cosmopolitan/libc/calls/uname.c
Justine Tunney ec480f5aa0
Make improvements
- Every unit test now passes on Apple Silicon. The final piece of this
  puzzle was porting our POSIX threads cancelation support, since that
  works differently on ARM64 XNU vs. AMD64. Our semaphore support on
  Apple Silicon is also superior now compared to AMD64, thanks to the
  grand central dispatch library which lets *NSYNC locks go faster.

- The Cosmopolitan runtime is now more stable, particularly on Windows.
  To do this, thread local storage is mandatory at all runtime levels,
  and the innermost packages of the C library is no longer being built
  using ASAN. TLS is being bootstrapped with a 128-byte TIB during the
  process startup phase, and then later on the runtime re-allocates it
  either statically or dynamically to support code using _Thread_local.
  fork() and execve() now do a better job cooperating with threads. We
  can now check how much stack memory is left in the process or thread
  when functions like kprintf() / execve() etc. call alloca(), so that
  ENOMEM can be raised, reduce a buffer size, or just print a warning.

- POSIX signal emulation is now implemented the same way kernels do it
  with pthread_kill() and raise(). Any thread can interrupt any other
  thread, regardless of what it's doing. If it's blocked on read/write
  then the killer thread will cancel its i/o operation so that EINTR can
  be returned in the mark thread immediately. If it's doing a tight CPU
  bound operation, then that's also interrupted by the signal delivery.
  Signal delivery works now by suspending a thread and pushing context
  data structures onto its stack, and redirecting its execution to a
  trampoline function, which calls SetThreadContext(GetCurrentThread())
  when it's done.

- We're now doing a better job managing locks and handles. On NetBSD we
  now close semaphore file descriptors in forked children. Semaphores on
  Windows can now be canceled immediately, which means mutexes/condition
  variables will now go faster. Apple Silicon semaphores can be canceled
  too. We're now using Apple's pthread_yield() funciton. Apple _nocancel
  syscalls are now used on XNU when appropriate to ensure pthread_cancel
  requests aren't lost. The MbedTLS library has been updated to support
  POSIX thread cancelations. See tool/build/runitd.c for an example of
  how it can be used for production multi-threaded tls servers. Handles
  on Windows now leak less often across processes. All i/o operations on
  Windows are now overlapped, which means file pointers can no longer be
  inherited across dup() and fork() for the time being.

- We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4()
  which means, for example, that posix_spawn() now goes 3x faster. POSIX
  spawn is also now more correct. Like Musl, it's now able to report the
  failure code of execve() via a pipe although our approach favors using
  shared memory to do that on systems that have a true vfork() function.

- We now spawn a thread to deliver SIGALRM to threads when setitimer()
  is used. This enables the most precise wakeups the OS makes possible.

- The Cosmopolitan runtime now uses less memory. On NetBSD for example,
  it turned out the kernel would actually commit the PT_GNU_STACK size
  which caused RSS to be 6mb for every process. Now it's down to ~4kb.
  On Apple Silicon, we reduce the mandatory upstream thread size to the
  smallest possible size to reduce the memory overhead of Cosmo threads.
  The examples directory has a program called greenbean which can spawn
  a web server on Linux with 10,000 worker threads and have the memory
  usage of the process be ~77mb. The 1024 byte overhead of POSIX-style
  thread-local storage is now optional; it won't be allocated until the
  pthread_setspecific/getspecific functions are called. On Windows, the
  threads that get spawned which are internal to the libc implementation
  use reserve rather than commit memory, which shaves a few hundred kb.

- sigaltstack() is now supported on Windows, however it's currently not
  able to be used to handle stack overflows, since crash signals are
  still generated by WIN32. However the crash handler will still switch
  to the alt stack, which is helpful in environments with tiny threads.

- Test binaries are now smaller. Many of the mandatory dependencies of
  the test runner have been removed. This ensures many programs can do a
  better job only linking the the thing they're testing. This caused the
  test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb

- long double is no longer used in the implementation details of libc,
  except in the APIs that define it. The old code that used long double
  for time (instead of struct timespec) has now been thoroughly removed.

- ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing
  backtraces itself, it'll just print a command you can run on the shell
  using our new `cosmoaddr2line` program to view the backtrace.

- Crash report signal handling now works in a much better way. Instead
  of terminating the process, it now relies on SA_RESETHAND so that the
  default SIG_IGN behavior can terminate the process if necessary.

- Our pledge() functionality has now been fully ported to AARCH64 Linux.
2023-09-18 21:04:47 -07:00

182 lines
7.1 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/calls/calls.h"
#include "libc/calls/struct/utsname-linux.internal.h"
#include "libc/calls/struct/utsname.h"
#include "libc/calls/syscall-sysv.internal.h"
#include "libc/calls/syscall_support-nt.internal.h"
#include "libc/calls/syscall_support-sysv.internal.h"
#include "libc/dce.h"
#include "libc/errno.h"
#include "libc/fmt/itoa.h"
#include "libc/intrin/asan.internal.h"
#include "libc/intrin/strace.internal.h"
#include "libc/log/log.h"
#include "libc/macros.internal.h"
#include "libc/nt/enum/computernameformat.h"
#include "libc/nt/struct/teb.h"
#include "libc/nt/systeminfo.h"
#include "libc/runtime/runtime.h"
#include "libc/str/str.h"
#include "libc/sysv/consts/o.h"
#include "libc/sysv/errfuns.h"
#define CTL_KERN 1
#define KERN_OSTYPE 1
#define KERN_OSRELEASE 2
#define KERN_VERSION 4
#define KERN_HOSTNAME 10
#define KERN_DOMAINNAME 22
#define CTL_HW 6
#define HW_MACHINE 1
// Gets BSD sysctl() string, guaranteeing NUL-terminator.
// We ignore errors since this syscall mutates on ENOMEM.
// In that case, sysctl() doesn't guarantee the nul term.
static void GetBsdStr(int c0, int c1, char *s) {
char *p;
int e = errno;
size_t n = SYS_NMLN;
int cmd[2] = {c0, c1};
bzero(s, n), --n;
sys_sysctl(cmd, 2, s, &n, NULL, 0);
errno = e;
// sysctl kern.version is too verbose for uname
if ((p = strchr(s, '\n'))) {
*p = 0;
}
}
// Gets NT name ignoring errors with guaranteed NUL-terminator.
static textwindows void GetNtName(char *name, int kind) {
char16_t name16[256];
uint32_t size = ARRAYLEN(name16);
if (GetComputerNameEx(kind, name16, &size)) {
tprecode16to8(name, SYS_NMLN, name16);
} else {
name[0] = 0;
}
}
static inline textwindows int GetNtMajorVersion(void) {
return NtGetPeb()->OSMajorVersion;
}
static inline textwindows int GetNtMinorVersion(void) {
return NtGetPeb()->OSMinorVersion;
}
static inline textwindows int GetNtBuildNumber(void) {
return NtGetPeb()->OSBuildNumber;
}
static textwindows void GetNtVersion(char *p) {
p = FormatUint32(p, GetNtMajorVersion()), *p++ = '.';
p = FormatUint32(p, GetNtMinorVersion()), *p++ = '-';
p = FormatUint32(p, GetNtBuildNumber());
}
static const char *Str(int rc, const char *s) {
return !rc ? s : "n/a";
}
/**
* Asks kernel to give us `uname -a` data.
*
* - `machine` should be one of:
* - `x86_64`
* - `amd64`
*
* - `sysname` should be one of:
* - `Linux`
* - `FreeBSD`
* - `NetBSD`
* - `OpenBSD`
* - `Darwin`
* - `Windows`
*
* - `version` contains the distro name, version, and release date. On
* FreeBSD/NetBSD/OpenBSD this may contain newline characters, which
* this polyfill hides by setting the first newline character to nul
* although the information can be restored by putting newline back.
* BSDs usually repeat the `sysname` and `release` in the `version`.
*
* - `nodename` *may* be the first label of the fully qualified hostname
* of the current host. This is equivalent to gethostname(), except we
* guarantee a NUL-terminator here with truncation, which should never
* happen unless the machine violates the DNS standard. If it has dots
* then it's fair to assume it's an FQDN. On Linux this is the same as
* the content of `/proc/sys/kernel/hostname`.
*
* - `domainname` *may* be the higher-order labels of the FQDN for this
* host. This is equivalent to getdomainname(), except we guarantee a
* NUL-terminator here with truncation, which should never happen w/o
* violating the DNS standard. If this field is not present, it'll be
* coerced to empty string. On Linux, this is the same as the content
* of `/proc/sys/kernel/domainname`.
*
* The returned fields are guaranteed to be nul-terminated.
*
* @return 0 on success, or -1 w/ errno
* @raise EFAULT if `buf` isn't valid
* @raise ENOSYS on metal
*/
int uname(struct utsname *uts) {
int rc;
if (!uts || (IsAsan() && !__asan_is_valid(uts, sizeof(*uts)))) {
rc = efault();
} else if (IsLinux()) {
struct utsname_linux linux;
if (!(rc = sys_uname_linux(&linux))) {
stpcpy(uts->sysname, linux.sysname);
stpcpy(uts->nodename, linux.nodename);
stpcpy(uts->release, linux.release);
stpcpy(uts->version, linux.version);
stpcpy(uts->machine, linux.machine);
stpcpy(uts->domainname, linux.domainname);
if (!strcmp(uts->domainname, "(none)")) {
uts->domainname[0] = 0;
}
}
} else if (IsBsd()) {
GetBsdStr(CTL_KERN, KERN_OSTYPE, uts->sysname);
GetBsdStr(CTL_KERN, KERN_HOSTNAME, uts->nodename);
GetBsdStr(CTL_KERN, KERN_DOMAINNAME, uts->domainname);
GetBsdStr(CTL_KERN, KERN_OSRELEASE, uts->release);
GetBsdStr(CTL_KERN, KERN_VERSION, uts->version);
GetBsdStr(CTL_HW, HW_MACHINE, uts->machine);
rc = 0;
} else if (IsWindows()) {
stpcpy(uts->sysname, "Windows");
stpcpy(uts->machine, "x86_64");
GetNtVersion(stpcpy(uts->version, "Windows "));
GetNtVersion(uts->release);
GetNtName(uts->nodename, kNtComputerNamePhysicalDnsHostname);
GetNtName(uts->domainname, kNtComputerNamePhysicalDnsDomain);
rc = 0;
} else {
rc = enosys();
}
STRACE("uname([{%#s, %#s, %#s, %#s, %#s, %#s}]) → %d% m",
Str(rc, uts->sysname), Str(rc, uts->nodename), Str(rc, uts->release),
Str(rc, uts->version), Str(rc, uts->machine), Str(rc, uts->domainname),
rc);
return rc;
}