cosmopolitan/libc/tinymath/jn.c
Justine Tunney 550b52abf6
Port a lot more code to AARCH64
- Introduce epoll_pwait()
- Rewrite -ftrapv and ffs() libraries in C code
- Use more FreeBSD code in math function library
- Get significantly more tests passing on qemu-aarch64
- Fix many Musl long double functions that were broken on AARCH64
2023-05-14 09:37:26 -07:00

319 lines
9.9 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
│vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│
╚──────────────────────────────────────────────────────────────────────────────╝
│ │
│ Musl Libc │
│ Copyright © 2005-2014 Rich Felker, et al. │
│ │
│ Permission is hereby granted, free of charge, to any person obtaining │
│ a copy of this software and associated documentation files (the │
│ "Software"), to deal in the Software without restriction, including │
│ without limitation the rights to use, copy, modify, merge, publish, │
│ distribute, sublicense, and/or sell copies of the Software, and to │
│ permit persons to whom the Software is furnished to do so, subject to │
│ the following conditions: │
│ │
│ The above copyright notice and this permission notice shall be │
│ included in all copies or substantial portions of the Software. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
│ │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/math.h"
#include "libc/tinymath/complex.internal.h"
asm(".ident\t\"\\n\\n\
Double-precision math functions (MIT License)\\n\
Copyright 2018 ARM Limited\"");
asm(".include \"libc/disclaimer.inc\"");
// clang-format off
/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* jn(n, x), yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<=x, forward recursion is used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*/
static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
/**
* Returns Bessel function of 𝑥 of first kind of order 𝑛.
*/
double jn(int n, double x)
{
uint32_t ix, lx;
int nm1, i, sign;
double a, b, temp;
EXTRACT_WORDS(ix, lx, x);
sign = ix>>31;
ix &= 0x7fffffff;
if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
return x;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
if (n == 0)
return j0(x);
if (n < 0) {
nm1 = -(n+1);
x = -x;
sign ^= 1;
} else
nm1 = n-1;
if (nm1 == 0)
return j1(x);
sign &= n; /* even n: 0, odd n: signbit(x) */
x = fabs(x);
if ((ix|lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */
b = 0.0;
else if (nm1 < x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if (ix >= 0x52d00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(nm1&3) {
case 0: temp = -cos(x)+sin(x); break;
case 1: temp = -cos(x)-sin(x); break;
case 2: temp = cos(x)-sin(x); break;
default:
case 3: temp = cos(x)+sin(x); break;
}
b = invsqrtpi*temp/sqrt(x);
} else {
a = j0(x);
b = j1(x);
for (i=0; i<nm1; ) {
i++;
temp = b;
b = b*(2.0*i/x) - a; /* avoid underflow */
a = temp;
}
}
} else {
if (ix < 0x3e100000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if (nm1 > 32) /* underflow */
b = 0.0;
else {
temp = x*0.5;
b = temp;
a = 1.0;
for (i=2; i<=nm1+1; i++) {
a *= (double)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,q0,q1,w,h,z,tmp,nf;
int k;
nf = nm1 + 1.0;
w = 2*nf/x;
h = 2/x;
z = w+h;
q0 = w;
q1 = w*z - 1.0;
k = 1;
while (q1 < 1.0e9) {
k += 1;
z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
for (t=0.0, i=k; i>=0; i--)
t = 1/(2*(i+nf)/x - t);
a = t;
b = 1.0;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = nf*log(fabs(w));
if (tmp < 7.09782712893383973096e+02) {
for (i=nm1; i>0; i--) {
temp = b;
b = b*(2.0*i)/x - a;
a = temp;
}
} else {
for (i=nm1; i>0; i--) {
temp = b;
b = b*(2.0*i)/x - a;
a = temp;
/* scale b to avoid spurious overflow */
if (b > 0x1p500) {
a /= b;
t /= b;
b = 1.0;
}
}
}
z = j0(x);
w = j1(x);
if (fabs(z) >= fabs(w))
b = t*z/b;
else
b = t*w/a;
}
}
return sign ? -b : b;
}
/**
* Returns Bessel function of 𝑥 of second kind of order 𝑛.
*/
double yn(int n, double x)
{
uint32_t ix, lx, ib;
int nm1, sign, i;
double a, b, temp;
EXTRACT_WORDS(ix, lx, x);
sign = ix>>31;
ix &= 0x7fffffff;
if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
return x;
if (sign && (ix|lx)!=0) /* x < 0 */
return 0/0.0;
if (ix == 0x7ff00000)
return 0.0;
if (n == 0)
return y0(x);
if (n < 0) {
nm1 = -(n+1);
sign = n&1;
} else {
nm1 = n-1;
sign = 0;
}
if (nm1 == 0)
return sign ? -y1(x) : y1(x);
if (ix >= 0x52d00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(nm1&3) {
case 0: temp = -sin(x)-cos(x); break;
case 1: temp = -sin(x)+cos(x); break;
case 2: temp = sin(x)+cos(x); break;
default:
case 3: temp = sin(x)-cos(x); break;
}
b = invsqrtpi*temp/sqrt(x);
} else {
a = y0(x);
b = y1(x);
/* quit if b is -inf */
GET_HIGH_WORD(ib, b);
for (i=0; i<nm1 && ib!=0xfff00000; ){
i++;
temp = b;
b = (2.0*i/x)*b - a;
GET_HIGH_WORD(ib, b);
a = temp;
}
}
return sign ? -b : b;
}