mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-26 07:49:05 +00:00
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker appears to have changed things so that only a single de-duplicated str table is present in the binary, and it gets placed wherever the linker wants, regardless of what the linker script says. To cope with that we need to stop using .ident to embed licenses. As such, this change does significant work to revamp how third party licenses are defined in the codebase, using `.section .notice,"aR",@progbits`. This new GCC 12.3 toolchain has support for GNU indirect functions. It lets us support __target_clones__ for the first time. This is used for optimizing the performance of libc string functions such as strlen and friends so far on x86, by ensuring AVX systems favor a second codepath that uses VEX encoding. It shaves some latency off certain operations. It's a useful feature to have for scientific computing for the reasons explained by the test/libcxx/openmp_test.cc example which compiles for fifteen different microarchitectures. Thanks to the upgrades, it's now also possible to use newer instruction sets, such as AVX512FP16, VNNI. Cosmo now uses the %gs register on x86 by default for TLS. Doing it is helpful for any program that links `cosmo_dlopen()`. Such programs had to recompile their binaries at startup to change the TLS instructions. That's not great, since it means every page in the executable needs to be faulted. The work of rewriting TLS-related x86 opcodes, is moved to fixupobj.com instead. This is great news for MacOS x86 users, since we previously needed to morph the binary every time for that platform but now that's no longer necessary. The only platforms where we need fixup of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the kernels do not allow us to specify a value for the %gs register. OpenBSD users are now required to use APE Loader to run Cosmo binaries and assimilation is no longer possible. OpenBSD kernel needs to change to allow programs to specify a value for the %gs register, or it needs to stop marking executable pages loaded by the kernel as mimmutable(). This release fixes __constructor__, .ctor, .init_array, and lastly the .preinit_array so they behave the exact same way as glibc. We no longer use hex constants to define math.h symbols like M_PI.
466 lines
15 KiB
C++
466 lines
15 KiB
C++
/*-*-mode:c++;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8-*-│
|
||
│ vi: set et ft=c++ ts=2 sts=2 sw=2 fenc=utf-8 :vi │
|
||
╞══════════════════════════════════════════════════════════════════════════════╡
|
||
│ Copyright 2024 Justine Alexandra Roberts Tunney │
|
||
│ │
|
||
│ Permission to use, copy, modify, and/or distribute this software for │
|
||
│ any purpose with or without fee is hereby granted, provided that the │
|
||
│ above copyright notice and this permission notice appear in all copies. │
|
||
│ │
|
||
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
|
||
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
|
||
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
|
||
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
|
||
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
|
||
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
|
||
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
|
||
│ PERFORMANCE OF THIS SOFTWARE. │
|
||
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
#include <algorithm>
|
||
#include <atomic>
|
||
#include <cmath>
|
||
#include <cstdio>
|
||
#include <cstring>
|
||
#include <ctime>
|
||
#include "libc/stdio/rand.h"
|
||
|
||
#define PRECISION 2e-6
|
||
#define LV1DCACHE 49152
|
||
#define THRESHOLD 3000000
|
||
|
||
#if defined(__OPTIMIZE__) && !defined(__SANITIZE_ADDRESS__)
|
||
#define ITERATIONS 5
|
||
#else
|
||
#define ITERATIONS 1
|
||
#endif
|
||
|
||
#define OPTIMIZED __attribute__((__optimize__("-O3,-ffast-math")))
|
||
#define PORTABLE \
|
||
__target_clones("arch=znver4," \
|
||
"arch=znver3," \
|
||
"arch=sapphirerapids," \
|
||
"arch=alderlake," \
|
||
"arch=rocketlake," \
|
||
"arch=cooperlake," \
|
||
"arch=tigerlake," \
|
||
"arch=cascadelake," \
|
||
"arch=skylake-avx512," \
|
||
"arch=skylake," \
|
||
"arch=znver1," \
|
||
"arch=tremont," \
|
||
"fma," \
|
||
"avx")
|
||
|
||
static bool is_self_testing;
|
||
|
||
// m×n → n×m
|
||
template <typename TA, typename TB>
|
||
void transpose(long m, long n, const TA *A, long lda, TB *B, long ldb) {
|
||
#pragma omp parallel for collapse(2) if (m * n > THRESHOLD)
|
||
for (long i = 0; i < m; ++i)
|
||
for (long j = 0; j < n; ++j) {
|
||
B[ldb * j + i] = A[lda * i + j];
|
||
}
|
||
}
|
||
|
||
// m×k * k×n → m×n
|
||
// k×m * k×n → m×n if aᵀ
|
||
// m×k * n×k → m×n if bᵀ
|
||
// k×m * n×k → m×n if aᵀ and bᵀ
|
||
template <typename TC, typename TA, typename TB>
|
||
void dgemm(bool aᵀ, bool bᵀ, long m, long n, long k, float α, const TA *A,
|
||
long lda, const TB *B, long ldb, float β, TC *C, long ldc) {
|
||
#pragma omp parallel for collapse(2) if (m * n * k > THRESHOLD)
|
||
for (long i = 0; i < m; ++i)
|
||
for (long j = 0; j < n; ++j) {
|
||
double sum = 0;
|
||
for (long l = 0; l < k; ++l)
|
||
sum = std::fma((aᵀ ? A[lda * l + i] : A[lda * i + l]) * α,
|
||
(bᵀ ? B[ldb * j + l] : B[ldb * l + j]), sum);
|
||
C[ldc * i + j] = C[ldc * i + j] * β + sum;
|
||
}
|
||
}
|
||
|
||
template <typename T, typename TC, typename TA, typename TB>
|
||
struct Gemmlin {
|
||
public:
|
||
Gemmlin(bool aT, bool bT, float α, const TA *A, long lda, const TB *B,
|
||
long ldb, float β, TC *C, long ldc)
|
||
: aT(aT),
|
||
bT(bT),
|
||
α(α),
|
||
A(A),
|
||
lda(lda),
|
||
B(B),
|
||
ldb(ldb),
|
||
β(β),
|
||
C(C),
|
||
ldc(ldc) {
|
||
}
|
||
|
||
void gemm(long m, long n, long k) {
|
||
if (!m || !n) return;
|
||
for (long i = 0; i < m; ++i)
|
||
for (long j = 0; j < n; ++j) {
|
||
C[ldc * i + j] *= β;
|
||
}
|
||
if (!k) return;
|
||
cub = sqrt(LV1DCACHE) / sqrt(sizeof(T) * 3);
|
||
mnpack(0, m, 0, n, 0, k);
|
||
}
|
||
|
||
private:
|
||
void mnpack(long m0, long m, //
|
||
long n0, long n, //
|
||
long k0, long k) {
|
||
long mc = rounddown(std::min(m - m0, cub), 4);
|
||
long mp = m0 + (m - m0) / mc * mc;
|
||
long nc = rounddown(std::min(n - n0, cub), 4);
|
||
long np = n0 + (n - n0) / nc * nc;
|
||
long kc = rounddown(std::min(k - k0, cub), 4);
|
||
long kp = k0 + (k - k0) / kc * kc;
|
||
kpack(m0, mc, mp, n0, nc, np, k0, kc, k, kp);
|
||
if (m - mp) mnpack(mp, m, n0, np, k0, k);
|
||
if (n - np) mnpack(m0, mp, np, n, k0, k);
|
||
if (m - mp && n - np) mnpack(mp, m, np, n, k0, k);
|
||
}
|
||
|
||
void kpack(long m0, long mc, long m, //
|
||
long n0, long nc, long n, //
|
||
long k0, long kc, long k, //
|
||
long kp) {
|
||
rpack(m0, mc, m, n0, nc, n, k0, kc, kp);
|
||
if (k - kp) rpack(m0, mc, m, n0, nc, n, kp, k - kp, k);
|
||
}
|
||
|
||
void rpack(long m0, long mc, long m, //
|
||
long n0, long nc, long n, //
|
||
long k0, long kc, long k) {
|
||
if (!(mc % 4) && !(nc % 4))
|
||
bgemm<4, 4>(m0, mc, m, n0, nc, n, k0, kc, k);
|
||
else
|
||
bgemm<1, 1>(m0, mc, m, n0, nc, n, k0, kc, k);
|
||
}
|
||
|
||
template <int mr, int nr>
|
||
void bgemm(long m0, long mc, long m, //
|
||
long n0, long nc, long n, //
|
||
long k0, long kc, long k) {
|
||
ops = (m - m0) * (n - n0) * (k - k0);
|
||
ml = (m - m0) / mc;
|
||
nl = (n - n0) / nc;
|
||
locks = new lock[ml * nl];
|
||
there_will_be_blocks<mr, nr>(m0, mc, m, n0, nc, n, k0, kc, k);
|
||
delete[] locks;
|
||
}
|
||
|
||
template <int mr, int nr>
|
||
void there_will_be_blocks(long m0, volatile long mc, long m, long n0, long nc,
|
||
long n, long k0, long kc, long k) {
|
||
#pragma omp parallel for collapse(2) if (ops > THRESHOLD && mc * kc > 16)
|
||
for (long ic = m0; ic < m; ic += mc)
|
||
for (long pc = k0; pc < k; pc += kc)
|
||
gizmo<mr, nr>(m0, mc, ic, n0, nc, k0, kc, pc, n);
|
||
}
|
||
|
||
template <int mr, int nr>
|
||
PORTABLE OPTIMIZED void gizmo(long m0, long mc, long ic, long n0, long nc,
|
||
long k0, long kc, long pc, long n) {
|
||
T Ac[mc / mr][kc][mr];
|
||
for (long i = 0; i < mc; ++i)
|
||
for (long j = 0; j < kc; ++j)
|
||
Ac[i / mr][j][i % mr] = α * (aT ? A[lda * (pc + j) + (ic + i)]
|
||
: A[lda * (ic + i) + (pc + j)]);
|
||
for (long jc = n0; jc < n; jc += nc) {
|
||
T Bc[nc / nr][nr][kc];
|
||
for (long j = 0; j < nc; ++j)
|
||
for (long i = 0; i < kc; ++i)
|
||
Bc[j / nr][j % nr][i] =
|
||
bT ? B[ldb * (jc + j) + (pc + i)] : B[ldb * (pc + i) + (jc + j)];
|
||
T Cc[nc / nr][mc / mr][nr][mr];
|
||
memset(Cc, 0, nc * mc * sizeof(float));
|
||
for (long jr = 0; jr < nc / nr; ++jr)
|
||
for (long ir = 0; ir < mc / mr; ++ir)
|
||
for (long pr = 0; pr < kc; ++pr)
|
||
for (long j = 0; j < nr; ++j)
|
||
for (long i = 0; i < mr; ++i)
|
||
Cc[jr][ir][j][i] += Ac[ir][pr][i] * Bc[jr][j][pr];
|
||
const long lk = nl * ((ic - m0) / mc) + ((jc - n0) / nc);
|
||
locks[lk].acquire();
|
||
for (long ir = 0; ir < mc; ir += mr)
|
||
for (long jr = 0; jr < nc; jr += nr)
|
||
for (long i = 0; i < mr; ++i)
|
||
for (long j = 0; j < nr; ++j)
|
||
C[ldc * (ic + ir + i) + (jc + jr + j)] +=
|
||
Cc[jr / nr][ir / mr][j][i];
|
||
locks[lk].release();
|
||
}
|
||
}
|
||
|
||
inline long rounddown(long x, long r) {
|
||
if (x < r)
|
||
return x;
|
||
else
|
||
return x & -r;
|
||
}
|
||
|
||
class lock {
|
||
public:
|
||
lock() = default;
|
||
void acquire() {
|
||
while (lock_.exchange(true, std::memory_order_acquire)) {
|
||
}
|
||
}
|
||
void release() {
|
||
lock_.store(false, std::memory_order_release);
|
||
}
|
||
|
||
private:
|
||
std::atomic_bool lock_ = false;
|
||
};
|
||
|
||
bool aT;
|
||
bool bT;
|
||
float α;
|
||
const TA *A;
|
||
long lda;
|
||
const TB *B;
|
||
long ldb;
|
||
float β;
|
||
TC *C;
|
||
long ldc;
|
||
long ops;
|
||
long nl;
|
||
long ml;
|
||
lock *locks;
|
||
long cub;
|
||
};
|
||
|
||
template <typename TC, typename TA, typename TB>
|
||
void sgemm(bool aT, bool bT, long m, long n, long k, float α, const TA *A,
|
||
long lda, const TB *B, long ldb, float β, TC *C, long ldc) {
|
||
Gemmlin<float, TC, TA, TB> g{aT, bT, α, A, lda, B, ldb, β, C, ldc};
|
||
g.gemm(m, n, k);
|
||
}
|
||
|
||
template <typename TA, typename TB>
|
||
void show(FILE *f, long max, long m, long n, const TA *A, long lda, const TB *B,
|
||
long ldb) {
|
||
flockfile(f);
|
||
fprintf(f, " ");
|
||
for (long j = 0; j < n; ++j) {
|
||
fprintf(f, "%13ld", j);
|
||
}
|
||
fprintf(f, "\n");
|
||
for (long i = 0; i < m; ++i) {
|
||
if (i == max) {
|
||
fprintf(f, "...\n");
|
||
break;
|
||
}
|
||
fprintf(f, "%5ld ", i);
|
||
for (long j = 0; j < n; ++j) {
|
||
if (j == max) {
|
||
fprintf(f, " ...");
|
||
break;
|
||
}
|
||
char ba[16], bb[16];
|
||
sprintf(ba, "%13.7f", static_cast<double>(A[lda * i + j]));
|
||
sprintf(bb, "%13.7f", static_cast<double>(B[ldb * i + j]));
|
||
for (long k = 0; ba[k] && bb[k]; ++k) {
|
||
if (ba[k] != bb[k]) fputs_unlocked("\33[31m", f);
|
||
fputc_unlocked(ba[k], f);
|
||
if (ba[k] != bb[k]) fputs_unlocked("\33[0m", f);
|
||
}
|
||
}
|
||
fprintf(f, "\n");
|
||
}
|
||
funlockfile(f);
|
||
}
|
||
|
||
inline unsigned long GetDoubleBits(double f) {
|
||
union {
|
||
double f;
|
||
unsigned long i;
|
||
} u;
|
||
u.f = f;
|
||
return u.i;
|
||
}
|
||
|
||
inline bool IsNan(double x) {
|
||
return (GetDoubleBits(x) & (-1ull >> 1)) > (0x7ffull << 52);
|
||
}
|
||
|
||
template <typename TA, typename TB>
|
||
double diff(long m, long n, const TA *Want, long lda, const TB *Got, long ldb) {
|
||
double s = 0;
|
||
int got_nans = 0;
|
||
int want_nans = 0;
|
||
for (long i = 0; i < m; ++i)
|
||
for (long j = 0; j < n; ++j)
|
||
if (IsNan(Want[ldb * i + j]))
|
||
++want_nans;
|
||
else if (IsNan(Got[ldb * i + j]))
|
||
++got_nans;
|
||
else
|
||
s += std::fabs(Want[lda * i + j] - Got[ldb * i + j]);
|
||
if (got_nans) printf("WARNING: got %d NaNs!\n", got_nans);
|
||
if (want_nans) printf("WARNING: want array has %d NaNs!\n", want_nans);
|
||
return s / (m * n);
|
||
}
|
||
|
||
template <typename TA, typename TB>
|
||
void show_error(FILE *f, long max, long m, long n, const TA *A, long lda,
|
||
const TB *B, long ldb, const char *file, int line, double sad,
|
||
double tol) {
|
||
fprintf(f, "%s:%d: sad %.17g exceeds %g\nwant\n", file, line, sad, tol);
|
||
show(f, max, m, n, A, lda, B, ldb);
|
||
fprintf(f, "got\n");
|
||
show(f, max, m, n, B, ldb, A, lda);
|
||
fprintf(f, "\n");
|
||
}
|
||
|
||
template <typename TA, typename TB>
|
||
void check(double tol, long m, long n, const TA *A, long lda, const TB *B,
|
||
long ldb, const char *file, int line) {
|
||
double sad = diff(m, n, A, lda, B, ldb);
|
||
if (sad <= tol) {
|
||
if (!is_self_testing) {
|
||
printf(" %g error\n", sad);
|
||
}
|
||
} else {
|
||
show_error(stderr, 16, m, n, A, lda, B, ldb, file, line, sad, tol);
|
||
const char *path = "/tmp/openmp_test.log";
|
||
FILE *f = fopen(path, "w");
|
||
if (f) {
|
||
show_error(f, 10000, m, n, A, lda, B, ldb, file, line, sad, tol);
|
||
printf("see also %s\n", path);
|
||
}
|
||
exit(1);
|
||
}
|
||
}
|
||
|
||
#define check(tol, m, n, A, lda, B, ldb) \
|
||
check(tol, m, n, A, lda, B, ldb, __FILE__, __LINE__)
|
||
|
||
long micros(void) {
|
||
struct timespec ts;
|
||
clock_gettime(CLOCK_REALTIME, &ts);
|
||
return ts.tv_sec * 1000000 + (ts.tv_nsec + 999) / 1000;
|
||
}
|
||
|
||
#define bench(x) \
|
||
do { \
|
||
long t1 = micros(); \
|
||
for (long i = 0; i < ITERATIONS; ++i) { \
|
||
asm volatile("" ::: "memory"); \
|
||
x; \
|
||
asm volatile("" ::: "memory"); \
|
||
} \
|
||
long t2 = micros(); \
|
||
printf("%8" PRId64 " µs %s\n", (t2 - t1 + ITERATIONS - 1) / ITERATIONS, \
|
||
#x); \
|
||
} while (0)
|
||
|
||
double real01(unsigned long x) { // (0,1)
|
||
return 1. / 4503599627370496. * ((x >> 12) + .5);
|
||
}
|
||
|
||
double numba(void) { // (-1,1)
|
||
return real01(lemur64()) * 2 - 1;
|
||
}
|
||
|
||
template <typename T>
|
||
void fill(T *A, long n) {
|
||
for (long i = 0; i < n; ++i) {
|
||
A[i] = numba();
|
||
}
|
||
}
|
||
|
||
void test_gemm(long m, long n, long k) {
|
||
float *A = new float[m * k];
|
||
float *At = new float[k * m];
|
||
float *B = new float[k * n];
|
||
float *Bt = new float[n * k];
|
||
float *C = new float[m * n];
|
||
float *GOLD = new float[m * n];
|
||
float α = 1;
|
||
float β = 0;
|
||
fill(A, m * k);
|
||
fill(B, k * n);
|
||
dgemm(0, 0, m, n, k, 1, A, k, B, n, 0, GOLD, n);
|
||
transpose(m, k, A, k, At, m);
|
||
transpose(k, n, B, n, Bt, k);
|
||
sgemm(0, 0, m, n, k, α, A, k, B, n, β, C, n);
|
||
check(PRECISION, m, n, GOLD, n, C, n);
|
||
sgemm(1, 0, m, n, k, α, At, m, B, n, β, C, n);
|
||
check(PRECISION, m, n, GOLD, n, C, n);
|
||
sgemm(0, 1, m, n, k, α, A, k, Bt, k, β, C, n);
|
||
check(PRECISION, m, n, GOLD, n, C, n);
|
||
sgemm(1, 1, m, n, k, α, At, m, Bt, k, β, C, n);
|
||
check(PRECISION, m, n, GOLD, n, C, n);
|
||
delete[] GOLD;
|
||
delete[] C;
|
||
delete[] Bt;
|
||
delete[] B;
|
||
delete[] At;
|
||
delete[] A;
|
||
}
|
||
|
||
void check_gemm_works(void) {
|
||
static long kSizes[] = {1, 2, 3, 4, 5, 6, 7, 17, 31, 33, 63, 128, 129};
|
||
is_self_testing = true;
|
||
long c = 0;
|
||
long N = sizeof(kSizes) / sizeof(kSizes[0]);
|
||
for (long i = 0; i < N; ++i) {
|
||
long m = kSizes[i];
|
||
for (long j = 0; j < N; ++j) {
|
||
long n = kSizes[N - 1 - i];
|
||
for (long k = 0; k < N; ++k) {
|
||
long K = kSizes[i];
|
||
if (c++ % 13 == 0) {
|
||
printf("testing %2ld %2ld %2ld\r", m, n, K);
|
||
}
|
||
test_gemm(m, n, K);
|
||
}
|
||
}
|
||
}
|
||
printf("\r");
|
||
is_self_testing = false;
|
||
}
|
||
|
||
long m = 2333 / 3;
|
||
long k = 577 / 3;
|
||
long n = 713 / 3;
|
||
|
||
void check_sgemm(void) {
|
||
float *A = new float[m * k];
|
||
float *At = new float[k * m];
|
||
float *B = new float[k * n];
|
||
float *Bt = new float[n * k];
|
||
float *C = new float[m * n];
|
||
double *GOLD = new double[m * n];
|
||
fill(A, m * k);
|
||
fill(B, k * n);
|
||
transpose(m, k, A, k, At, m);
|
||
transpose(k, n, B, n, Bt, k);
|
||
bench(dgemm(0, 0, m, n, k, 1, A, k, B, n, 0, GOLD, n));
|
||
bench(sgemm(0, 0, m, n, k, 1, A, k, B, n, 0, C, n));
|
||
check(PRECISION, m, n, GOLD, n, C, n);
|
||
bench(sgemm(1, 0, m, n, k, 1, At, m, B, n, 0, C, n));
|
||
check(PRECISION, m, n, GOLD, n, C, n);
|
||
bench(sgemm(0, 1, m, n, k, 1, A, k, Bt, k, 0, C, n));
|
||
check(PRECISION, m, n, GOLD, n, C, n);
|
||
bench(sgemm(1, 1, m, n, k, 1, At, m, Bt, k, 0, C, n));
|
||
check(PRECISION, m, n, GOLD, n, C, n);
|
||
delete[] GOLD;
|
||
delete[] C;
|
||
delete[] Bt;
|
||
delete[] B;
|
||
delete[] At;
|
||
delete[] A;
|
||
}
|
||
|
||
int main(int argc, char *argv[]) {
|
||
check_gemm_works();
|
||
check_sgemm();
|
||
}
|