cosmopolitan/libc/tinymath/powf.c
2022-08-11 12:13:18 -07:00

226 lines
7.8 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
│vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│
╚──────────────────────────────────────────────────────────────────────────────╝
│ │
│ Musl Libc │
│ Copyright © 2005-2014 Rich Felker, et al. │
│ │
│ Permission is hereby granted, free of charge, to any person obtaining │
│ a copy of this software and associated documentation files (the │
│ "Software"), to deal in the Software without restriction, including │
│ without limitation the rights to use, copy, modify, merge, publish, │
│ distribute, sublicense, and/or sell copies of the Software, and to │
│ permit persons to whom the Software is furnished to do so, subject to │
│ the following conditions: │
│ │
│ The above copyright notice and this permission notice shall be │
│ included in all copies or substantial portions of the Software. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
│ │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/intrin/likely.h"
#include "libc/math.h"
#include "libc/tinymath/exp2f_data.internal.h"
#include "libc/tinymath/exp_data.internal.h"
#include "libc/tinymath/internal.h"
#include "libc/tinymath/powf_data.internal.h"
#ifndef TINY
asm(".ident\t\"\\n\\n\
Double-precision math functions (MIT License)\\n\
Copyright 2018 ARM Limited\"");
asm(".include \"libc/disclaimer.inc\"");
/* clang-format off */
/*
* Copyright (c) 2017-2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
/*
POWF_LOG2_POLY_ORDER = 5
EXP2F_TABLE_BITS = 5
ULP error: 0.82 (~ 0.5 + relerr*2^24)
relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
*/
#define N (1 << POWF_LOG2_TABLE_BITS)
#define T __powf_log2_data.tab
#define A __powf_log2_data.poly
#define OFF 0x3f330000
/* Subnormal input is normalized so ix has negative biased exponent.
Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. */
static inline double_t log2_inline(uint32_t ix)
{
double_t z, r, r2, r4, p, q, y, y0, invc, logc;
uint32_t iz, top, tmp;
int k, i;
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N;
top = tmp & 0xff800000;
iz = ix - top;
k = (int32_t)top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */
invc = T[i].invc;
logc = T[i].logc;
z = (double_t)asfloat(iz);
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
r = z * invc - 1;
y0 = logc + (double_t)k;
/* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
r2 = r * r;
y = A[0] * r + A[1];
p = A[2] * r + A[3];
r4 = r2 * r2;
q = A[4] * r + y0;
q = p * r2 + q;
y = y * r4 + q;
return y;
}
#undef N
#undef T
#define N (1 << EXP2F_TABLE_BITS)
#define T __exp2f_data.tab
#define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11))
/* The output of log2 and thus the input of exp2 is either scaled by N
(in case of fast toint intrinsics) or not. The unscaled xd must be
in [-1021,1023], sign_bias sets the sign of the result. */
static inline float exp2_inline(double_t xd, uint32_t sign_bias)
{
uint64_t ki, ski, t;
double_t kd, z, r, r2, y, s;
#if TOINT_INTRINSICS
#define C __exp2f_data.poly_scaled
/* N*x = k + r with r in [-1/2, 1/2] */
kd = roundtoint(xd); /* k */
ki = converttoint(xd);
#else
#define C __exp2f_data.poly
#define SHIFT __exp2f_data.shift_scaled
/* x = k/N + r with r in [-1/(2N), 1/(2N)] */
kd = eval_as_double(xd + SHIFT);
ki = asuint64(kd);
kd -= SHIFT; /* k/N */
#endif
r = xd - kd;
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
t = T[ki % N];
ski = ki + sign_bias;
t += ski << (52 - EXP2F_TABLE_BITS);
s = asdouble(t);
z = C[0] * r + C[1];
r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return eval_as_float(y);
}
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
the bit representation of a non-zero finite floating-point value. */
static inline int checkint(uint32_t iy)
{
int e = iy >> 23 & 0xff;
if (e < 0x7f)
return 0;
if (e > 0x7f + 23)
return 2;
if (iy & ((1 << (0x7f + 23 - e)) - 1))
return 0;
if (iy & (1 << (0x7f + 23 - e)))
return 1;
return 2;
}
static inline int zeroinfnan(uint32_t ix)
{
return 2 * ix - 1 >= 2u * 0x7f800000 - 1;
}
/**
* Returns 𝑥^𝑦.
* @note should take ~16ns
*/
float powf(float x, float y)
{
uint32_t sign_bias = 0;
uint32_t ix, iy;
ix = asuint(x);
iy = asuint(y);
if (UNLIKELY(ix - 0x00800000 >= 0x7f800000 - 0x00800000 ||
zeroinfnan(iy))) {
/* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */
if (UNLIKELY(zeroinfnan(iy))) {
if (2 * iy == 0)
return issignalingf_inline(x) ? x + y : 1.0f;
if (ix == 0x3f800000)
return issignalingf_inline(y) ? x + y : 1.0f;
if (2 * ix > 2u * 0x7f800000 ||
2 * iy > 2u * 0x7f800000)
return x + y;
if (2 * ix == 2 * 0x3f800000)
return 1.0f;
if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
return y * y;
}
if (UNLIKELY(zeroinfnan(ix))) {
float_t x2 = x * x;
if (ix & 0x80000000 && checkint(iy) == 1)
x2 = -x2;
/* Without the barrier some versions of clang hoist the 1/x2 and
thus division by zero exception can be signaled spuriously. */
return iy & 0x80000000 ? fp_barrierf(1 / x2) : x2;
}
/* x and y are non-zero finite. */
if (ix & 0x80000000) {
/* Finite x < 0. */
int yint = checkint(iy);
if (yint == 0)
return __math_invalidf(x);
if (yint == 1)
sign_bias = SIGN_BIAS;
ix &= 0x7fffffff;
}
if (ix < 0x00800000) {
/* Normalize subnormal x so exponent becomes negative. */
ix = asuint(x * 0x1p23f);
ix &= 0x7fffffff;
ix -= 23 << 23;
}
}
double_t logx = log2_inline(ix);
double_t ylogx = y * logx; /* cannot overflow, y is single prec. */
if (UNLIKELY((asuint64(ylogx) >> 47 & 0xffff) >=
asuint64(126.0 * POWF_SCALE) >> 47)) {
/* |y*log(x)| >= 126. */
if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE)
return __math_oflowf(sign_bias);
if (ylogx <= -150.0 * POWF_SCALE)
return __math_uflowf(sign_bias);
}
return exp2_inline(ylogx, sign_bias);
}
#endif /* TINY */