mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 19:43:32 +00:00
164 lines
6.7 KiB
C
164 lines
6.7 KiB
C
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
|
||
│vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│
|
||
╚──────────────────────────────────────────────────────────────────────────────╝
|
||
│ │
|
||
│ Musl Libc │
|
||
│ Copyright © 2005-2014 Rich Felker, et al. │
|
||
│ │
|
||
│ Permission is hereby granted, free of charge, to any person obtaining │
|
||
│ a copy of this software and associated documentation files (the │
|
||
│ "Software"), to deal in the Software without restriction, including │
|
||
│ without limitation the rights to use, copy, modify, merge, publish, │
|
||
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
||
│ permit persons to whom the Software is furnished to do so, subject to │
|
||
│ the following conditions: │
|
||
│ │
|
||
│ The above copyright notice and this permission notice shall be │
|
||
│ included in all copies or substantial portions of the Software. │
|
||
│ │
|
||
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
||
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
||
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
||
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
||
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
||
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
||
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
||
│ │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include "libc/intrin/likely.h"
|
||
#include "libc/math.h"
|
||
#include "libc/tinymath/internal.h"
|
||
#include "libc/tinymath/log_data.internal.h"
|
||
#ifndef TINY
|
||
|
||
asm(".ident\t\"\\n\\n\
|
||
Double-precision math functions (MIT License)\\n\
|
||
Copyright 2018 ARM Limited\"");
|
||
asm(".include \"libc/disclaimer.inc\"");
|
||
/* clang-format off */
|
||
|
||
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
|
||
/*
|
||
* ====================================================
|
||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
*
|
||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
* Permission to use, copy, modify, and distribute this
|
||
* software is freely granted, provided that this notice
|
||
* is preserved.
|
||
* ====================================================
|
||
*/
|
||
/* double log1p(double x)
|
||
* Return the natural logarithm of 1+x.
|
||
*
|
||
* Method :
|
||
* 1. Argument Reduction: find k and f such that
|
||
* 1+x = 2^k * (1+f),
|
||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||
*
|
||
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
||
* may not be representable exactly. In that case, a correction
|
||
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
||
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
||
* and add back the correction term c/u.
|
||
* (Note: when x > 2**53, one can simply return log(x))
|
||
*
|
||
* 2. Approximation of log(1+f): See log.c
|
||
*
|
||
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
|
||
*
|
||
* Special cases:
|
||
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
||
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
||
* log1p(NaN) is that NaN with no signal.
|
||
*
|
||
* Accuracy:
|
||
* according to an error analysis, the error is always less than
|
||
* 1 ulp (unit in the last place).
|
||
*
|
||
* Constants:
|
||
* The hexadecimal values are the intended ones for the following
|
||
* constants. The decimal values may be used, provided that the
|
||
* compiler will convert from decimal to binary accurately enough
|
||
* to produce the hexadecimal values shown.
|
||
*
|
||
* Note: Assuming log() return accurate answer, the following
|
||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||
*
|
||
* u = 1+x;
|
||
* if(u==1.0) return x ; else
|
||
* return log(u)*(x/(u-1.0));
|
||
*
|
||
* See HP-15C Advanced Functions Handbook, p.193.
|
||
*/
|
||
|
||
static const double
|
||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||
|
||
/**
|
||
* Returns log(𝟷+𝑥).
|
||
*/
|
||
double log1p(double x)
|
||
{
|
||
union {double f; uint64_t i;} u = {x};
|
||
double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
|
||
uint32_t hx,hu;
|
||
int k;
|
||
|
||
hx = u.i>>32;
|
||
k = 1;
|
||
if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */
|
||
if (hx >= 0xbff00000) { /* x <= -1.0 */
|
||
if (x == -1)
|
||
return x/0.0; /* log1p(-1) = -inf */
|
||
return (x-x)/0.0; /* log1p(x<-1) = NaN */
|
||
}
|
||
if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */
|
||
/* underflow if subnormal */
|
||
if ((hx&0x7ff00000) == 0)
|
||
FORCE_EVAL((float)x);
|
||
return x;
|
||
}
|
||
if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||
k = 0;
|
||
c = 0;
|
||
f = x;
|
||
}
|
||
} else if (hx >= 0x7ff00000)
|
||
return x;
|
||
if (k) {
|
||
u.f = 1 + x;
|
||
hu = u.i>>32;
|
||
hu += 0x3ff00000 - 0x3fe6a09e;
|
||
k = (int)(hu>>20) - 0x3ff;
|
||
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
|
||
if (k < 54) {
|
||
c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
|
||
c /= u.f;
|
||
} else
|
||
c = 0;
|
||
/* reduce u into [sqrt(2)/2, sqrt(2)] */
|
||
hu = (hu&0x000fffff) + 0x3fe6a09e;
|
||
u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
|
||
f = u.f - 1;
|
||
}
|
||
hfsq = 0.5*f*f;
|
||
s = f/(2.0+f);
|
||
z = s*s;
|
||
w = z*z;
|
||
t1 = w*(Lg2+w*(Lg4+w*Lg6));
|
||
t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||
R = t2 + t1;
|
||
dk = k;
|
||
return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
|
||
}
|
||
|
||
#endif /* TINY */
|