].cache_mask = 0;
|
|
}
|
|
}
|
|
return levels_index;
|
|
}
|
|
|
|
static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
|
|
|
|
cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
|
|
kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
|
|
unsigned levels_index;
|
|
kmp_cpuid buf;
|
|
kmp_uint64 known_levels;
|
|
int topology_leaf, highest_leaf, apic_id;
|
|
int num_leaves;
|
|
static int leaves[] = {0, 0};
|
|
|
|
kmp_i18n_id_t leaf_message_id;
|
|
|
|
KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
|
|
|
|
*msg_id = kmp_i18n_null;
|
|
if (__kmp_affinity.flags.verbose) {
|
|
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
|
|
}
|
|
|
|
// Figure out the known topology levels
|
|
known_levels = 0ull;
|
|
for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
|
|
if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
|
|
known_levels |= (1ull << i);
|
|
}
|
|
}
|
|
|
|
// Get the highest cpuid leaf supported
|
|
__kmp_x86_cpuid(0, 0, &buf);
|
|
highest_leaf = buf.eax;
|
|
|
|
// If a specific topology method was requested, only allow that specific leaf
|
|
// otherwise, try both leaves 31 and 11 in that order
|
|
num_leaves = 0;
|
|
if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
|
|
num_leaves = 1;
|
|
leaves[0] = 11;
|
|
leaf_message_id = kmp_i18n_str_NoLeaf11Support;
|
|
} else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
|
|
num_leaves = 1;
|
|
leaves[0] = 31;
|
|
leaf_message_id = kmp_i18n_str_NoLeaf31Support;
|
|
} else {
|
|
num_leaves = 2;
|
|
leaves[0] = 31;
|
|
leaves[1] = 11;
|
|
leaf_message_id = kmp_i18n_str_NoLeaf11Support;
|
|
}
|
|
|
|
// Check to see if cpuid leaf 31 or 11 is supported.
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
|
|
topology_leaf = -1;
|
|
for (int i = 0; i < num_leaves; ++i) {
|
|
int leaf = leaves[i];
|
|
if (highest_leaf < leaf)
|
|
continue;
|
|
__kmp_x86_cpuid(leaf, 0, &buf);
|
|
if (buf.ebx == 0)
|
|
continue;
|
|
topology_leaf = leaf;
|
|
levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
|
|
if (levels_index == 0)
|
|
continue;
|
|
break;
|
|
}
|
|
if (topology_leaf == -1 || levels_index == 0) {
|
|
*msg_id = leaf_message_id;
|
|
return false;
|
|
}
|
|
KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
|
|
|
|
// The algorithm used starts by setting the affinity to each available thread
|
|
// and retrieving info from the cpuid instruction, so if we are not capable of
|
|
// calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
|
|
// we need to do something else - use the defaults that we calculated from
|
|
// issuing cpuid without binding to each proc.
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
// Hack to try and infer the machine topology using only the data
|
|
// available from cpuid on the current thread, and __kmp_xproc.
|
|
KMP_ASSERT(__kmp_affinity.type == affinity_none);
|
|
for (unsigned i = 0; i < levels_index; ++i) {
|
|
if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
|
|
__kmp_nThreadsPerCore = levels[i].nitems;
|
|
} else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
|
|
nCoresPerPkg = levels[i].nitems;
|
|
}
|
|
}
|
|
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
|
|
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
|
|
return true;
|
|
}
|
|
|
|
// Allocate the data structure to be returned.
|
|
int depth = levels_index;
|
|
for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
|
|
types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
|
|
__kmp_topology =
|
|
kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
|
|
|
|
// Insert equivalent cache types if they exist
|
|
kmp_cache_info_t cache_info;
|
|
for (size_t i = 0; i < cache_info.get_depth(); ++i) {
|
|
const kmp_cache_info_t::info_t &info = cache_info[i];
|
|
unsigned cache_mask = info.mask;
|
|
unsigned cache_level = info.level;
|
|
for (unsigned j = 0; j < levels_index; ++j) {
|
|
unsigned hw_cache_mask = levels[j].cache_mask;
|
|
kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
|
|
if (hw_cache_mask == cache_mask && j < levels_index - 1) {
|
|
kmp_hw_t type =
|
|
__kmp_intel_type_2_topology_type(levels[j + 1].level_type);
|
|
__kmp_topology->set_equivalent_type(cache_type, type);
|
|
}
|
|
}
|
|
}
|
|
|
|
// From here on, we can assume that it is safe to call
|
|
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
|
|
// __kmp_affinity.type = affinity_none.
|
|
|
|
// Save the affinity mask for the current thread.
|
|
kmp_affinity_raii_t previous_affinity;
|
|
|
|
// Run through each of the available contexts, binding the current thread
|
|
// to it, and obtaining the pertinent information using the cpuid instr.
|
|
unsigned int proc;
|
|
int hw_thread_index = 0;
|
|
KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
|
|
cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
|
|
unsigned my_levels_index;
|
|
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
|
|
|
|
__kmp_affinity_dispatch->bind_thread(proc);
|
|
|
|
// New algorithm
|
|
__kmp_x86_cpuid(topology_leaf, 0, &buf);
|
|
apic_id = buf.edx;
|
|
kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
|
|
my_levels_index =
|
|
__kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
|
|
if (my_levels_index == 0 || my_levels_index != levels_index) {
|
|
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
|
|
return false;
|
|
}
|
|
hw_thread.clear();
|
|
hw_thread.os_id = proc;
|
|
// Put in topology information
|
|
for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
|
|
hw_thread.ids[idx] = apic_id & my_levels[j].mask;
|
|
if (j > 0) {
|
|
hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
|
|
}
|
|
}
|
|
// Hybrid information
|
|
if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
|
|
kmp_hw_core_type_t type;
|
|
unsigned native_model_id;
|
|
int efficiency;
|
|
__kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
|
|
hw_thread.attrs.set_core_type(type);
|
|
hw_thread.attrs.set_core_eff(efficiency);
|
|
}
|
|
hw_thread_index++;
|
|
}
|
|
KMP_ASSERT(hw_thread_index > 0);
|
|
__kmp_topology->sort_ids();
|
|
if (!__kmp_topology->check_ids()) {
|
|
kmp_topology_t::deallocate(__kmp_topology);
|
|
__kmp_topology = nullptr;
|
|
*msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
#define osIdIndex 0
|
|
#define threadIdIndex 1
|
|
#define coreIdIndex 2
|
|
#define pkgIdIndex 3
|
|
#define nodeIdIndex 4
|
|
|
|
typedef unsigned *ProcCpuInfo;
|
|
static unsigned maxIndex = pkgIdIndex;
|
|
|
|
static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
|
|
const void *b) {
|
|
unsigned i;
|
|
const unsigned *aa = *(unsigned *const *)a;
|
|
const unsigned *bb = *(unsigned *const *)b;
|
|
for (i = maxIndex;; i--) {
|
|
if (aa[i] < bb[i])
|
|
return -1;
|
|
if (aa[i] > bb[i])
|
|
return 1;
|
|
if (i == osIdIndex)
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if KMP_USE_HIER_SCHED
|
|
// Set the array sizes for the hierarchy layers
|
|
static void __kmp_dispatch_set_hierarchy_values() {
|
|
// Set the maximum number of L1's to number of cores
|
|
// Set the maximum number of L2's to either number of cores / 2 for
|
|
// Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
|
|
// Or the number of cores for Intel(R) Xeon(R) processors
|
|
// Set the maximum number of NUMA nodes and L3's to number of packages
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
|
|
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
|
|
#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
|
|
KMP_MIC_SUPPORTED
|
|
if (__kmp_mic_type >= mic3)
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
|
|
else
|
|
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
|
|
// Set the number of threads per unit
|
|
// Number of hardware threads per L1/L2/L3/NUMA/LOOP
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
|
|
__kmp_nThreadsPerCore;
|
|
#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
|
|
KMP_MIC_SUPPORTED
|
|
if (__kmp_mic_type >= mic3)
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
|
|
2 * __kmp_nThreadsPerCore;
|
|
else
|
|
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
|
|
__kmp_nThreadsPerCore;
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
|
|
nCoresPerPkg * __kmp_nThreadsPerCore;
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
|
|
nCoresPerPkg * __kmp_nThreadsPerCore;
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
|
|
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
|
|
}
|
|
|
|
// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
|
|
// i.e., this thread's L1 or this thread's L2, etc.
|
|
int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
|
|
int index = type + 1;
|
|
int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
|
|
KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
|
|
if (type == kmp_hier_layer_e::LAYER_THREAD)
|
|
return tid;
|
|
else if (type == kmp_hier_layer_e::LAYER_LOOP)
|
|
return 0;
|
|
KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
|
|
if (tid >= num_hw_threads)
|
|
tid = tid % num_hw_threads;
|
|
return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
|
|
}
|
|
|
|
// Return the number of t1's per t2
|
|
int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
|
|
int i1 = t1 + 1;
|
|
int i2 = t2 + 1;
|
|
KMP_DEBUG_ASSERT(i1 <= i2);
|
|
KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
|
|
KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
|
|
KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
|
|
// (nthreads/t2) / (nthreads/t1) = t1 / t2
|
|
return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
|
|
}
|
|
#endif // KMP_USE_HIER_SCHED
|
|
|
|
static inline const char *__kmp_cpuinfo_get_filename() {
|
|
const char *filename;
|
|
if (__kmp_cpuinfo_file != nullptr)
|
|
filename = __kmp_cpuinfo_file;
|
|
else
|
|
filename = "/proc/cpuinfo";
|
|
return filename;
|
|
}
|
|
|
|
static inline const char *__kmp_cpuinfo_get_envvar() {
|
|
const char *envvar = nullptr;
|
|
if (__kmp_cpuinfo_file != nullptr)
|
|
envvar = "KMP_CPUINFO_FILE";
|
|
return envvar;
|
|
}
|
|
|
|
// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
|
|
// affinity map.
|
|
static bool __kmp_affinity_create_cpuinfo_map(int *line,
|
|
kmp_i18n_id_t *const msg_id) {
|
|
const char *filename = __kmp_cpuinfo_get_filename();
|
|
const char *envvar = __kmp_cpuinfo_get_envvar();
|
|
*msg_id = kmp_i18n_null;
|
|
|
|
if (__kmp_affinity.flags.verbose) {
|
|
KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
|
|
}
|
|
|
|
kmp_safe_raii_file_t f(filename, "r", envvar);
|
|
|
|
// Scan of the file, and count the number of "processor" (osId) fields,
|
|
// and find the highest value of <n> for a node_<n> field.
|
|
char buf[256];
|
|
unsigned num_records = 0;
|
|
while (!feof(f)) {
|
|
buf[sizeof(buf) - 1] = 1;
|
|
if (!fgets(buf, sizeof(buf), f)) {
|
|
// Read errors presumably because of EOF
|
|
break;
|
|
}
|
|
|
|
char s1[] = "processor";
|
|
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
|
|
num_records++;
|
|
continue;
|
|
}
|
|
|
|
// FIXME - this will match "node_<n> <garbage>"
|
|
unsigned level;
|
|
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
|
|
// validate the input fisrt:
|
|
if (level > (unsigned)__kmp_xproc) { // level is too big
|
|
level = __kmp_xproc;
|
|
}
|
|
if (nodeIdIndex + level >= maxIndex) {
|
|
maxIndex = nodeIdIndex + level;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check for empty file / no valid processor records, or too many. The number
|
|
// of records can't exceed the number of valid bits in the affinity mask.
|
|
if (num_records == 0) {
|
|
*msg_id = kmp_i18n_str_NoProcRecords;
|
|
return false;
|
|
}
|
|
if (num_records > (unsigned)__kmp_xproc) {
|
|
*msg_id = kmp_i18n_str_TooManyProcRecords;
|
|
return false;
|
|
}
|
|
|
|
// Set the file pointer back to the beginning, so that we can scan the file
|
|
// again, this time performing a full parse of the data. Allocate a vector of
|
|
// ProcCpuInfo object, where we will place the data. Adding an extra element
|
|
// at the end allows us to remove a lot of extra checks for termination
|
|
// conditions.
|
|
if (fseek(f, 0, SEEK_SET) != 0) {
|
|
*msg_id = kmp_i18n_str_CantRewindCpuinfo;
|
|
return false;
|
|
}
|
|
|
|
// Allocate the array of records to store the proc info in. The dummy
|
|
// element at the end makes the logic in filling them out easier to code.
|
|
unsigned **threadInfo =
|
|
(unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
|
|
unsigned i;
|
|
for (i = 0; i <= num_records; i++) {
|
|
threadInfo[i] =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
}
|
|
|
|
#define CLEANUP_THREAD_INFO \
|
|
for (i = 0; i <= num_records; i++) { \
|
|
__kmp_free(threadInfo[i]); \
|
|
} \
|
|
__kmp_free(threadInfo);
|
|
|
|
// A value of UINT_MAX means that we didn't find the field
|
|
unsigned __index;
|
|
|
|
#define INIT_PROC_INFO(p) \
|
|
for (__index = 0; __index <= maxIndex; __index++) { \
|
|
(p)[__index] = UINT_MAX; \
|
|
}
|
|
|
|
for (i = 0; i <= num_records; i++) {
|
|
INIT_PROC_INFO(threadInfo[i]);
|
|
}
|
|
|
|
unsigned num_avail = 0;
|
|
*line = 0;
|
|
#if KMP_ARCH_S390X
|
|
bool reading_s390x_sys_info = true;
|
|
#endif
|
|
while (!feof(f)) {
|
|
// Create an inner scoping level, so that all the goto targets at the end of
|
|
// the loop appear in an outer scoping level. This avoids warnings about
|
|
// jumping past an initialization to a target in the same block.
|
|
{
|
|
buf[sizeof(buf) - 1] = 1;
|
|
bool long_line = false;
|
|
if (!fgets(buf, sizeof(buf), f)) {
|
|
// Read errors presumably because of EOF
|
|
// If there is valid data in threadInfo[num_avail], then fake
|
|
// a blank line in ensure that the last address gets parsed.
|
|
bool valid = false;
|
|
for (i = 0; i <= maxIndex; i++) {
|
|
if (threadInfo[num_avail][i] != UINT_MAX) {
|
|
valid = true;
|
|
}
|
|
}
|
|
if (!valid) {
|
|
break;
|
|
}
|
|
buf[0] = 0;
|
|
} else if (!buf[sizeof(buf) - 1]) {
|
|
// The line is longer than the buffer. Set a flag and don't
|
|
// emit an error if we were going to ignore the line, anyway.
|
|
long_line = true;
|
|
|
|
#define CHECK_LINE \
|
|
if (long_line) { \
|
|
CLEANUP_THREAD_INFO; \
|
|
*msg_id = kmp_i18n_str_LongLineCpuinfo; \
|
|
return false; \
|
|
}
|
|
}
|
|
(*line)++;
|
|
|
|
#if KMP_ARCH_LOONGARCH64
|
|
// The parsing logic of /proc/cpuinfo in this function highly depends on
|
|
// the blank lines between each processor info block. But on LoongArch a
|
|
// blank line exists before the first processor info block (i.e. after the
|
|
// "system type" line). This blank line was added because the "system
|
|
// type" line is unrelated to any of the CPUs. We must skip this line so
|
|
// that the original logic works on LoongArch.
|
|
if (*buf == '\n' && *line == 2)
|
|
continue;
|
|
#endif
|
|
#if KMP_ARCH_S390X
|
|
// s390x /proc/cpuinfo starts with a variable number of lines containing
|
|
// the overall system information. Skip them.
|
|
if (reading_s390x_sys_info) {
|
|
if (*buf == '\n')
|
|
reading_s390x_sys_info = false;
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
#if KMP_ARCH_S390X
|
|
char s1[] = "cpu number";
|
|
#else
|
|
char s1[] = "processor";
|
|
#endif
|
|
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s1) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
|
|
#if KMP_ARCH_AARCH64
|
|
// Handle the old AArch64 /proc/cpuinfo layout differently,
|
|
// it contains all of the 'processor' entries listed in a
|
|
// single 'Processor' section, therefore the normal looking
|
|
// for duplicates in that section will always fail.
|
|
num_avail++;
|
|
#else
|
|
goto dup_field;
|
|
#endif
|
|
threadInfo[num_avail][osIdIndex] = val;
|
|
#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
|
|
char path[256];
|
|
KMP_SNPRINTF(
|
|
path, sizeof(path),
|
|
"/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
|
|
threadInfo[num_avail][osIdIndex]);
|
|
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
|
|
|
|
#if KMP_ARCH_S390X
|
|
// Disambiguate physical_package_id.
|
|
unsigned book_id;
|
|
KMP_SNPRINTF(path, sizeof(path),
|
|
"/sys/devices/system/cpu/cpu%u/topology/book_id",
|
|
threadInfo[num_avail][osIdIndex]);
|
|
__kmp_read_from_file(path, "%u", &book_id);
|
|
threadInfo[num_avail][pkgIdIndex] |= (book_id << 8);
|
|
|
|
unsigned drawer_id;
|
|
KMP_SNPRINTF(path, sizeof(path),
|
|
"/sys/devices/system/cpu/cpu%u/topology/drawer_id",
|
|
threadInfo[num_avail][osIdIndex]);
|
|
__kmp_read_from_file(path, "%u", &drawer_id);
|
|
threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16);
|
|
#endif
|
|
|
|
KMP_SNPRINTF(path, sizeof(path),
|
|
"/sys/devices/system/cpu/cpu%u/topology/core_id",
|
|
threadInfo[num_avail][osIdIndex]);
|
|
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
|
|
continue;
|
|
#else
|
|
}
|
|
char s2[] = "physical id";
|
|
if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s2) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
|
|
goto dup_field;
|
|
threadInfo[num_avail][pkgIdIndex] = val;
|
|
continue;
|
|
}
|
|
char s3[] = "core id";
|
|
if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s3) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
|
|
goto dup_field;
|
|
threadInfo[num_avail][coreIdIndex] = val;
|
|
continue;
|
|
#endif // KMP_OS_LINUX && USE_SYSFS_INFO
|
|
}
|
|
char s4[] = "thread id";
|
|
if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s4) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
|
|
goto dup_field;
|
|
threadInfo[num_avail][threadIdIndex] = val;
|
|
continue;
|
|
}
|
|
unsigned level;
|
|
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s4) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
// validate the input before using level:
|
|
if (level > (unsigned)__kmp_xproc) { // level is too big
|
|
level = __kmp_xproc;
|
|
}
|
|
if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
|
|
goto dup_field;
|
|
threadInfo[num_avail][nodeIdIndex + level] = val;
|
|
continue;
|
|
}
|
|
|
|
// We didn't recognize the leading token on the line. There are lots of
|
|
// leading tokens that we don't recognize - if the line isn't empty, go on
|
|
// to the next line.
|
|
if ((*buf != 0) && (*buf != '\n')) {
|
|
// If the line is longer than the buffer, read characters
|
|
// until we find a newline.
|
|
if (long_line) {
|
|
int ch;
|
|
while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
|
|
;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// A newline has signalled the end of the processor record.
|
|
// Check that there aren't too many procs specified.
|
|
if ((int)num_avail == __kmp_xproc) {
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_TooManyEntries;
|
|
return false;
|
|
}
|
|
|
|
// Check for missing fields. The osId field must be there, and we
|
|
// currently require that the physical id field is specified, also.
|
|
if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_MissingProcField;
|
|
return false;
|
|
}
|
|
if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_MissingPhysicalIDField;
|
|
return false;
|
|
}
|
|
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (KMP_AFFINITY_CAPABLE() &&
|
|
!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
|
|
__kmp_affin_fullMask)) {
|
|
INIT_PROC_INFO(threadInfo[num_avail]);
|
|
continue;
|
|
}
|
|
|
|
// We have a successful parse of this proc's info.
|
|
// Increment the counter, and prepare for the next proc.
|
|
num_avail++;
|
|
KMP_ASSERT(num_avail <= num_records);
|
|
INIT_PROC_INFO(threadInfo[num_avail]);
|
|
}
|
|
continue;
|
|
|
|
no_val:
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_MissingValCpuinfo;
|
|
return false;
|
|
|
|
dup_field:
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
|
|
return false;
|
|
}
|
|
*line = 0;
|
|
|
|
#if KMP_MIC && REDUCE_TEAM_SIZE
|
|
unsigned teamSize = 0;
|
|
#endif // KMP_MIC && REDUCE_TEAM_SIZE
|
|
|
|
// check for num_records == __kmp_xproc ???
|
|
|
|
// If it is configured to omit the package level when there is only a single
|
|
// package, the logic at the end of this routine won't work if there is only a
|
|
// single thread
|
|
KMP_ASSERT(num_avail > 0);
|
|
KMP_ASSERT(num_avail <= num_records);
|
|
|
|
// Sort the threadInfo table by physical Id.
|
|
qsort(threadInfo, num_avail, sizeof(*threadInfo),
|
|
__kmp_affinity_cmp_ProcCpuInfo_phys_id);
|
|
|
|
// The table is now sorted by pkgId / coreId / threadId, but we really don't
|
|
// know the radix of any of the fields. pkgId's may be sparsely assigned among
|
|
// the chips on a system. Although coreId's are usually assigned
|
|
// [0 .. coresPerPkg-1] and threadId's are usually assigned
|
|
// [0..threadsPerCore-1], we don't want to make any such assumptions.
|
|
//
|
|
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
|
|
// total # packages) are at this point - we want to determine that now. We
|
|
// only have an upper bound on the first two figures.
|
|
unsigned *counts =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
unsigned *maxCt =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
unsigned *totals =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
unsigned *lastId =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
|
|
bool assign_thread_ids = false;
|
|
unsigned threadIdCt;
|
|
unsigned index;
|
|
|
|
restart_radix_check:
|
|
threadIdCt = 0;
|
|
|
|
// Initialize the counter arrays with data from threadInfo[0].
|
|
if (assign_thread_ids) {
|
|
if (threadInfo[0][threadIdIndex] == UINT_MAX) {
|
|
threadInfo[0][threadIdIndex] = threadIdCt++;
|
|
} else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
|
|
threadIdCt = threadInfo[0][threadIdIndex] + 1;
|
|
}
|
|
}
|
|
for (index = 0; index <= maxIndex; index++) {
|
|
counts[index] = 1;
|
|
maxCt[index] = 1;
|
|
totals[index] = 1;
|
|
lastId[index] = threadInfo[0][index];
|
|
;
|
|
}
|
|
|
|
// Run through the rest of the OS procs.
|
|
for (i = 1; i < num_avail; i++) {
|
|
// Find the most significant index whose id differs from the id for the
|
|
// previous OS proc.
|
|
for (index = maxIndex; index >= threadIdIndex; index--) {
|
|
if (assign_thread_ids && (index == threadIdIndex)) {
|
|
// Auto-assign the thread id field if it wasn't specified.
|
|
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
|
|
threadInfo[i][threadIdIndex] = threadIdCt++;
|
|
}
|
|
// Apparently the thread id field was specified for some entries and not
|
|
// others. Start the thread id counter off at the next higher thread id.
|
|
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
|
|
threadIdCt = threadInfo[i][threadIdIndex] + 1;
|
|
}
|
|
}
|
|
if (threadInfo[i][index] != lastId[index]) {
|
|
// Run through all indices which are less significant, and reset the
|
|
// counts to 1. At all levels up to and including index, we need to
|
|
// increment the totals and record the last id.
|
|
unsigned index2;
|
|
for (index2 = threadIdIndex; index2 < index; index2++) {
|
|
totals[index2]++;
|
|
if (counts[index2] > maxCt[index2]) {
|
|
maxCt[index2] = counts[index2];
|
|
}
|
|
counts[index2] = 1;
|
|
lastId[index2] = threadInfo[i][index2];
|
|
}
|
|
counts[index]++;
|
|
totals[index]++;
|
|
lastId[index] = threadInfo[i][index];
|
|
|
|
if (assign_thread_ids && (index > threadIdIndex)) {
|
|
|
|
#if KMP_MIC && REDUCE_TEAM_SIZE
|
|
// The default team size is the total #threads in the machine
|
|
// minus 1 thread for every core that has 3 or more threads.
|
|
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
|
|
#endif // KMP_MIC && REDUCE_TEAM_SIZE
|
|
|
|
// Restart the thread counter, as we are on a new core.
|
|
threadIdCt = 0;
|
|
|
|
// Auto-assign the thread id field if it wasn't specified.
|
|
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
|
|
threadInfo[i][threadIdIndex] = threadIdCt++;
|
|
}
|
|
|
|
// Apparently the thread id field was specified for some entries and
|
|
// not others. Start the thread id counter off at the next higher
|
|
// thread id.
|
|
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
|
|
threadIdCt = threadInfo[i][threadIdIndex] + 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (index < threadIdIndex) {
|
|
// If thread ids were specified, it is an error if they are not unique.
|
|
// Also, check that we waven't already restarted the loop (to be safe -
|
|
// shouldn't need to).
|
|
if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
|
|
__kmp_free(lastId);
|
|
__kmp_free(totals);
|
|
__kmp_free(maxCt);
|
|
__kmp_free(counts);
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
|
|
return false;
|
|
}
|
|
|
|
// If the thread ids were not specified and we see entries that
|
|
// are duplicates, start the loop over and assign the thread ids manually.
|
|
assign_thread_ids = true;
|
|
goto restart_radix_check;
|
|
}
|
|
}
|
|
|
|
#if KMP_MIC && REDUCE_TEAM_SIZE
|
|
// The default team size is the total #threads in the machine
|
|
// minus 1 thread for every core that has 3 or more threads.
|
|
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
|
|
#endif // KMP_MIC && REDUCE_TEAM_SIZE
|
|
|
|
for (index = threadIdIndex; index <= maxIndex; index++) {
|
|
if (counts[index] > maxCt[index]) {
|
|
maxCt[index] = counts[index];
|
|
}
|
|
}
|
|
|
|
__kmp_nThreadsPerCore = maxCt[threadIdIndex];
|
|
nCoresPerPkg = maxCt[coreIdIndex];
|
|
nPackages = totals[pkgIdIndex];
|
|
|
|
// When affinity is off, this routine will still be called to set
|
|
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
|
|
// Make sure all these vars are set correctly, and return now if affinity is
|
|
// not enabled.
|
|
__kmp_ncores = totals[coreIdIndex];
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
KMP_ASSERT(__kmp_affinity.type == affinity_none);
|
|
return true;
|
|
}
|
|
|
|
#if KMP_MIC && REDUCE_TEAM_SIZE
|
|
// Set the default team size.
|
|
if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
|
|
__kmp_dflt_team_nth = teamSize;
|
|
KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
|
|
"__kmp_dflt_team_nth = %d\n",
|
|
__kmp_dflt_team_nth));
|
|
}
|
|
#endif // KMP_MIC && REDUCE_TEAM_SIZE
|
|
|
|
KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
|
|
|
|
// Count the number of levels which have more nodes at that level than at the
|
|
// parent's level (with there being an implicit root node of the top level).
|
|
// This is equivalent to saying that there is at least one node at this level
|
|
// which has a sibling. These levels are in the map, and the package level is
|
|
// always in the map.
|
|
bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
|
|
for (index = threadIdIndex; index < maxIndex; index++) {
|
|
KMP_ASSERT(totals[index] >= totals[index + 1]);
|
|
inMap[index] = (totals[index] > totals[index + 1]);
|
|
}
|
|
inMap[maxIndex] = (totals[maxIndex] > 1);
|
|
inMap[pkgIdIndex] = true;
|
|
inMap[coreIdIndex] = true;
|
|
inMap[threadIdIndex] = true;
|
|
|
|
int depth = 0;
|
|
int idx = 0;
|
|
kmp_hw_t types[KMP_HW_LAST];
|
|
int pkgLevel = -1;
|
|
int coreLevel = -1;
|
|
int threadLevel = -1;
|
|
for (index = threadIdIndex; index <= maxIndex; index++) {
|
|
if (inMap[index]) {
|
|
depth++;
|
|
}
|
|
}
|
|
if (inMap[pkgIdIndex]) {
|
|
pkgLevel = idx;
|
|
types[idx++] = KMP_HW_SOCKET;
|
|
}
|
|
if (inMap[coreIdIndex]) {
|
|
coreLevel = idx;
|
|
types[idx++] = KMP_HW_CORE;
|
|
}
|
|
if (inMap[threadIdIndex]) {
|
|
threadLevel = idx;
|
|
types[idx++] = KMP_HW_THREAD;
|
|
}
|
|
KMP_ASSERT(depth > 0);
|
|
|
|
// Construct the data structure that is to be returned.
|
|
__kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
|
|
|
|
for (i = 0; i < num_avail; ++i) {
|
|
unsigned os = threadInfo[i][osIdIndex];
|
|
int src_index;
|
|
kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
|
|
hw_thread.clear();
|
|
hw_thread.os_id = os;
|
|
|
|
idx = 0;
|
|
for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
|
|
if (!inMap[src_index]) {
|
|
continue;
|
|
}
|
|
if (src_index == pkgIdIndex) {
|
|
hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
|
|
} else if (src_index == coreIdIndex) {
|
|
hw_thread.ids[coreLevel] = threadInfo[i][src_index];
|
|
} else if (src_index == threadIdIndex) {
|
|
hw_thread.ids[threadLevel] = threadInfo[i][src_index];
|
|
}
|
|
}
|
|
}
|
|
|
|
__kmp_free(inMap);
|
|
__kmp_free(lastId);
|
|
__kmp_free(totals);
|
|
__kmp_free(maxCt);
|
|
__kmp_free(counts);
|
|
CLEANUP_THREAD_INFO;
|
|
__kmp_topology->sort_ids();
|
|
if (!__kmp_topology->check_ids()) {
|
|
kmp_topology_t::deallocate(__kmp_topology);
|
|
__kmp_topology = nullptr;
|
|
*msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Create and return a table of affinity masks, indexed by OS thread ID.
|
|
// This routine handles OR'ing together all the affinity masks of threads
|
|
// that are sufficiently close, if granularity > fine.
|
|
template <typename FindNextFunctionType>
|
|
static void __kmp_create_os_id_masks(unsigned *numUnique,
|
|
kmp_affinity_t &affinity,
|
|
FindNextFunctionType find_next) {
|
|
// First form a table of affinity masks in order of OS thread id.
|
|
int maxOsId;
|
|
int i;
|
|
int numAddrs = __kmp_topology->get_num_hw_threads();
|
|
int depth = __kmp_topology->get_depth();
|
|
const char *env_var = __kmp_get_affinity_env_var(affinity);
|
|
KMP_ASSERT(numAddrs);
|
|
KMP_ASSERT(depth);
|
|
|
|
i = find_next(-1);
|
|
// If could not find HW thread location with attributes, then return and
|
|
// fallback to increment find_next and disregard core attributes.
|
|
if (i >= numAddrs)
|
|
return;
|
|
|
|
maxOsId = 0;
|
|
for (i = numAddrs - 1;; --i) {
|
|
int osId = __kmp_topology->at(i).os_id;
|
|
if (osId > maxOsId) {
|
|
maxOsId = osId;
|
|
}
|
|
if (i == 0)
|
|
break;
|
|
}
|
|
affinity.num_os_id_masks = maxOsId + 1;
|
|
KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks);
|
|
KMP_ASSERT(affinity.gran_levels >= 0);
|
|
if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
|
|
KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels);
|
|
}
|
|
if (affinity.gran_levels >= (int)depth) {
|
|
KMP_AFF_WARNING(affinity, AffThreadsMayMigrate);
|
|
}
|
|
|
|
// Run through the table, forming the masks for all threads on each core.
|
|
// Threads on the same core will have identical kmp_hw_thread_t objects, not
|
|
// considering the last level, which must be the thread id. All threads on a
|
|
// core will appear consecutively.
|
|
int unique = 0;
|
|
int j = 0; // index of 1st thread on core
|
|
int leader = 0;
|
|
kmp_affin_mask_t *sum;
|
|
KMP_CPU_ALLOC_ON_STACK(sum);
|
|
KMP_CPU_ZERO(sum);
|
|
|
|
i = j = leader = find_next(-1);
|
|
KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
|
|
kmp_full_mask_modifier_t full_mask;
|
|
for (i = find_next(i); i < numAddrs; i = find_next(i)) {
|
|
// If this thread is sufficiently close to the leader (within the
|
|
// granularity setting), then set the bit for this os thread in the
|
|
// affinity mask for this group, and go on to the next thread.
|
|
if (__kmp_topology->is_close(leader, i, affinity)) {
|
|
KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
|
|
continue;
|
|
}
|
|
|
|
// For every thread in this group, copy the mask to the thread's entry in
|
|
// the OS Id mask table. Mark the first address as a leader.
|
|
for (; j < i; j = find_next(j)) {
|
|
int osId = __kmp_topology->at(j).os_id;
|
|
KMP_DEBUG_ASSERT(osId <= maxOsId);
|
|
kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
|
|
KMP_CPU_COPY(mask, sum);
|
|
__kmp_topology->at(j).leader = (j == leader);
|
|
}
|
|
unique++;
|
|
|
|
// Start a new mask.
|
|
leader = i;
|
|
full_mask.include(sum);
|
|
KMP_CPU_ZERO(sum);
|
|
KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
|
|
}
|
|
|
|
// For every thread in last group, copy the mask to the thread's
|
|
// entry in the OS Id mask table.
|
|
for (; j < i; j = find_next(j)) {
|
|
int osId = __kmp_topology->at(j).os_id;
|
|
KMP_DEBUG_ASSERT(osId <= maxOsId);
|
|
kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
|
|
KMP_CPU_COPY(mask, sum);
|
|
__kmp_topology->at(j).leader = (j == leader);
|
|
}
|
|
full_mask.include(sum);
|
|
unique++;
|
|
KMP_CPU_FREE_FROM_STACK(sum);
|
|
|
|
// See if the OS Id mask table further restricts or changes the full mask
|
|
if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
|
|
__kmp_topology->print(env_var);
|
|
}
|
|
|
|
*numUnique = unique;
|
|
}
|
|
|
|
// Stuff for the affinity proclist parsers. It's easier to declare these vars
|
|
// as file-static than to try and pass them through the calling sequence of
|
|
// the recursive-descent OMP_PLACES parser.
|
|
static kmp_affin_mask_t *newMasks;
|
|
static int numNewMasks;
|
|
static int nextNewMask;
|
|
|
|
#define ADD_MASK(_mask) \
|
|
{ \
|
|
if (nextNewMask >= numNewMasks) { \
|
|
int i; \
|
|
numNewMasks *= 2; \
|
|
kmp_affin_mask_t *temp; \
|
|
KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
|
|
for (i = 0; i < numNewMasks / 2; i++) { \
|
|
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
|
|
KMP_CPU_COPY(dest, src); \
|
|
} \
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
|
|
newMasks = temp; \
|
|
} \
|
|
KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
|
|
nextNewMask++; \
|
|
}
|
|
|
|
#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
|
|
{ \
|
|
if (((_osId) > _maxOsId) || \
|
|
(!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
|
|
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \
|
|
} else { \
|
|
ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
|
|
} \
|
|
}
|
|
|
|
// Re-parse the proclist (for the explicit affinity type), and form the list
|
|
// of affinity newMasks indexed by gtid.
|
|
static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
|
|
int i;
|
|
kmp_affin_mask_t **out_masks = &affinity.masks;
|
|
unsigned *out_numMasks = &affinity.num_masks;
|
|
const char *proclist = affinity.proclist;
|
|
kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
|
|
int maxOsId = affinity.num_os_id_masks - 1;
|
|
const char *scan = proclist;
|
|
const char *next = proclist;
|
|
|
|
// We use malloc() for the temporary mask vector, so that we can use
|
|
// realloc() to extend it.
|
|
numNewMasks = 2;
|
|
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
|
|
nextNewMask = 0;
|
|
kmp_affin_mask_t *sumMask;
|
|
KMP_CPU_ALLOC(sumMask);
|
|
int setSize = 0;
|
|
|
|
for (;;) {
|
|
int start, end, stride;
|
|
|
|
SKIP_WS(scan);
|
|
next = scan;
|
|
if (*next == '\0') {
|
|
break;
|
|
}
|
|
|
|
if (*next == '{') {
|
|
int num;
|
|
setSize = 0;
|
|
next++; // skip '{'
|
|
SKIP_WS(next);
|
|
scan = next;
|
|
|
|
// Read the first integer in the set.
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
|
|
SKIP_DIGITS(next);
|
|
num = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(num >= 0, "bad explicit proc list");
|
|
|
|
// Copy the mask for that osId to the sum (union) mask.
|
|
if ((num > maxOsId) ||
|
|
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
|
|
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
|
|
KMP_CPU_ZERO(sumMask);
|
|
} else {
|
|
KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
|
|
setSize = 1;
|
|
}
|
|
|
|
for (;;) {
|
|
// Check for end of set.
|
|
SKIP_WS(next);
|
|
if (*next == '}') {
|
|
next++; // skip '}'
|
|
break;
|
|
}
|
|
|
|
// Skip optional comma.
|
|
if (*next == ',') {
|
|
next++;
|
|
}
|
|
SKIP_WS(next);
|
|
|
|
// Read the next integer in the set.
|
|
scan = next;
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
|
|
|
|
SKIP_DIGITS(next);
|
|
num = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(num >= 0, "bad explicit proc list");
|
|
|
|
// Add the mask for that osId to the sum mask.
|
|
if ((num > maxOsId) ||
|
|
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
|
|
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
|
|
} else {
|
|
KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
|
|
setSize++;
|
|
}
|
|
}
|
|
if (setSize > 0) {
|
|
ADD_MASK(sumMask);
|
|
}
|
|
|
|
SKIP_WS(next);
|
|
if (*next == ',') {
|
|
next++;
|
|
}
|
|
scan = next;
|
|
continue;
|
|
}
|
|
|
|
// Read the first integer.
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
|
|
SKIP_DIGITS(next);
|
|
start = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(start >= 0, "bad explicit proc list");
|
|
SKIP_WS(next);
|
|
|
|
// If this isn't a range, then add a mask to the list and go on.
|
|
if (*next != '-') {
|
|
ADD_MASK_OSID(start, osId2Mask, maxOsId);
|
|
|
|
// Skip optional comma.
|
|
if (*next == ',') {
|
|
next++;
|
|
}
|
|
scan = next;
|
|
continue;
|
|
}
|
|
|
|
// This is a range. Skip over the '-' and read in the 2nd int.
|
|
next++; // skip '-'
|
|
SKIP_WS(next);
|
|
scan = next;
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
|
|
SKIP_DIGITS(next);
|
|
end = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(end >= 0, "bad explicit proc list");
|
|
|
|
// Check for a stride parameter
|
|
stride = 1;
|
|
SKIP_WS(next);
|
|
if (*next == ':') {
|
|
// A stride is specified. Skip over the ':" and read the 3rd int.
|
|
int sign = +1;
|
|
next++; // skip ':'
|
|
SKIP_WS(next);
|
|
scan = next;
|
|
if (*next == '-') {
|
|
sign = -1;
|
|
next++;
|
|
SKIP_WS(next);
|
|
scan = next;
|
|
}
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
|
|
SKIP_DIGITS(next);
|
|
stride = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(stride >= 0, "bad explicit proc list");
|
|
stride *= sign;
|
|
}
|
|
|
|
// Do some range checks.
|
|
KMP_ASSERT2(stride != 0, "bad explicit proc list");
|
|
if (stride > 0) {
|
|
KMP_ASSERT2(start <= end, "bad explicit proc list");
|
|
} else {
|
|
KMP_ASSERT2(start >= end, "bad explicit proc list");
|
|
}
|
|
KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
|
|
|
|
// Add the mask for each OS proc # to the list.
|
|
if (stride > 0) {
|
|
do {
|
|
ADD_MASK_OSID(start, osId2Mask, maxOsId);
|
|
start += stride;
|
|
} while (start <= end);
|
|
} else {
|
|
do {
|
|
ADD_MASK_OSID(start, osId2Mask, maxOsId);
|
|
start += stride;
|
|
} while (start >= end);
|
|
}
|
|
|
|
// Skip optional comma.
|
|
SKIP_WS(next);
|
|
if (*next == ',') {
|
|
next++;
|
|
}
|
|
scan = next;
|
|
}
|
|
|
|
*out_numMasks = nextNewMask;
|
|
if (nextNewMask == 0) {
|
|
*out_masks = NULL;
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
|
|
return;
|
|
}
|
|
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
|
|
for (i = 0; i < nextNewMask; i++) {
|
|
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
|
|
KMP_CPU_COPY(dest, src);
|
|
}
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
|
|
KMP_CPU_FREE(sumMask);
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
|
|
places. Again, Here is the grammar:
|
|
|
|
place_list := place
|
|
place_list := place , place_list
|
|
place := num
|
|
place := place : num
|
|
place := place : num : signed
|
|
place := { subplacelist }
|
|
place := ! place // (lowest priority)
|
|
subplace_list := subplace
|
|
subplace_list := subplace , subplace_list
|
|
subplace := num
|
|
subplace := num : num
|
|
subplace := num : num : signed
|
|
signed := num
|
|
signed := + signed
|
|
signed := - signed
|
|
-----------------------------------------------------------------------------*/
|
|
static void __kmp_process_subplace_list(const char **scan,
|
|
kmp_affinity_t &affinity, int maxOsId,
|
|
kmp_affin_mask_t *tempMask,
|
|
int *setSize) {
|
|
const char *next;
|
|
kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
|
|
|
|
for (;;) {
|
|
int start, count, stride, i;
|
|
|
|
// Read in the starting proc id
|
|
SKIP_WS(*scan);
|
|
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
|
|
next = *scan;
|
|
SKIP_DIGITS(next);
|
|
start = __kmp_str_to_int(*scan, *next);
|
|
KMP_ASSERT(start >= 0);
|
|
*scan = next;
|
|
|
|
// valid follow sets are ',' ':' and '}'
|
|
SKIP_WS(*scan);
|
|
if (**scan == '}' || **scan == ',') {
|
|
if ((start > maxOsId) ||
|
|
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
|
|
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
|
|
} else {
|
|
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
|
|
(*setSize)++;
|
|
}
|
|
if (**scan == '}') {
|
|
break;
|
|
}
|
|
(*scan)++; // skip ','
|
|
continue;
|
|
}
|
|
KMP_ASSERT2(**scan == ':', "bad explicit places list");
|
|
(*scan)++; // skip ':'
|
|
|
|
// Read count parameter
|
|
SKIP_WS(*scan);
|
|
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
|
|
next = *scan;
|
|
SKIP_DIGITS(next);
|
|
count = __kmp_str_to_int(*scan, *next);
|
|
KMP_ASSERT(count >= 0);
|
|
*scan = next;
|
|
|
|
// valid follow sets are ',' ':' and '}'
|
|
SKIP_WS(*scan);
|
|
if (**scan == '}' || **scan == ',') {
|
|
for (i = 0; i < count; i++) {
|
|
if ((start > maxOsId) ||
|
|
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
|
|
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
|
|
break; // don't proliferate warnings for large count
|
|
} else {
|
|
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
|
|
start++;
|
|
(*setSize)++;
|
|
}
|
|
}
|
|
if (**scan == '}') {
|
|
break;
|
|
}
|
|
(*scan)++; // skip ','
|
|
continue;
|
|
}
|
|
KMP_ASSERT2(**scan == ':', "bad explicit places list");
|
|
(*scan)++; // skip ':'
|
|
|
|
// Read stride parameter
|
|
int sign = +1;
|
|
for (;;) {
|
|
SKIP_WS(*scan);
|
|
if (**scan == '+') {
|
|
(*scan)++; // skip '+'
|
|
continue;
|
|
}
|
|
if (**scan == '-') {
|
|
sign *= -1;
|
|
(*scan)++; // skip '-'
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
SKIP_WS(*scan);
|
|
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
|
|
next = *scan;
|
|
SKIP_DIGITS(next);
|
|
stride = __kmp_str_to_int(*scan, *next);
|
|
KMP_ASSERT(stride >= 0);
|
|
*scan = next;
|
|
stride *= sign;
|
|
|
|
// valid follow sets are ',' and '}'
|
|
SKIP_WS(*scan);
|
|
if (**scan == '}' || **scan == ',') {
|
|
for (i = 0; i < count; i++) {
|
|
if ((start > maxOsId) ||
|
|
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
|
|
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
|
|
break; // don't proliferate warnings for large count
|
|
} else {
|
|
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
|
|
start += stride;
|
|
(*setSize)++;
|
|
}
|
|
}
|
|
if (**scan == '}') {
|
|
break;
|
|
}
|
|
(*scan)++; // skip ','
|
|
continue;
|
|
}
|
|
|
|
KMP_ASSERT2(0, "bad explicit places list");
|
|
}
|
|
}
|
|
|
|
static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
|
|
int maxOsId, kmp_affin_mask_t *tempMask,
|
|
int *setSize) {
|
|
const char *next;
|
|
kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
|
|
|
|
// valid follow sets are '{' '!' and num
|
|
SKIP_WS(*scan);
|
|
if (**scan == '{') {
|
|
(*scan)++; // skip '{'
|
|
__kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
|
|
KMP_ASSERT2(**scan == '}', "bad explicit places list");
|
|
(*scan)++; // skip '}'
|
|
} else if (**scan == '!') {
|
|
(*scan)++; // skip '!'
|
|
__kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
|
|
KMP_CPU_COMPLEMENT(maxOsId, tempMask);
|
|
} else if ((**scan >= '0') && (**scan <= '9')) {
|
|
next = *scan;
|
|
SKIP_DIGITS(next);
|
|
int num = __kmp_str_to_int(*scan, *next);
|
|
KMP_ASSERT(num >= 0);
|
|
if ((num > maxOsId) ||
|
|
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
|
|
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
|
|
} else {
|
|
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
|
|
(*setSize)++;
|
|
}
|
|
*scan = next; // skip num
|
|
} else {
|
|
KMP_ASSERT2(0, "bad explicit places list");
|
|
}
|
|
}
|
|
|
|
// static void
|
|
void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
|
|
int i, j, count, stride, sign;
|
|
kmp_affin_mask_t **out_masks = &affinity.masks;
|
|
unsigned *out_numMasks = &affinity.num_masks;
|
|
const char *placelist = affinity.proclist;
|
|
kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
|
|
int maxOsId = affinity.num_os_id_masks - 1;
|
|
const char *scan = placelist;
|
|
const char *next = placelist;
|
|
|
|
numNewMasks = 2;
|
|
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
|
|
nextNewMask = 0;
|
|
|
|
// tempMask is modified based on the previous or initial
|
|
// place to form the current place
|
|
// previousMask contains the previous place
|
|
kmp_affin_mask_t *tempMask;
|
|
kmp_affin_mask_t *previousMask;
|
|
KMP_CPU_ALLOC(tempMask);
|
|
KMP_CPU_ZERO(tempMask);
|
|
KMP_CPU_ALLOC(previousMask);
|
|
KMP_CPU_ZERO(previousMask);
|
|
int setSize = 0;
|
|
|
|
for (;;) {
|
|
__kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize);
|
|
|
|
// valid follow sets are ',' ':' and EOL
|
|
SKIP_WS(scan);
|
|
if (*scan == '\0' || *scan == ',') {
|
|
if (setSize > 0) {
|
|
ADD_MASK(tempMask);
|
|
}
|
|
KMP_CPU_ZERO(tempMask);
|
|
setSize = 0;
|
|
if (*scan == '\0') {
|
|
break;
|
|
}
|
|
scan++; // skip ','
|
|
continue;
|
|
}
|
|
|
|
KMP_ASSERT2(*scan == ':', "bad explicit places list");
|
|
scan++; // skip ':'
|
|
|
|
// Read count parameter
|
|
SKIP_WS(scan);
|
|
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
|
|
next = scan;
|
|
SKIP_DIGITS(next);
|
|
count = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT(count >= 0);
|
|
scan = next;
|
|
|
|
// valid follow sets are ',' ':' and EOL
|
|
SKIP_WS(scan);
|
|
if (*scan == '\0' || *scan == ',') {
|
|
stride = +1;
|
|
} else {
|
|
KMP_ASSERT2(*scan == ':', "bad explicit places list");
|
|
scan++; // skip ':'
|
|
|
|
// Read stride parameter
|
|
sign = +1;
|
|
for (;;) {
|
|
SKIP_WS(scan);
|
|
if (*scan == '+') {
|
|
scan++; // skip '+'
|
|
continue;
|
|
}
|
|
if (*scan == '-') {
|
|
sign *= -1;
|
|
scan++; // skip '-'
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
SKIP_WS(scan);
|
|
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
|
|
next = scan;
|
|
SKIP_DIGITS(next);
|
|
stride = __kmp_str_to_int(scan, *next);
|
|
KMP_DEBUG_ASSERT(stride >= 0);
|
|
scan = next;
|
|
stride *= sign;
|
|
}
|
|
|
|
// Add places determined by initial_place : count : stride
|
|
for (i = 0; i < count; i++) {
|
|
if (setSize == 0) {
|
|
break;
|
|
}
|
|
// Add the current place, then build the next place (tempMask) from that
|
|
KMP_CPU_COPY(previousMask, tempMask);
|
|
ADD_MASK(previousMask);
|
|
KMP_CPU_ZERO(tempMask);
|
|
setSize = 0;
|
|
KMP_CPU_SET_ITERATE(j, previousMask) {
|
|
if (!KMP_CPU_ISSET(j, previousMask)) {
|
|
continue;
|
|
}
|
|
if ((j + stride > maxOsId) || (j + stride < 0) ||
|
|
(!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
|
|
(!KMP_CPU_ISSET(j + stride,
|
|
KMP_CPU_INDEX(osId2Mask, j + stride)))) {
|
|
if (i < count - 1) {
|
|
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride);
|
|
}
|
|
continue;
|
|
}
|
|
KMP_CPU_SET(j + stride, tempMask);
|
|
setSize++;
|
|
}
|
|
}
|
|
KMP_CPU_ZERO(tempMask);
|
|
setSize = 0;
|
|
|
|
// valid follow sets are ',' and EOL
|
|
SKIP_WS(scan);
|
|
if (*scan == '\0') {
|
|
break;
|
|
}
|
|
if (*scan == ',') {
|
|
scan++; // skip ','
|
|
continue;
|
|
}
|
|
|
|
KMP_ASSERT2(0, "bad explicit places list");
|
|
}
|
|
|
|
*out_numMasks = nextNewMask;
|
|
if (nextNewMask == 0) {
|
|
*out_masks = NULL;
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
|
|
return;
|
|
}
|
|
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
|
|
KMP_CPU_FREE(tempMask);
|
|
KMP_CPU_FREE(previousMask);
|
|
for (i = 0; i < nextNewMask; i++) {
|
|
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
|
|
KMP_CPU_COPY(dest, src);
|
|
}
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
|
|
}
|
|
|
|
#undef ADD_MASK
|
|
#undef ADD_MASK_OSID
|
|
|
|
// This function figures out the deepest level at which there is at least one
|
|
// cluster/core with more than one processing unit bound to it.
|
|
static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
|
|
int core_level = 0;
|
|
|
|
for (int i = 0; i < nprocs; i++) {
|
|
const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
|
|
for (int j = bottom_level; j > 0; j--) {
|
|
if (hw_thread.ids[j] > 0) {
|
|
if (core_level < (j - 1)) {
|
|
core_level = j - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return core_level;
|
|
}
|
|
|
|
// This function counts number of clusters/cores at given level.
|
|
static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
|
|
int core_level) {
|
|
return __kmp_topology->get_count(core_level);
|
|
}
|
|
// This function finds to which cluster/core given processing unit is bound.
|
|
static int __kmp_affinity_find_core(int proc, int bottom_level,
|
|
int core_level) {
|
|
int core = 0;
|
|
KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
|
|
for (int i = 0; i <= proc; ++i) {
|
|
if (i + 1 <= proc) {
|
|
for (int j = 0; j <= core_level; ++j) {
|
|
if (__kmp_topology->at(i + 1).sub_ids[j] !=
|
|
__kmp_topology->at(i).sub_ids[j]) {
|
|
core++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return core;
|
|
}
|
|
|
|
// This function finds maximal number of processing units bound to a
|
|
// cluster/core at given level.
|
|
static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
|
|
int core_level) {
|
|
if (core_level >= bottom_level)
|
|
return 1;
|
|
int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
|
|
return __kmp_topology->calculate_ratio(thread_level, core_level);
|
|
}
|
|
|
|
static int *procarr = NULL;
|
|
static int __kmp_aff_depth = 0;
|
|
static int *__kmp_osid_to_hwthread_map = NULL;
|
|
|
|
static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask,
|
|
kmp_affinity_ids_t &ids,
|
|
kmp_affinity_attrs_t &attrs) {
|
|
if (!KMP_AFFINITY_CAPABLE())
|
|
return;
|
|
|
|
// Initiailze ids and attrs thread data
|
|
for (int i = 0; i < KMP_HW_LAST; ++i)
|
|
ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
|
|
attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
|
|
|
|
// Iterate through each os id within the mask and determine
|
|
// the topology id and attribute information
|
|
int cpu;
|
|
int depth = __kmp_topology->get_depth();
|
|
KMP_CPU_SET_ITERATE(cpu, mask) {
|
|
int osid_idx = __kmp_osid_to_hwthread_map[cpu];
|
|
ids.os_id = cpu;
|
|
const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx);
|
|
for (int level = 0; level < depth; ++level) {
|
|
kmp_hw_t type = __kmp_topology->get_type(level);
|
|
int id = hw_thread.sub_ids[level];
|
|
if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) {
|
|
ids.ids[type] = id;
|
|
} else {
|
|
// This mask spans across multiple topology units, set it as such
|
|
// and mark every level below as such as well.
|
|
ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
|
|
for (; level < depth; ++level) {
|
|
kmp_hw_t type = __kmp_topology->get_type(level);
|
|
ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
|
|
}
|
|
}
|
|
}
|
|
if (!attrs.valid) {
|
|
attrs.core_type = hw_thread.attrs.get_core_type();
|
|
attrs.core_eff = hw_thread.attrs.get_core_eff();
|
|
attrs.valid = 1;
|
|
} else {
|
|
// This mask spans across multiple attributes, set it as such
|
|
if (attrs.core_type != hw_thread.attrs.get_core_type())
|
|
attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN;
|
|
if (attrs.core_eff != hw_thread.attrs.get_core_eff())
|
|
attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) {
|
|
if (!KMP_AFFINITY_CAPABLE())
|
|
return;
|
|
const kmp_affin_mask_t *mask = th->th.th_affin_mask;
|
|
kmp_affinity_ids_t &ids = th->th.th_topology_ids;
|
|
kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs;
|
|
__kmp_affinity_get_mask_topology_info(mask, ids, attrs);
|
|
}
|
|
|
|
// Assign the topology information to each place in the place list
|
|
// A thread can then grab not only its affinity mask, but the topology
|
|
// information associated with that mask. e.g., Which socket is a thread on
|
|
static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) {
|
|
if (!KMP_AFFINITY_CAPABLE())
|
|
return;
|
|
if (affinity.type != affinity_none) {
|
|
KMP_ASSERT(affinity.num_os_id_masks);
|
|
KMP_ASSERT(affinity.os_id_masks);
|
|
}
|
|
KMP_ASSERT(affinity.num_masks);
|
|
KMP_ASSERT(affinity.masks);
|
|
KMP_ASSERT(__kmp_affin_fullMask);
|
|
|
|
int max_cpu = __kmp_affin_fullMask->get_max_cpu();
|
|
int num_hw_threads = __kmp_topology->get_num_hw_threads();
|
|
|
|
// Allocate thread topology information
|
|
if (!affinity.ids) {
|
|
affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(
|
|
sizeof(kmp_affinity_ids_t) * affinity.num_masks);
|
|
}
|
|
if (!affinity.attrs) {
|
|
affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(
|
|
sizeof(kmp_affinity_attrs_t) * affinity.num_masks);
|
|
}
|
|
if (!__kmp_osid_to_hwthread_map) {
|
|
// Want the +1 because max_cpu should be valid index into map
|
|
__kmp_osid_to_hwthread_map =
|
|
(int *)__kmp_allocate(sizeof(int) * (max_cpu + 1));
|
|
}
|
|
|
|
// Create the OS proc to hardware thread map
|
|
for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) {
|
|
int os_id = __kmp_topology->at(hw_thread).os_id;
|
|
if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask))
|
|
__kmp_osid_to_hwthread_map[os_id] = hw_thread;
|
|
}
|
|
|
|
for (unsigned i = 0; i < affinity.num_masks; ++i) {
|
|
kmp_affinity_ids_t &ids = affinity.ids[i];
|
|
kmp_affinity_attrs_t &attrs = affinity.attrs[i];
|
|
kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i);
|
|
__kmp_affinity_get_mask_topology_info(mask, ids, attrs);
|
|
}
|
|
}
|
|
|
|
// Called when __kmp_topology is ready
|
|
static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) {
|
|
// Initialize other data structures which depend on the topology
|
|
if (__kmp_topology && __kmp_topology->get_num_hw_threads()) {
|
|
machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
|
|
__kmp_affinity_get_topology_info(affinity);
|
|
#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
|
|
__kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Create a one element mask array (set of places) which only contains the
|
|
// initial process's affinity mask
|
|
static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
|
|
KMP_ASSERT(__kmp_affin_fullMask != NULL);
|
|
KMP_ASSERT(affinity.type == affinity_none);
|
|
KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
|
|
affinity.num_masks = 1;
|
|
KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0);
|
|
KMP_CPU_COPY(dest, __kmp_affin_fullMask);
|
|
__kmp_aux_affinity_initialize_other_data(affinity);
|
|
}
|
|
|
|
static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
|
|
// Create the "full" mask - this defines all of the processors that we
|
|
// consider to be in the machine model. If respect is set, then it is the
|
|
// initialization thread's affinity mask. Otherwise, it is all processors that
|
|
// we know about on the machine.
|
|
int verbose = affinity.flags.verbose;
|
|
const char *env_var = affinity.env_var;
|
|
|
|
// Already initialized
|
|
if (__kmp_affin_fullMask && __kmp_affin_origMask)
|
|
return;
|
|
|
|
if (__kmp_affin_fullMask == NULL) {
|
|
KMP_CPU_ALLOC(__kmp_affin_fullMask);
|
|
}
|
|
if (__kmp_affin_origMask == NULL) {
|
|
KMP_CPU_ALLOC(__kmp_affin_origMask);
|
|
}
|
|
if (KMP_AFFINITY_CAPABLE()) {
|
|
__kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
|
|
// Make a copy before possible expanding to the entire machine mask
|
|
__kmp_affin_origMask->copy(__kmp_affin_fullMask);
|
|
if (affinity.flags.respect) {
|
|
// Count the number of available processors.
|
|
unsigned i;
|
|
__kmp_avail_proc = 0;
|
|
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
|
|
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
__kmp_avail_proc++;
|
|
}
|
|
if (__kmp_avail_proc > __kmp_xproc) {
|
|
KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
|
|
affinity.type = affinity_none;
|
|
KMP_AFFINITY_DISABLE();
|
|
return;
|
|
}
|
|
|
|
if (verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
__kmp_affin_fullMask);
|
|
KMP_INFORM(InitOSProcSetRespect, env_var, buf);
|
|
}
|
|
} else {
|
|
if (verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
__kmp_affin_fullMask);
|
|
KMP_INFORM(InitOSProcSetNotRespect, env_var, buf);
|
|
}
|
|
__kmp_avail_proc =
|
|
__kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
|
|
#if KMP_OS_WINDOWS
|
|
if (__kmp_num_proc_groups <= 1) {
|
|
// Copy expanded full mask if topology has single processor group
|
|
__kmp_affin_origMask->copy(__kmp_affin_fullMask);
|
|
}
|
|
// Set the process affinity mask since threads' affinity
|
|
// masks must be subset of process mask in Windows* OS
|
|
__kmp_affin_fullMask->set_process_affinity(true);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
|
|
bool success = false;
|
|
const char *env_var = affinity.env_var;
|
|
kmp_i18n_id_t msg_id = kmp_i18n_null;
|
|
int verbose = affinity.flags.verbose;
|
|
|
|
// For backward compatibility, setting KMP_CPUINFO_FILE =>
|
|
// KMP_TOPOLOGY_METHOD=cpuinfo
|
|
if ((__kmp_cpuinfo_file != NULL) &&
|
|
(__kmp_affinity_top_method == affinity_top_method_all)) {
|
|
__kmp_affinity_top_method = affinity_top_method_cpuinfo;
|
|
}
|
|
|
|
if (__kmp_affinity_top_method == affinity_top_method_all) {
|
|
// In the default code path, errors are not fatal - we just try using
|
|
// another method. We only emit a warning message if affinity is on, or the
|
|
// verbose flag is set, an the nowarnings flag was not set.
|
|
#if KMP_USE_HWLOC
|
|
if (!success &&
|
|
__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
|
|
if (!__kmp_hwloc_error) {
|
|
success = __kmp_affinity_create_hwloc_map(&msg_id);
|
|
if (!success && verbose) {
|
|
KMP_INFORM(AffIgnoringHwloc, env_var);
|
|
}
|
|
} else if (verbose) {
|
|
KMP_INFORM(AffIgnoringHwloc, env_var);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
if (!success) {
|
|
success = __kmp_affinity_create_x2apicid_map(&msg_id);
|
|
if (!success && verbose && msg_id != kmp_i18n_null) {
|
|
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
if (!success) {
|
|
success = __kmp_affinity_create_apicid_map(&msg_id);
|
|
if (!success && verbose && msg_id != kmp_i18n_null) {
|
|
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
#if KMP_OS_LINUX
|
|
if (!success) {
|
|
int line = 0;
|
|
success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
|
|
if (!success && verbose && msg_id != kmp_i18n_null) {
|
|
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
#endif /* KMP_OS_LINUX */
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
if (!success && (__kmp_num_proc_groups > 1)) {
|
|
success = __kmp_affinity_create_proc_group_map(&msg_id);
|
|
if (!success && verbose && msg_id != kmp_i18n_null) {
|
|
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
|
|
if (!success) {
|
|
success = __kmp_affinity_create_flat_map(&msg_id);
|
|
if (!success && verbose && msg_id != kmp_i18n_null) {
|
|
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
KMP_ASSERT(success);
|
|
}
|
|
}
|
|
|
|
// If the user has specified that a paricular topology discovery method is to be
|
|
// used, then we abort if that method fails. The exception is group affinity,
|
|
// which might have been implicitly set.
|
|
#if KMP_USE_HWLOC
|
|
else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
|
|
KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
|
|
success = __kmp_affinity_create_hwloc_map(&msg_id);
|
|
if (!success) {
|
|
KMP_ASSERT(msg_id != kmp_i18n_null);
|
|
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
#endif // KMP_USE_HWLOC
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
|
|
__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
|
|
success = __kmp_affinity_create_x2apicid_map(&msg_id);
|
|
if (!success) {
|
|
KMP_ASSERT(msg_id != kmp_i18n_null);
|
|
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
} else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
|
|
success = __kmp_affinity_create_apicid_map(&msg_id);
|
|
if (!success) {
|
|
KMP_ASSERT(msg_id != kmp_i18n_null);
|
|
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
|
|
int line = 0;
|
|
success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
|
|
if (!success) {
|
|
KMP_ASSERT(msg_id != kmp_i18n_null);
|
|
const char *filename = __kmp_cpuinfo_get_filename();
|
|
if (line > 0) {
|
|
KMP_FATAL(FileLineMsgExiting, filename, line,
|
|
__kmp_i18n_catgets(msg_id));
|
|
} else {
|
|
KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
}
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
else if (__kmp_affinity_top_method == affinity_top_method_group) {
|
|
success = __kmp_affinity_create_proc_group_map(&msg_id);
|
|
KMP_ASSERT(success);
|
|
if (!success) {
|
|
KMP_ASSERT(msg_id != kmp_i18n_null);
|
|
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
|
|
else if (__kmp_affinity_top_method == affinity_top_method_flat) {
|
|
success = __kmp_affinity_create_flat_map(&msg_id);
|
|
// should not fail
|
|
KMP_ASSERT(success);
|
|
}
|
|
|
|
// Early exit if topology could not be created
|
|
if (!__kmp_topology) {
|
|
if (KMP_AFFINITY_CAPABLE()) {
|
|
KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
|
|
}
|
|
if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
|
|
__kmp_ncores > 0) {
|
|
__kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
|
|
__kmp_topology->canonicalize(nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
if (verbose) {
|
|
__kmp_topology->print(env_var);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Canonicalize, print (if requested), apply KMP_HW_SUBSET
|
|
__kmp_topology->canonicalize();
|
|
if (verbose)
|
|
__kmp_topology->print(env_var);
|
|
bool filtered = __kmp_topology->filter_hw_subset();
|
|
if (filtered && verbose)
|
|
__kmp_topology->print("KMP_HW_SUBSET");
|
|
return success;
|
|
}
|
|
|
|
static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
|
|
bool is_regular_affinity = (&affinity == &__kmp_affinity);
|
|
bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
|
|
const char *env_var = __kmp_get_affinity_env_var(affinity);
|
|
|
|
if (affinity.flags.initialized) {
|
|
KMP_ASSERT(__kmp_affin_fullMask != NULL);
|
|
return;
|
|
}
|
|
|
|
if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
|
|
__kmp_aux_affinity_initialize_masks(affinity);
|
|
|
|
if (is_regular_affinity && !__kmp_topology) {
|
|
bool success = __kmp_aux_affinity_initialize_topology(affinity);
|
|
if (success) {
|
|
KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
|
|
} else {
|
|
affinity.type = affinity_none;
|
|
KMP_AFFINITY_DISABLE();
|
|
}
|
|
}
|
|
|
|
// If KMP_AFFINITY=none, then only create the single "none" place
|
|
// which is the process's initial affinity mask or the number of
|
|
// hardware threads depending on respect,norespect
|
|
if (affinity.type == affinity_none) {
|
|
__kmp_create_affinity_none_places(affinity);
|
|
#if KMP_USE_HIER_SCHED
|
|
__kmp_dispatch_set_hierarchy_values();
|
|
#endif
|
|
affinity.flags.initialized = TRUE;
|
|
return;
|
|
}
|
|
|
|
__kmp_topology->set_granularity(affinity);
|
|
int depth = __kmp_topology->get_depth();
|
|
|
|
// Create the table of masks, indexed by thread Id.
|
|
unsigned numUnique;
|
|
int numAddrs = __kmp_topology->get_num_hw_threads();
|
|
// If OMP_PLACES=cores:<attribute> specified, then attempt
|
|
// to make OS Id mask table using those attributes
|
|
if (affinity.core_attr_gran.valid) {
|
|
__kmp_create_os_id_masks(&numUnique, affinity, [&](int idx) {
|
|
KMP_ASSERT(idx >= -1);
|
|
for (int i = idx + 1; i < numAddrs; ++i)
|
|
if (__kmp_topology->at(i).attrs.contains(affinity.core_attr_gran))
|
|
return i;
|
|
return numAddrs;
|
|
});
|
|
if (!affinity.os_id_masks) {
|
|
const char *core_attribute;
|
|
if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF)
|
|
core_attribute = "core_efficiency";
|
|
else
|
|
core_attribute = "core_type";
|
|
KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var,
|
|
core_attribute,
|
|
__kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true))
|
|
}
|
|
}
|
|
// If core attributes did not work, or none were specified,
|
|
// then make OS Id mask table using typical incremental way.
|
|
if (!affinity.os_id_masks) {
|
|
__kmp_create_os_id_masks(&numUnique, affinity, [](int idx) {
|
|
KMP_ASSERT(idx >= -1);
|
|
return idx + 1;
|
|
});
|
|
}
|
|
if (affinity.gran_levels == 0) {
|
|
KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
|
|
}
|
|
|
|
switch (affinity.type) {
|
|
|
|
case affinity_explicit:
|
|
KMP_DEBUG_ASSERT(affinity.proclist != NULL);
|
|
if (is_hidden_helper_affinity ||
|
|
__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
|
|
__kmp_affinity_process_proclist(affinity);
|
|
} else {
|
|
__kmp_affinity_process_placelist(affinity);
|
|
}
|
|
if (affinity.num_masks == 0) {
|
|
KMP_AFF_WARNING(affinity, AffNoValidProcID);
|
|
affinity.type = affinity_none;
|
|
__kmp_create_affinity_none_places(affinity);
|
|
affinity.flags.initialized = TRUE;
|
|
return;
|
|
}
|
|
break;
|
|
|
|
// The other affinity types rely on sorting the hardware threads according to
|
|
// some permutation of the machine topology tree. Set affinity.compact
|
|
// and affinity.offset appropriately, then jump to a common code
|
|
// fragment to do the sort and create the array of affinity masks.
|
|
case affinity_logical:
|
|
affinity.compact = 0;
|
|
if (affinity.offset) {
|
|
affinity.offset =
|
|
__kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
|
|
}
|
|
goto sortTopology;
|
|
|
|
case affinity_physical:
|
|
if (__kmp_nThreadsPerCore > 1) {
|
|
affinity.compact = 1;
|
|
if (affinity.compact >= depth) {
|
|
affinity.compact = 0;
|
|
}
|
|
} else {
|
|
affinity.compact = 0;
|
|
}
|
|
if (affinity.offset) {
|
|
affinity.offset =
|
|
__kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
|
|
}
|
|
goto sortTopology;
|
|
|
|
case affinity_scatter:
|
|
if (affinity.compact >= depth) {
|
|
affinity.compact = 0;
|
|
} else {
|
|
affinity.compact = depth - 1 - affinity.compact;
|
|
}
|
|
goto sortTopology;
|
|
|
|
case affinity_compact:
|
|
if (affinity.compact >= depth) {
|
|
affinity.compact = depth - 1;
|
|
}
|
|
goto sortTopology;
|
|
|
|
case affinity_balanced:
|
|
if (depth <= 1 || is_hidden_helper_affinity) {
|
|
KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
|
|
affinity.type = affinity_none;
|
|
__kmp_create_affinity_none_places(affinity);
|
|
affinity.flags.initialized = TRUE;
|
|
return;
|
|
} else if (!__kmp_topology->is_uniform()) {
|
|
// Save the depth for further usage
|
|
__kmp_aff_depth = depth;
|
|
|
|
int core_level =
|
|
__kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
|
|
int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
|
|
core_level);
|
|
int maxprocpercore = __kmp_affinity_max_proc_per_core(
|
|
__kmp_avail_proc, depth - 1, core_level);
|
|
|
|
int nproc = ncores * maxprocpercore;
|
|
if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
|
|
KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
|
|
affinity.type = affinity_none;
|
|
__kmp_create_affinity_none_places(affinity);
|
|
affinity.flags.initialized = TRUE;
|
|
return;
|
|
}
|
|
|
|
procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
|
|
for (int i = 0; i < nproc; i++) {
|
|
procarr[i] = -1;
|
|
}
|
|
|
|
int lastcore = -1;
|
|
int inlastcore = 0;
|
|
for (int i = 0; i < __kmp_avail_proc; i++) {
|
|
int proc = __kmp_topology->at(i).os_id;
|
|
int core = __kmp_affinity_find_core(i, depth - 1, core_level);
|
|
|
|
if (core == lastcore) {
|
|
inlastcore++;
|
|
} else {
|
|
inlastcore = 0;
|
|
}
|
|
lastcore = core;
|
|
|
|
procarr[core * maxprocpercore + inlastcore] = proc;
|
|
}
|
|
}
|
|
if (affinity.compact >= depth) {
|
|
affinity.compact = depth - 1;
|
|
}
|
|
|
|
sortTopology:
|
|
// Allocate the gtid->affinity mask table.
|
|
if (affinity.flags.dups) {
|
|
affinity.num_masks = __kmp_avail_proc;
|
|
} else {
|
|
affinity.num_masks = numUnique;
|
|
}
|
|
|
|
if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
|
|
(__kmp_affinity_num_places > 0) &&
|
|
((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
|
|
!is_hidden_helper_affinity) {
|
|
affinity.num_masks = __kmp_affinity_num_places;
|
|
}
|
|
|
|
KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
|
|
|
|
// Sort the topology table according to the current setting of
|
|
// affinity.compact, then fill out affinity.masks.
|
|
__kmp_topology->sort_compact(affinity);
|
|
{
|
|
int i;
|
|
unsigned j;
|
|
int num_hw_threads = __kmp_topology->get_num_hw_threads();
|
|
kmp_full_mask_modifier_t full_mask;
|
|
for (i = 0, j = 0; i < num_hw_threads; i++) {
|
|
if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) {
|
|
continue;
|
|
}
|
|
int osId = __kmp_topology->at(i).os_id;
|
|
|
|
kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId);
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j);
|
|
KMP_ASSERT(KMP_CPU_ISSET(osId, src));
|
|
KMP_CPU_COPY(dest, src);
|
|
full_mask.include(src);
|
|
if (++j >= affinity.num_masks) {
|
|
break;
|
|
}
|
|
}
|
|
KMP_DEBUG_ASSERT(j == affinity.num_masks);
|
|
// See if the places list further restricts or changes the full mask
|
|
if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
|
|
__kmp_topology->print(env_var);
|
|
}
|
|
}
|
|
// Sort the topology back using ids
|
|
__kmp_topology->sort_ids();
|
|
break;
|
|
|
|
default:
|
|
KMP_ASSERT2(0, "Unexpected affinity setting");
|
|
}
|
|
__kmp_aux_affinity_initialize_other_data(affinity);
|
|
affinity.flags.initialized = TRUE;
|
|
}
|
|
|
|
void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
|
|
// Much of the code above was written assuming that if a machine was not
|
|
// affinity capable, then affinity type == affinity_none.
|
|
// We now explicitly represent this as affinity type == affinity_disabled.
|
|
// There are too many checks for affinity type == affinity_none in this code.
|
|
// Instead of trying to change them all, check if
|
|
// affinity type == affinity_disabled, and if so, slam it with affinity_none,
|
|
// call the real initialization routine, then restore affinity type to
|
|
// affinity_disabled.
|
|
int disabled = (affinity.type == affinity_disabled);
|
|
if (!KMP_AFFINITY_CAPABLE())
|
|
KMP_ASSERT(disabled);
|
|
if (disabled)
|
|
affinity.type = affinity_none;
|
|
__kmp_aux_affinity_initialize(affinity);
|
|
if (disabled)
|
|
affinity.type = affinity_disabled;
|
|
}
|
|
|
|
void __kmp_affinity_uninitialize(void) {
|
|
for (kmp_affinity_t *affinity : __kmp_affinities) {
|
|
if (affinity->masks != NULL)
|
|
KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks);
|
|
if (affinity->os_id_masks != NULL)
|
|
KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks);
|
|
if (affinity->proclist != NULL)
|
|
__kmp_free(affinity->proclist);
|
|
if (affinity->ids != NULL)
|
|
__kmp_free(affinity->ids);
|
|
if (affinity->attrs != NULL)
|
|
__kmp_free(affinity->attrs);
|
|
*affinity = KMP_AFFINITY_INIT(affinity->env_var);
|
|
}
|
|
if (__kmp_affin_origMask != NULL) {
|
|
if (KMP_AFFINITY_CAPABLE()) {
|
|
__kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
|
|
}
|
|
KMP_CPU_FREE(__kmp_affin_origMask);
|
|
__kmp_affin_origMask = NULL;
|
|
}
|
|
__kmp_affinity_num_places = 0;
|
|
if (procarr != NULL) {
|
|
__kmp_free(procarr);
|
|
procarr = NULL;
|
|
}
|
|
if (__kmp_osid_to_hwthread_map) {
|
|
__kmp_free(__kmp_osid_to_hwthread_map);
|
|
__kmp_osid_to_hwthread_map = NULL;
|
|
}
|
|
#if KMP_USE_HWLOC
|
|
if (__kmp_hwloc_topology != NULL) {
|
|
hwloc_topology_destroy(__kmp_hwloc_topology);
|
|
__kmp_hwloc_topology = NULL;
|
|
}
|
|
#endif
|
|
if (__kmp_hw_subset) {
|
|
kmp_hw_subset_t::deallocate(__kmp_hw_subset);
|
|
__kmp_hw_subset = nullptr;
|
|
}
|
|
if (__kmp_topology) {
|
|
kmp_topology_t::deallocate(__kmp_topology);
|
|
__kmp_topology = nullptr;
|
|
}
|
|
KMPAffinity::destroy_api();
|
|
}
|
|
|
|
static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
|
|
int *place, kmp_affin_mask_t **mask) {
|
|
int mask_idx;
|
|
bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
|
|
if (is_hidden_helper)
|
|
// The first gtid is the regular primary thread, the second gtid is the main
|
|
// thread of hidden team which does not participate in task execution.
|
|
mask_idx = gtid - 2;
|
|
else
|
|
mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
|
|
KMP_DEBUG_ASSERT(affinity->num_masks > 0);
|
|
*place = (mask_idx + affinity->offset) % affinity->num_masks;
|
|
*mask = KMP_CPU_INDEX(affinity->masks, *place);
|
|
}
|
|
|
|
// This function initializes the per-thread data concerning affinity including
|
|
// the mask and topology information
|
|
void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
|
|
|
|
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
|
|
|
|
// Set the thread topology information to default of unknown
|
|
for (int id = 0; id < KMP_HW_LAST; ++id)
|
|
th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID;
|
|
th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
|
|
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return;
|
|
}
|
|
|
|
if (th->th.th_affin_mask == NULL) {
|
|
KMP_CPU_ALLOC(th->th.th_affin_mask);
|
|
} else {
|
|
KMP_CPU_ZERO(th->th.th_affin_mask);
|
|
}
|
|
|
|
// Copy the thread mask to the kmp_info_t structure. If
|
|
// __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
|
|
// one that has all of the OS proc ids set, or if
|
|
// __kmp_affinity.flags.respect is set, then the full mask is the
|
|
// same as the mask of the initialization thread.
|
|
kmp_affin_mask_t *mask;
|
|
int i;
|
|
const kmp_affinity_t *affinity;
|
|
bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
|
|
|
|
if (is_hidden_helper)
|
|
affinity = &__kmp_hh_affinity;
|
|
else
|
|
affinity = &__kmp_affinity;
|
|
|
|
if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) {
|
|
if ((affinity->type == affinity_none) ||
|
|
(affinity->type == affinity_balanced) ||
|
|
KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
|
|
#if KMP_GROUP_AFFINITY
|
|
if (__kmp_num_proc_groups > 1) {
|
|
return;
|
|
}
|
|
#endif
|
|
KMP_ASSERT(__kmp_affin_fullMask != NULL);
|
|
i = 0;
|
|
mask = __kmp_affin_fullMask;
|
|
} else {
|
|
__kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
|
|
}
|
|
} else {
|
|
if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
|
|
#if KMP_GROUP_AFFINITY
|
|
if (__kmp_num_proc_groups > 1) {
|
|
return;
|
|
}
|
|
#endif
|
|
KMP_ASSERT(__kmp_affin_fullMask != NULL);
|
|
i = KMP_PLACE_ALL;
|
|
mask = __kmp_affin_fullMask;
|
|
} else {
|
|
__kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
|
|
}
|
|
}
|
|
|
|
th->th.th_current_place = i;
|
|
if (isa_root && !is_hidden_helper) {
|
|
th->th.th_new_place = i;
|
|
th->th.th_first_place = 0;
|
|
th->th.th_last_place = affinity->num_masks - 1;
|
|
} else if (KMP_AFFINITY_NON_PROC_BIND) {
|
|
// When using a Non-OMP_PROC_BIND affinity method,
|
|
// set all threads' place-partition-var to the entire place list
|
|
th->th.th_first_place = 0;
|
|
th->th.th_last_place = affinity->num_masks - 1;
|
|
}
|
|
// Copy topology information associated with the place
|
|
if (i >= 0) {
|
|
th->th.th_topology_ids = __kmp_affinity.ids[i];
|
|
th->th.th_topology_attrs = __kmp_affinity.attrs[i];
|
|
}
|
|
|
|
if (i == KMP_PLACE_ALL) {
|
|
KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n",
|
|
gtid));
|
|
} else {
|
|
KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n",
|
|
gtid, i));
|
|
}
|
|
|
|
KMP_CPU_COPY(th->th.th_affin_mask, mask);
|
|
}
|
|
|
|
void __kmp_affinity_bind_init_mask(int gtid) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return;
|
|
}
|
|
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
|
|
const kmp_affinity_t *affinity;
|
|
const char *env_var;
|
|
bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
|
|
|
|
if (is_hidden_helper)
|
|
affinity = &__kmp_hh_affinity;
|
|
else
|
|
affinity = &__kmp_affinity;
|
|
env_var = __kmp_get_affinity_env_var(*affinity, /*for_binding=*/true);
|
|
/* to avoid duplicate printing (will be correctly printed on barrier) */
|
|
if (affinity->flags.verbose && (affinity->type == affinity_none ||
|
|
(th->th.th_current_place != KMP_PLACE_ALL &&
|
|
affinity->type != affinity_balanced)) &&
|
|
!KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
th->th.th_affin_mask);
|
|
KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
|
|
gtid, buf);
|
|
}
|
|
|
|
#if KMP_OS_WINDOWS
|
|
// On Windows* OS, the process affinity mask might have changed. If the user
|
|
// didn't request affinity and this call fails, just continue silently.
|
|
// See CQ171393.
|
|
if (affinity->type == affinity_none) {
|
|
__kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
|
|
} else
|
|
#endif
|
|
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
|
|
}
|
|
|
|
void __kmp_affinity_bind_place(int gtid) {
|
|
// Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
|
|
if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) {
|
|
return;
|
|
}
|
|
|
|
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
|
|
|
|
KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current "
|
|
"place = %d)\n",
|
|
gtid, th->th.th_new_place, th->th.th_current_place));
|
|
|
|
// Check that the new place is within this thread's partition.
|
|
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
|
|
KMP_ASSERT(th->th.th_new_place >= 0);
|
|
KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks);
|
|
if (th->th.th_first_place <= th->th.th_last_place) {
|
|
KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
|
|
(th->th.th_new_place <= th->th.th_last_place));
|
|
} else {
|
|
KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
|
|
(th->th.th_new_place >= th->th.th_last_place));
|
|
}
|
|
|
|
// Copy the thread mask to the kmp_info_t structure,
|
|
// and set this thread's affinity.
|
|
kmp_affin_mask_t *mask =
|
|
KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place);
|
|
KMP_CPU_COPY(th->th.th_affin_mask, mask);
|
|
th->th.th_current_place = th->th.th_new_place;
|
|
|
|
if (__kmp_affinity.flags.verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
th->th.th_affin_mask);
|
|
KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
|
|
__kmp_gettid(), gtid, buf);
|
|
}
|
|
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
|
|
}
|
|
|
|
int __kmp_aux_set_affinity(void **mask) {
|
|
int gtid;
|
|
kmp_info_t *th;
|
|
int retval;
|
|
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
gtid = __kmp_entry_gtid();
|
|
KA_TRACE(
|
|
1000, (""); {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_debug_printf(
|
|
"kmp_set_affinity: setting affinity mask for thread %d = %s\n",
|
|
gtid, buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
|
|
} else {
|
|
unsigned proc;
|
|
int num_procs = 0;
|
|
|
|
KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
|
|
}
|
|
if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
|
|
continue;
|
|
}
|
|
num_procs++;
|
|
}
|
|
if (num_procs == 0) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
|
|
}
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
|
|
}
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
}
|
|
}
|
|
|
|
th = __kmp_threads[gtid];
|
|
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
|
|
retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
|
|
if (retval == 0) {
|
|
KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
|
|
}
|
|
|
|
th->th.th_current_place = KMP_PLACE_UNDEFINED;
|
|
th->th.th_new_place = KMP_PLACE_UNDEFINED;
|
|
th->th.th_first_place = 0;
|
|
th->th.th_last_place = __kmp_affinity.num_masks - 1;
|
|
|
|
// Turn off 4.0 affinity for the current tread at this parallel level.
|
|
th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
|
|
|
|
return retval;
|
|
}
|
|
|
|
int __kmp_aux_get_affinity(void **mask) {
|
|
int gtid;
|
|
int retval;
|
|
#if KMP_OS_WINDOWS || KMP_DEBUG
|
|
kmp_info_t *th;
|
|
#endif
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
gtid = __kmp_entry_gtid();
|
|
#if KMP_OS_WINDOWS || KMP_DEBUG
|
|
th = __kmp_threads[gtid];
|
|
#else
|
|
(void)gtid; // unused variable
|
|
#endif
|
|
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
|
|
|
|
KA_TRACE(
|
|
1000, (""); {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
th->th.th_affin_mask);
|
|
__kmp_printf(
|
|
"kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
|
|
buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
|
|
}
|
|
}
|
|
|
|
#if !KMP_OS_WINDOWS
|
|
|
|
retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
|
|
KA_TRACE(
|
|
1000, (""); {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_printf(
|
|
"kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
|
|
buf);
|
|
});
|
|
return retval;
|
|
|
|
#else
|
|
(void)retval;
|
|
|
|
KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
|
|
return 0;
|
|
|
|
#endif /* KMP_OS_WINDOWS */
|
|
}
|
|
|
|
int __kmp_aux_get_affinity_max_proc() {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return 0;
|
|
}
|
|
#if KMP_GROUP_AFFINITY
|
|
if (__kmp_num_proc_groups > 1) {
|
|
return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
|
|
}
|
|
#endif
|
|
return __kmp_xproc;
|
|
}
|
|
|
|
int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
KA_TRACE(
|
|
1000, (""); {
|
|
int gtid = __kmp_entry_gtid();
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
|
|
"affinity mask for thread %d = %s\n",
|
|
proc, gtid, buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
|
|
}
|
|
}
|
|
|
|
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
|
|
return -1;
|
|
}
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
return -2;
|
|
}
|
|
|
|
KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
|
|
return 0;
|
|
}
|
|
|
|
int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
KA_TRACE(
|
|
1000, (""); {
|
|
int gtid = __kmp_entry_gtid();
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
|
|
"affinity mask for thread %d = %s\n",
|
|
proc, gtid, buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
|
|
}
|
|
}
|
|
|
|
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
|
|
return -1;
|
|
}
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
return -2;
|
|
}
|
|
|
|
KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
|
|
return 0;
|
|
}
|
|
|
|
int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
KA_TRACE(
|
|
1000, (""); {
|
|
int gtid = __kmp_entry_gtid();
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
|
|
"affinity mask for thread %d = %s\n",
|
|
proc, gtid, buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
|
|
}
|
|
}
|
|
|
|
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
|
|
return -1;
|
|
}
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
return 0;
|
|
}
|
|
|
|
return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
|
|
}
|
|
|
|
#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
|
|
// Returns first os proc id with ATOM core
|
|
int __kmp_get_first_osid_with_ecore(void) {
|
|
int low = 0;
|
|
int high = __kmp_topology->get_num_hw_threads() - 1;
|
|
int mid = 0;
|
|
while (high - low > 1) {
|
|
mid = (high + low) / 2;
|
|
if (__kmp_topology->at(mid).attrs.get_core_type() ==
|
|
KMP_HW_CORE_TYPE_CORE) {
|
|
low = mid + 1;
|
|
} else {
|
|
high = mid;
|
|
}
|
|
}
|
|
if (__kmp_topology->at(mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) {
|
|
return mid;
|
|
}
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
// Dynamic affinity settings - Affinity balanced
|
|
void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
|
|
KMP_DEBUG_ASSERT(th);
|
|
bool fine_gran = true;
|
|
int tid = th->th.th_info.ds.ds_tid;
|
|
const char *env_var = "KMP_AFFINITY";
|
|
|
|
// Do not perform balanced affinity for the hidden helper threads
|
|
if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
|
|
return;
|
|
|
|
switch (__kmp_affinity.gran) {
|
|
case KMP_HW_THREAD:
|
|
break;
|
|
case KMP_HW_CORE:
|
|
if (__kmp_nThreadsPerCore > 1) {
|
|
fine_gran = false;
|
|
}
|
|
break;
|
|
case KMP_HW_SOCKET:
|
|
if (nCoresPerPkg > 1) {
|
|
fine_gran = false;
|
|
}
|
|
break;
|
|
default:
|
|
fine_gran = false;
|
|
}
|
|
|
|
if (__kmp_topology->is_uniform()) {
|
|
int coreID;
|
|
int threadID;
|
|
// Number of hyper threads per core in HT machine
|
|
int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
|
|
// Number of cores
|
|
int ncores = __kmp_ncores;
|
|
if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
|
|
__kmp_nth_per_core = __kmp_avail_proc / nPackages;
|
|
ncores = nPackages;
|
|
}
|
|
// How many threads will be bound to each core
|
|
int chunk = nthreads / ncores;
|
|
// How many cores will have an additional thread bound to it - "big cores"
|
|
int big_cores = nthreads % ncores;
|
|
// Number of threads on the big cores
|
|
int big_nth = (chunk + 1) * big_cores;
|
|
if (tid < big_nth) {
|
|
coreID = tid / (chunk + 1);
|
|
threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
|
|
} else { // tid >= big_nth
|
|
coreID = (tid - big_cores) / chunk;
|
|
threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
|
|
}
|
|
KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
|
|
"Illegal set affinity operation when not capable");
|
|
|
|
kmp_affin_mask_t *mask = th->th.th_affin_mask;
|
|
KMP_CPU_ZERO(mask);
|
|
|
|
if (fine_gran) {
|
|
int osID =
|
|
__kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
|
|
KMP_CPU_SET(osID, mask);
|
|
} else {
|
|
for (int i = 0; i < __kmp_nth_per_core; i++) {
|
|
int osID;
|
|
osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
|
|
KMP_CPU_SET(osID, mask);
|
|
}
|
|
}
|
|
if (__kmp_affinity.flags.verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
|
|
KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
|
|
tid, buf);
|
|
}
|
|
__kmp_affinity_get_thread_topology_info(th);
|
|
__kmp_set_system_affinity(mask, TRUE);
|
|
} else { // Non-uniform topology
|
|
|
|
kmp_affin_mask_t *mask = th->th.th_affin_mask;
|
|
KMP_CPU_ZERO(mask);
|
|
|
|
int core_level =
|
|
__kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
|
|
int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
|
|
__kmp_aff_depth - 1, core_level);
|
|
int nth_per_core = __kmp_affinity_max_proc_per_core(
|
|
__kmp_avail_proc, __kmp_aff_depth - 1, core_level);
|
|
|
|
// For performance gain consider the special case nthreads ==
|
|
// __kmp_avail_proc
|
|
if (nthreads == __kmp_avail_proc) {
|
|
if (fine_gran) {
|
|
int osID = __kmp_topology->at(tid).os_id;
|
|
KMP_CPU_SET(osID, mask);
|
|
} else {
|
|
int core =
|
|
__kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
|
|
for (int i = 0; i < __kmp_avail_proc; i++) {
|
|
int osID = __kmp_topology->at(i).os_id;
|
|
if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
|
|
core) {
|
|
KMP_CPU_SET(osID, mask);
|
|
}
|
|
}
|
|
}
|
|
} else if (nthreads <= ncores) {
|
|
|
|
int core = 0;
|
|
for (int i = 0; i < ncores; i++) {
|
|
// Check if this core from procarr[] is in the mask
|
|
int in_mask = 0;
|
|
for (int j = 0; j < nth_per_core; j++) {
|
|
if (procarr[i * nth_per_core + j] != -1) {
|
|
in_mask = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (in_mask) {
|
|
if (tid == core) {
|
|
for (int j = 0; j < nth_per_core; j++) {
|
|
int osID = procarr[i * nth_per_core + j];
|
|
if (osID != -1) {
|
|
KMP_CPU_SET(osID, mask);
|
|
// For fine granularity it is enough to set the first available
|
|
// osID for this core
|
|
if (fine_gran) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
} else {
|
|
core++;
|
|
}
|
|
}
|
|
}
|
|
} else { // nthreads > ncores
|
|
// Array to save the number of processors at each core
|
|
int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
|
|
// Array to save the number of cores with "x" available processors;
|
|
int *ncores_with_x_procs =
|
|
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
|
|
// Array to save the number of cores with # procs from x to nth_per_core
|
|
int *ncores_with_x_to_max_procs =
|
|
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
|
|
|
|
for (int i = 0; i <= nth_per_core; i++) {
|
|
ncores_with_x_procs[i] = 0;
|
|
ncores_with_x_to_max_procs[i] = 0;
|
|
}
|
|
|
|
for (int i = 0; i < ncores; i++) {
|
|
int cnt = 0;
|
|
for (int j = 0; j < nth_per_core; j++) {
|
|
if (procarr[i * nth_per_core + j] != -1) {
|
|
cnt++;
|
|
}
|
|
}
|
|
nproc_at_core[i] = cnt;
|
|
ncores_with_x_procs[cnt]++;
|
|
}
|
|
|
|
for (int i = 0; i <= nth_per_core; i++) {
|
|
for (int j = i; j <= nth_per_core; j++) {
|
|
ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
|
|
}
|
|
}
|
|
|
|
// Max number of processors
|
|
int nproc = nth_per_core * ncores;
|
|
// An array to keep number of threads per each context
|
|
int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
|
|
for (int i = 0; i < nproc; i++) {
|
|
newarr[i] = 0;
|
|
}
|
|
|
|
int nth = nthreads;
|
|
int flag = 0;
|
|
while (nth > 0) {
|
|
for (int j = 1; j <= nth_per_core; j++) {
|
|
int cnt = ncores_with_x_to_max_procs[j];
|
|
for (int i = 0; i < ncores; i++) {
|
|
// Skip the core with 0 processors
|
|
if (nproc_at_core[i] == 0) {
|
|
continue;
|
|
}
|
|
for (int k = 0; k < nth_per_core; k++) {
|
|
if (procarr[i * nth_per_core + k] != -1) {
|
|
if (newarr[i * nth_per_core + k] == 0) {
|
|
newarr[i * nth_per_core + k] = 1;
|
|
cnt--;
|
|
nth--;
|
|
break;
|
|
} else {
|
|
if (flag != 0) {
|
|
newarr[i * nth_per_core + k]++;
|
|
cnt--;
|
|
nth--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (cnt == 0 || nth == 0) {
|
|
break;
|
|
}
|
|
}
|
|
if (nth == 0) {
|
|
break;
|
|
}
|
|
}
|
|
flag = 1;
|
|
}
|
|
int sum = 0;
|
|
for (int i = 0; i < nproc; i++) {
|
|
sum += newarr[i];
|
|
if (sum > tid) {
|
|
if (fine_gran) {
|
|
int osID = procarr[i];
|
|
KMP_CPU_SET(osID, mask);
|
|
} else {
|
|
int coreID = i / nth_per_core;
|
|
for (int ii = 0; ii < nth_per_core; ii++) {
|
|
int osID = procarr[coreID * nth_per_core + ii];
|
|
if (osID != -1) {
|
|
KMP_CPU_SET(osID, mask);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
__kmp_free(newarr);
|
|
}
|
|
|
|
if (__kmp_affinity.flags.verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
|
|
KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
|
|
tid, buf);
|
|
}
|
|
__kmp_affinity_get_thread_topology_info(th);
|
|
__kmp_set_system_affinity(mask, TRUE);
|
|
}
|
|
}
|
|
|
|
#if KMP_OS_LINUX || KMP_OS_FREEBSD
|
|
// We don't need this entry for Windows because
|
|
// there is GetProcessAffinityMask() api
|
|
//
|
|
// The intended usage is indicated by these steps:
|
|
// 1) The user gets the current affinity mask
|
|
// 2) Then sets the affinity by calling this function
|
|
// 3) Error check the return value
|
|
// 4) Use non-OpenMP parallelization
|
|
// 5) Reset the affinity to what was stored in step 1)
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
#endif
|
|
int
|
|
kmp_set_thread_affinity_mask_initial()
|
|
// the function returns 0 on success,
|
|
// -1 if we cannot bind thread
|
|
// >0 (errno) if an error happened during binding
|
|
{
|
|
int gtid = __kmp_get_gtid();
|
|
if (gtid < 0) {
|
|
// Do not touch non-omp threads
|
|
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
|
|
"non-omp thread, returning\n"));
|
|
return -1;
|
|
}
|
|
if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
|
|
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
|
|
"affinity not initialized, returning\n"));
|
|
return -1;
|
|
}
|
|
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
|
|
"set full mask for thread %d\n",
|
|
gtid));
|
|
KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
|
|
return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
|
|
}
|
|
#endif
|
|
|
|
#endif // KMP_AFFINITY_SUPPORTED
|