mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 11:37:35 +00:00
2821 lines
92 KiB
C++
2821 lines
92 KiB
C++
/*
|
|
* z_Linux_util.cpp -- platform specific routines.
|
|
*/
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "kmp.h"
|
|
#include "kmp_affinity.h"
|
|
#include "kmp_i18n.h"
|
|
#include "kmp_io.h"
|
|
#include "kmp_itt.h"
|
|
#include "kmp_lock.h"
|
|
#include "kmp_stats.h"
|
|
#include "kmp_str.h"
|
|
#include "kmp_wait_release.h"
|
|
#include "libc/intrin/kprintf.h"
|
|
#include "kmp_wrapper_getpid.h"
|
|
|
|
#if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
|
|
#include <alloca.h>
|
|
#endif
|
|
#include <math.h> // HUGE_VAL.
|
|
#if KMP_OS_LINUX
|
|
#include <semaphore.h>
|
|
#endif // KMP_OS_LINUX
|
|
#include <sys/resource.h>
|
|
#if !KMP_OS_AIX
|
|
#include <sys/syscall.h>
|
|
#endif
|
|
#include <sys/time.h>
|
|
#include <sys/times.h>
|
|
#include <unistd.h>
|
|
|
|
#if KMP_OS_LINUX
|
|
#include <sys/sysinfo.h>
|
|
#if KMP_USE_FUTEX
|
|
// We should really include <futex.h>, but that causes compatibility problems on
|
|
// different Linux* OS distributions that either require that you include (or
|
|
// break when you try to include) <pci/types.h>. Since all we need is the two
|
|
// macros below (which are part of the kernel ABI, so can't change) we just
|
|
// define the constants here and don't include <futex.h>
|
|
#ifndef FUTEX_WAIT
|
|
#define FUTEX_WAIT 0
|
|
#endif
|
|
#ifndef FUTEX_WAKE
|
|
#define FUTEX_WAKE 1
|
|
#endif
|
|
#endif
|
|
#elif KMP_OS_DARWIN
|
|
#include <mach/mach.h>
|
|
#include <sys/sysctl.h>
|
|
#elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
|
|
#include <sys/types.h>
|
|
//#include <sys/sysctl.h>
|
|
#include <sys/user.h>
|
|
#include <pthread.h>
|
|
#elif KMP_OS_NETBSD || KMP_OS_OPENBSD
|
|
#include <sys/types.h>
|
|
#include <sys/sysctl.h>
|
|
#elif KMP_OS_SOLARIS
|
|
#include <sys/loadavg.h>
|
|
#endif
|
|
|
|
#include <ctype.h>
|
|
#include <dirent.h>
|
|
#include <fcntl.h>
|
|
|
|
struct kmp_sys_timer {
|
|
struct timespec start;
|
|
};
|
|
|
|
#ifndef TIMEVAL_TO_TIMESPEC
|
|
// Convert timeval to timespec.
|
|
#define TIMEVAL_TO_TIMESPEC(tv, ts) \
|
|
do { \
|
|
(ts)->tv_sec = (tv)->tv_sec; \
|
|
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
|
|
} while (0)
|
|
#endif
|
|
|
|
// Convert timespec to nanoseconds.
|
|
#define TS2NS(timespec) \
|
|
(((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
|
|
|
|
static struct kmp_sys_timer __kmp_sys_timer_data;
|
|
|
|
#if KMP_HANDLE_SIGNALS
|
|
typedef void (*sig_func_t)(int);
|
|
STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
|
|
static sigset_t __kmp_sigset;
|
|
#endif
|
|
|
|
static int __kmp_init_runtime = FALSE;
|
|
|
|
static int __kmp_fork_count = 0;
|
|
|
|
static pthread_condattr_t __kmp_suspend_cond_attr;
|
|
static pthread_mutexattr_t __kmp_suspend_mutex_attr;
|
|
|
|
static kmp_cond_align_t __kmp_wait_cv;
|
|
static kmp_mutex_align_t __kmp_wait_mx;
|
|
|
|
kmp_uint64 __kmp_ticks_per_msec = 1000000;
|
|
kmp_uint64 __kmp_ticks_per_usec = 1000;
|
|
|
|
#ifdef DEBUG_SUSPEND
|
|
static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
|
|
KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
|
|
cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
|
|
cond->c_cond.__c_waiting);
|
|
}
|
|
#endif
|
|
|
|
#if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
|
|
|
|
/* Affinity support */
|
|
|
|
void __kmp_affinity_bind_thread(int which) {
|
|
KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
|
|
"Illegal set affinity operation when not capable");
|
|
|
|
kmp_affin_mask_t *mask;
|
|
KMP_CPU_ALLOC_ON_STACK(mask);
|
|
KMP_CPU_ZERO(mask);
|
|
KMP_CPU_SET(which, mask);
|
|
__kmp_set_system_affinity(mask, TRUE);
|
|
KMP_CPU_FREE_FROM_STACK(mask);
|
|
}
|
|
|
|
/* Determine if we can access affinity functionality on this version of
|
|
* Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
|
|
* __kmp_affin_mask_size to the appropriate value (0 means not capable). */
|
|
void __kmp_affinity_determine_capable(const char *env_var) {
|
|
// Check and see if the OS supports thread affinity.
|
|
|
|
#if KMP_OS_LINUX && !defined(__COSMOPOLITAN__)
|
|
#define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
|
|
#define KMP_CPU_SET_TRY_SIZE CACHE_LINE
|
|
#elif KMP_OS_FREEBSD || defined(__COSMOPOLITAN__)
|
|
#define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
|
|
#endif
|
|
|
|
int verbose = __kmp_affinity.flags.verbose;
|
|
int warnings = __kmp_affinity.flags.warnings;
|
|
enum affinity_type type = __kmp_affinity.type;
|
|
|
|
#if KMP_OS_LINUX && !defined(__COSMOPOLITAN__)
|
|
long gCode;
|
|
unsigned char *buf;
|
|
buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
|
|
|
|
// If the syscall returns a suggestion for the size,
|
|
// then we don't have to search for an appropriate size.
|
|
gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
|
|
KA_TRACE(30, ("__kmp_affinity_determine_capable: "
|
|
"initial getaffinity call returned %ld errno = %d\n",
|
|
gCode, errno));
|
|
|
|
if (gCode < 0 && errno != EINVAL) {
|
|
// System call not supported
|
|
if (verbose ||
|
|
(warnings && (type != affinity_none) && (type != affinity_default) &&
|
|
(type != affinity_disabled))) {
|
|
int error = errno;
|
|
kmp_msg_t err_code = KMP_ERR(error);
|
|
__kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
|
|
err_code, __kmp_msg_null);
|
|
if (__kmp_generate_warnings == kmp_warnings_off) {
|
|
__kmp_str_free(&err_code.str);
|
|
}
|
|
}
|
|
KMP_AFFINITY_DISABLE();
|
|
KMP_INTERNAL_FREE(buf);
|
|
return;
|
|
} else if (gCode > 0) {
|
|
// The optimal situation: the OS returns the size of the buffer it expects.
|
|
KMP_AFFINITY_ENABLE(gCode);
|
|
KA_TRACE(10, ("__kmp_affinity_determine_capable: "
|
|
"affinity supported (mask size %d)\n",
|
|
(int)__kmp_affin_mask_size));
|
|
KMP_INTERNAL_FREE(buf);
|
|
return;
|
|
}
|
|
|
|
// Call the getaffinity system call repeatedly with increasing set sizes
|
|
// until we succeed, or reach an upper bound on the search.
|
|
KA_TRACE(30, ("__kmp_affinity_determine_capable: "
|
|
"searching for proper set size\n"));
|
|
int size;
|
|
for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
|
|
gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
|
|
KA_TRACE(30, ("__kmp_affinity_determine_capable: "
|
|
"getaffinity for mask size %ld returned %ld errno = %d\n",
|
|
size, gCode, errno));
|
|
|
|
if (gCode < 0) {
|
|
if (errno == ENOSYS) {
|
|
// We shouldn't get here
|
|
KA_TRACE(30, ("__kmp_affinity_determine_capable: "
|
|
"inconsistent OS call behavior: errno == ENOSYS for mask "
|
|
"size %d\n",
|
|
size));
|
|
if (verbose ||
|
|
(warnings && (type != affinity_none) &&
|
|
(type != affinity_default) && (type != affinity_disabled))) {
|
|
int error = errno;
|
|
kmp_msg_t err_code = KMP_ERR(error);
|
|
__kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
|
|
err_code, __kmp_msg_null);
|
|
if (__kmp_generate_warnings == kmp_warnings_off) {
|
|
__kmp_str_free(&err_code.str);
|
|
}
|
|
}
|
|
KMP_AFFINITY_DISABLE();
|
|
KMP_INTERNAL_FREE(buf);
|
|
return;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
KMP_AFFINITY_ENABLE(gCode);
|
|
KA_TRACE(10, ("__kmp_affinity_determine_capable: "
|
|
"affinity supported (mask size %d)\n",
|
|
(int)__kmp_affin_mask_size));
|
|
KMP_INTERNAL_FREE(buf);
|
|
return;
|
|
}
|
|
#elif KMP_OS_FREEBSD || defined(__COSMOPOLITAN__)
|
|
long gCode;
|
|
unsigned char *buf;
|
|
buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
|
|
gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
|
|
reinterpret_cast<cpuset_t *>(buf));
|
|
KA_TRACE(30, ("__kmp_affinity_determine_capable: "
|
|
"initial getaffinity call returned %d errno = %d\n",
|
|
gCode, errno));
|
|
if (gCode == 0) {
|
|
KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
|
|
KA_TRACE(10, ("__kmp_affinity_determine_capable: "
|
|
"affinity supported (mask size %d)\n",
|
|
(int)__kmp_affin_mask_size));
|
|
KMP_INTERNAL_FREE(buf);
|
|
return;
|
|
}
|
|
#endif
|
|
KMP_INTERNAL_FREE(buf);
|
|
|
|
// Affinity is not supported
|
|
KMP_AFFINITY_DISABLE();
|
|
KA_TRACE(10, ("__kmp_affinity_determine_capable: "
|
|
"cannot determine mask size - affinity not supported\n"));
|
|
if (verbose || (warnings && (type != affinity_none) &&
|
|
(type != affinity_default) && (type != affinity_disabled))) {
|
|
KMP_WARNING(AffCantGetMaskSize, env_var);
|
|
}
|
|
}
|
|
|
|
#endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
|
|
|
|
#if KMP_USE_FUTEX
|
|
|
|
int __kmp_futex_determine_capable() {
|
|
#ifdef __COSMOPOLITAN__
|
|
return 1;
|
|
#else
|
|
int loc = 0;
|
|
long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
|
|
int retval = (rc == 0) || (errno != ENOSYS);
|
|
|
|
KA_TRACE(10,
|
|
("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
|
|
KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
|
|
retval ? "" : " not"));
|
|
|
|
return retval;
|
|
#endif
|
|
}
|
|
|
|
#endif // KMP_USE_FUTEX
|
|
|
|
#if (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_WASM) && (!KMP_ASM_INTRINS)
|
|
/* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
|
|
use compare_and_store for these routines */
|
|
|
|
kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
|
|
kmp_int8 old_value, new_value;
|
|
|
|
old_value = TCR_1(*p);
|
|
new_value = old_value | d;
|
|
|
|
while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
|
|
KMP_CPU_PAUSE();
|
|
old_value = TCR_1(*p);
|
|
new_value = old_value | d;
|
|
}
|
|
return old_value;
|
|
}
|
|
|
|
kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
|
|
kmp_int8 old_value, new_value;
|
|
|
|
old_value = TCR_1(*p);
|
|
new_value = old_value & d;
|
|
|
|
while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
|
|
KMP_CPU_PAUSE();
|
|
old_value = TCR_1(*p);
|
|
new_value = old_value & d;
|
|
}
|
|
return old_value;
|
|
}
|
|
|
|
kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
|
|
kmp_uint32 old_value, new_value;
|
|
|
|
old_value = TCR_4(*p);
|
|
new_value = old_value | d;
|
|
|
|
while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
|
|
KMP_CPU_PAUSE();
|
|
old_value = TCR_4(*p);
|
|
new_value = old_value | d;
|
|
}
|
|
return old_value;
|
|
}
|
|
|
|
kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
|
|
kmp_uint32 old_value, new_value;
|
|
|
|
old_value = TCR_4(*p);
|
|
new_value = old_value & d;
|
|
|
|
while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
|
|
KMP_CPU_PAUSE();
|
|
old_value = TCR_4(*p);
|
|
new_value = old_value & d;
|
|
}
|
|
return old_value;
|
|
}
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_WASM
|
|
kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
|
|
kmp_int8 old_value, new_value;
|
|
|
|
old_value = TCR_1(*p);
|
|
new_value = old_value + d;
|
|
|
|
while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
|
|
KMP_CPU_PAUSE();
|
|
old_value = TCR_1(*p);
|
|
new_value = old_value + d;
|
|
}
|
|
return old_value;
|
|
}
|
|
|
|
kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
|
|
kmp_int64 old_value, new_value;
|
|
|
|
old_value = TCR_8(*p);
|
|
new_value = old_value + d;
|
|
|
|
while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
|
|
KMP_CPU_PAUSE();
|
|
old_value = TCR_8(*p);
|
|
new_value = old_value + d;
|
|
}
|
|
return old_value;
|
|
}
|
|
#endif /* KMP_ARCH_X86 */
|
|
|
|
kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
|
|
kmp_uint64 old_value, new_value;
|
|
|
|
old_value = TCR_8(*p);
|
|
new_value = old_value | d;
|
|
while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
|
|
KMP_CPU_PAUSE();
|
|
old_value = TCR_8(*p);
|
|
new_value = old_value | d;
|
|
}
|
|
return old_value;
|
|
}
|
|
|
|
kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
|
|
kmp_uint64 old_value, new_value;
|
|
|
|
old_value = TCR_8(*p);
|
|
new_value = old_value & d;
|
|
while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
|
|
KMP_CPU_PAUSE();
|
|
old_value = TCR_8(*p);
|
|
new_value = old_value & d;
|
|
}
|
|
return old_value;
|
|
}
|
|
|
|
#endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
|
|
|
|
void __kmp_terminate_thread(int gtid) {
|
|
int status;
|
|
kmp_info_t *th = __kmp_threads[gtid];
|
|
|
|
if (!th)
|
|
return;
|
|
|
|
#ifdef KMP_CANCEL_THREADS
|
|
KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
|
|
status = pthread_cancel(th->th.th_info.ds.ds_thread);
|
|
if (status != 0 && status != ESRCH) {
|
|
__kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
|
|
__kmp_msg_null);
|
|
}
|
|
#endif
|
|
KMP_YIELD(TRUE);
|
|
} //
|
|
|
|
/* Set thread stack info according to values returned by pthread_getattr_np().
|
|
If values are unreasonable, assume call failed and use incremental stack
|
|
refinement method instead. Returns TRUE if the stack parameters could be
|
|
determined exactly, FALSE if incremental refinement is necessary. */
|
|
static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
|
|
int stack_data;
|
|
#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
|
|
KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
|
|
pthread_attr_t attr;
|
|
int status;
|
|
size_t size = 0;
|
|
void *addr = 0;
|
|
|
|
/* Always do incremental stack refinement for ubermaster threads since the
|
|
initial thread stack range can be reduced by sibling thread creation so
|
|
pthread_attr_getstack may cause thread gtid aliasing */
|
|
if (!KMP_UBER_GTID(gtid)) {
|
|
|
|
/* Fetch the real thread attributes */
|
|
status = pthread_attr_init(&attr);
|
|
KMP_CHECK_SYSFAIL("pthread_attr_init", status);
|
|
#if (KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD) && !defined(__COSMOPOLITAN__)
|
|
status = pthread_attr_get_np(pthread_self(), &attr);
|
|
KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
|
|
#else
|
|
status = pthread_getattr_np(pthread_self(), &attr);
|
|
KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
|
|
#endif
|
|
status = pthread_attr_getstack(&attr, &addr, &size);
|
|
KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
|
|
KA_TRACE(60,
|
|
("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
|
|
" %lu, low addr: %p\n",
|
|
gtid, size, addr));
|
|
status = pthread_attr_destroy(&attr);
|
|
KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
|
|
}
|
|
|
|
if (size != 0 && addr != 0) { // was stack parameter determination successful?
|
|
/* Store the correct base and size */
|
|
TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
|
|
TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
|
|
TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
|
|
return TRUE;
|
|
}
|
|
#endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \
|
|
|| KMP_OS_HURD || KMP_OS_SOLARIS */
|
|
/* Use incremental refinement starting from initial conservative estimate */
|
|
TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
|
|
TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
|
|
TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
|
|
return FALSE;
|
|
}
|
|
|
|
static void *__kmp_launch_worker(void *thr) {
|
|
int status, old_type, old_state;
|
|
#ifdef KMP_BLOCK_SIGNALS
|
|
sigset_t new_set, old_set;
|
|
#endif /* KMP_BLOCK_SIGNALS */
|
|
void *exit_val;
|
|
#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
|
|
KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS
|
|
void *volatile padding = 0;
|
|
#endif
|
|
int gtid;
|
|
|
|
gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
|
|
__kmp_gtid_set_specific(gtid);
|
|
#ifdef KMP_TDATA_GTID
|
|
__kmp_gtid = gtid;
|
|
#endif
|
|
#if KMP_STATS_ENABLED
|
|
// set thread local index to point to thread-specific stats
|
|
__kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
|
|
__kmp_stats_thread_ptr->startLife();
|
|
KMP_SET_THREAD_STATE(IDLE);
|
|
KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
|
|
#endif
|
|
|
|
#if USE_ITT_BUILD
|
|
__kmp_itt_thread_name(gtid);
|
|
#endif /* USE_ITT_BUILD */
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
__kmp_affinity_bind_init_mask(gtid);
|
|
#endif
|
|
|
|
#ifdef KMP_CANCEL_THREADS
|
|
status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
|
|
KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
|
|
// josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
|
|
status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
|
|
KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
|
|
#endif
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
// Set FP control regs to be a copy of the parallel initialization thread's.
|
|
__kmp_clear_x87_fpu_status_word();
|
|
__kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
|
|
__kmp_load_mxcsr(&__kmp_init_mxcsr);
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
#ifdef KMP_BLOCK_SIGNALS
|
|
status = sigfillset(&new_set);
|
|
KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
|
|
status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
|
|
KMP_CHECK_SYSFAIL("pthread_sigmask", status);
|
|
#endif /* KMP_BLOCK_SIGNALS */
|
|
|
|
#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
|
|
KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS
|
|
if (__kmp_stkoffset > 0 && gtid > 0) {
|
|
padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
|
|
(void)padding;
|
|
}
|
|
#endif
|
|
|
|
KMP_MB();
|
|
__kmp_set_stack_info(gtid, (kmp_info_t *)thr);
|
|
|
|
__kmp_check_stack_overlap((kmp_info_t *)thr);
|
|
|
|
exit_val = __kmp_launch_thread((kmp_info_t *)thr);
|
|
|
|
#ifdef KMP_BLOCK_SIGNALS
|
|
status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
|
|
KMP_CHECK_SYSFAIL("pthread_sigmask", status);
|
|
#endif /* KMP_BLOCK_SIGNALS */
|
|
|
|
return exit_val;
|
|
}
|
|
|
|
#if KMP_USE_MONITOR
|
|
/* The monitor thread controls all of the threads in the complex */
|
|
|
|
static void *__kmp_launch_monitor(void *thr) {
|
|
int status, old_type, old_state;
|
|
#ifdef KMP_BLOCK_SIGNALS
|
|
sigset_t new_set;
|
|
#endif /* KMP_BLOCK_SIGNALS */
|
|
struct timespec interval;
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
|
|
|
|
/* register us as the monitor thread */
|
|
__kmp_gtid_set_specific(KMP_GTID_MONITOR);
|
|
#ifdef KMP_TDATA_GTID
|
|
__kmp_gtid = KMP_GTID_MONITOR;
|
|
#endif
|
|
|
|
KMP_MB();
|
|
|
|
#if USE_ITT_BUILD
|
|
// Instruct Intel(R) Threading Tools to ignore monitor thread.
|
|
__kmp_itt_thread_ignore();
|
|
#endif /* USE_ITT_BUILD */
|
|
|
|
__kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
|
|
(kmp_info_t *)thr);
|
|
|
|
__kmp_check_stack_overlap((kmp_info_t *)thr);
|
|
|
|
#ifdef KMP_CANCEL_THREADS
|
|
status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
|
|
KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
|
|
// josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
|
|
status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
|
|
KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
|
|
#endif
|
|
|
|
#if KMP_REAL_TIME_FIX
|
|
// This is a potential fix which allows application with real-time scheduling
|
|
// policy work. However, decision about the fix is not made yet, so it is
|
|
// disabled by default.
|
|
{ // Are program started with real-time scheduling policy?
|
|
int sched = sched_getscheduler(0);
|
|
if (sched == SCHED_FIFO || sched == SCHED_RR) {
|
|
// Yes, we are a part of real-time application. Try to increase the
|
|
// priority of the monitor.
|
|
struct sched_param param;
|
|
int max_priority = sched_get_priority_max(sched);
|
|
int rc;
|
|
KMP_WARNING(RealTimeSchedNotSupported);
|
|
sched_getparam(0, ¶m);
|
|
if (param.sched_priority < max_priority) {
|
|
param.sched_priority += 1;
|
|
rc = sched_setscheduler(0, sched, ¶m);
|
|
if (rc != 0) {
|
|
int error = errno;
|
|
kmp_msg_t err_code = KMP_ERR(error);
|
|
__kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
|
|
err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
|
|
if (__kmp_generate_warnings == kmp_warnings_off) {
|
|
__kmp_str_free(&err_code.str);
|
|
}
|
|
}
|
|
} else {
|
|
// We cannot abort here, because number of CPUs may be enough for all
|
|
// the threads, including the monitor thread, so application could
|
|
// potentially work...
|
|
__kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
|
|
KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
|
|
__kmp_msg_null);
|
|
}
|
|
}
|
|
// AC: free thread that waits for monitor started
|
|
TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
|
|
}
|
|
#endif // KMP_REAL_TIME_FIX
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
if (__kmp_monitor_wakeups == 1) {
|
|
interval.tv_sec = 1;
|
|
interval.tv_nsec = 0;
|
|
} else {
|
|
interval.tv_sec = 0;
|
|
interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
|
|
}
|
|
|
|
KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
|
|
|
|
while (!TCR_4(__kmp_global.g.g_done)) {
|
|
struct timespec now;
|
|
struct timeval tval;
|
|
|
|
/* This thread monitors the state of the system */
|
|
|
|
KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
|
|
|
|
status = gettimeofday(&tval, NULL);
|
|
KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
|
|
TIMEVAL_TO_TIMESPEC(&tval, &now);
|
|
|
|
now.tv_sec += interval.tv_sec;
|
|
now.tv_nsec += interval.tv_nsec;
|
|
|
|
if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
|
|
now.tv_sec += 1;
|
|
now.tv_nsec -= KMP_NSEC_PER_SEC;
|
|
}
|
|
|
|
status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
|
|
// AC: the monitor should not fall asleep if g_done has been set
|
|
if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
|
|
status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
|
|
&__kmp_wait_mx.m_mutex, &now);
|
|
if (status != 0) {
|
|
if (status != ETIMEDOUT && status != EINTR) {
|
|
KMP_SYSFAIL("pthread_cond_timedwait", status);
|
|
}
|
|
}
|
|
}
|
|
status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
|
|
|
|
TCW_4(__kmp_global.g.g_time.dt.t_value,
|
|
TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
}
|
|
|
|
KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
|
|
|
|
#ifdef KMP_BLOCK_SIGNALS
|
|
status = sigfillset(&new_set);
|
|
KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
|
|
status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
|
|
KMP_CHECK_SYSFAIL("pthread_sigmask", status);
|
|
#endif /* KMP_BLOCK_SIGNALS */
|
|
|
|
KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
|
|
|
|
if (__kmp_global.g.g_abort != 0) {
|
|
/* now we need to terminate the worker threads */
|
|
/* the value of t_abort is the signal we caught */
|
|
|
|
int gtid;
|
|
|
|
KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
|
|
__kmp_global.g.g_abort));
|
|
|
|
/* terminate the OpenMP worker threads */
|
|
/* TODO this is not valid for sibling threads!!
|
|
* the uber master might not be 0 anymore.. */
|
|
for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
|
|
__kmp_terminate_thread(gtid);
|
|
|
|
__kmp_cleanup();
|
|
|
|
KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
|
|
__kmp_global.g.g_abort));
|
|
|
|
if (__kmp_global.g.g_abort > 0)
|
|
raise(__kmp_global.g.g_abort);
|
|
}
|
|
|
|
KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
|
|
|
|
return thr;
|
|
}
|
|
#endif // KMP_USE_MONITOR
|
|
|
|
void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
|
|
pthread_t handle;
|
|
pthread_attr_t thread_attr;
|
|
int status;
|
|
|
|
th->th.th_info.ds.ds_gtid = gtid;
|
|
|
|
#if KMP_STATS_ENABLED
|
|
// sets up worker thread stats
|
|
__kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
|
|
|
|
// th->th.th_stats is used to transfer thread-specific stats-pointer to
|
|
// __kmp_launch_worker. So when thread is created (goes into
|
|
// __kmp_launch_worker) it will set its thread local pointer to
|
|
// th->th.th_stats
|
|
if (!KMP_UBER_GTID(gtid)) {
|
|
th->th.th_stats = __kmp_stats_list->push_back(gtid);
|
|
} else {
|
|
// For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
|
|
// so set the th->th.th_stats field to it.
|
|
th->th.th_stats = __kmp_stats_thread_ptr;
|
|
}
|
|
__kmp_release_tas_lock(&__kmp_stats_lock, gtid);
|
|
|
|
#endif // KMP_STATS_ENABLED
|
|
|
|
if (KMP_UBER_GTID(gtid)) {
|
|
KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
|
|
th->th.th_info.ds.ds_thread = pthread_self();
|
|
__kmp_set_stack_info(gtid, th);
|
|
__kmp_check_stack_overlap(th);
|
|
return;
|
|
}
|
|
|
|
KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
#ifdef KMP_THREAD_ATTR
|
|
status = pthread_attr_init(&thread_attr);
|
|
if (status != 0) {
|
|
__kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
|
|
}
|
|
status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
|
|
if (status != 0) {
|
|
__kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
|
|
}
|
|
|
|
/* Set stack size for this thread now.
|
|
The multiple of 2 is there because on some machines, requesting an unusual
|
|
stacksize causes the thread to have an offset before the dummy alloca()
|
|
takes place to create the offset. Since we want the user to have a
|
|
sufficient stacksize AND support a stack offset, we alloca() twice the
|
|
offset so that the upcoming alloca() does not eliminate any premade offset,
|
|
and also gives the user the stack space they requested for all threads */
|
|
stack_size += gtid * __kmp_stkoffset * 2;
|
|
|
|
KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
|
|
"__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
|
|
gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
|
|
|
|
#ifdef _POSIX_THREAD_ATTR_STACKSIZE
|
|
status = pthread_attr_setstacksize(&thread_attr, stack_size);
|
|
#ifdef KMP_BACKUP_STKSIZE
|
|
if (status != 0) {
|
|
if (!__kmp_env_stksize) {
|
|
stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
|
|
__kmp_stksize = KMP_BACKUP_STKSIZE;
|
|
KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
|
|
"__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
|
|
"bytes\n",
|
|
gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
|
|
status = pthread_attr_setstacksize(&thread_attr, stack_size);
|
|
}
|
|
}
|
|
#endif /* KMP_BACKUP_STKSIZE */
|
|
if (status != 0) {
|
|
__kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
|
|
KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
|
|
}
|
|
#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
|
|
|
|
#endif /* KMP_THREAD_ATTR */
|
|
|
|
status =
|
|
pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
|
|
if (status != 0 || !handle) { // ??? Why do we check handle??
|
|
#ifdef _POSIX_THREAD_ATTR_STACKSIZE
|
|
if (status == EINVAL) {
|
|
__kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
|
|
KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
|
|
}
|
|
if (status == ENOMEM) {
|
|
__kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
|
|
KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
|
|
}
|
|
#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
|
|
if (status == EAGAIN) {
|
|
__kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
|
|
KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
|
|
}
|
|
KMP_SYSFAIL("pthread_create", status);
|
|
}
|
|
|
|
th->th.th_info.ds.ds_thread = handle;
|
|
|
|
#ifdef KMP_THREAD_ATTR
|
|
status = pthread_attr_destroy(&thread_attr);
|
|
if (status) {
|
|
kmp_msg_t err_code = KMP_ERR(status);
|
|
__kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
|
|
__kmp_msg_null);
|
|
if (__kmp_generate_warnings == kmp_warnings_off) {
|
|
__kmp_str_free(&err_code.str);
|
|
}
|
|
}
|
|
#endif /* KMP_THREAD_ATTR */
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
|
|
|
|
} // __kmp_create_worker
|
|
|
|
#if KMP_USE_MONITOR
|
|
void __kmp_create_monitor(kmp_info_t *th) {
|
|
pthread_t handle;
|
|
pthread_attr_t thread_attr;
|
|
size_t size;
|
|
int status;
|
|
int auto_adj_size = FALSE;
|
|
|
|
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
|
|
// We don't need monitor thread in case of MAX_BLOCKTIME
|
|
KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
|
|
"MAX blocktime\n"));
|
|
th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
|
|
th->th.th_info.ds.ds_gtid = 0;
|
|
return;
|
|
}
|
|
KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
|
|
th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
|
|
#if KMP_REAL_TIME_FIX
|
|
TCW_4(__kmp_global.g.g_time.dt.t_value,
|
|
-1); // Will use it for synchronization a bit later.
|
|
#else
|
|
TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
|
|
#endif // KMP_REAL_TIME_FIX
|
|
|
|
#ifdef KMP_THREAD_ATTR
|
|
if (__kmp_monitor_stksize == 0) {
|
|
__kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
|
|
auto_adj_size = TRUE;
|
|
}
|
|
status = pthread_attr_init(&thread_attr);
|
|
if (status != 0) {
|
|
__kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
|
|
}
|
|
status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
|
|
if (status != 0) {
|
|
__kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
|
|
}
|
|
|
|
#ifdef _POSIX_THREAD_ATTR_STACKSIZE
|
|
status = pthread_attr_getstacksize(&thread_attr, &size);
|
|
KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
|
|
#else
|
|
size = __kmp_sys_min_stksize;
|
|
#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
|
|
#endif /* KMP_THREAD_ATTR */
|
|
|
|
if (__kmp_monitor_stksize == 0) {
|
|
__kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
|
|
}
|
|
if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
|
|
__kmp_monitor_stksize = __kmp_sys_min_stksize;
|
|
}
|
|
|
|
KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
|
|
"requested stacksize = %lu bytes\n",
|
|
size, __kmp_monitor_stksize));
|
|
|
|
retry:
|
|
|
|
/* Set stack size for this thread now. */
|
|
#ifdef _POSIX_THREAD_ATTR_STACKSIZE
|
|
KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
|
|
__kmp_monitor_stksize));
|
|
status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
|
|
if (status != 0) {
|
|
if (auto_adj_size) {
|
|
__kmp_monitor_stksize *= 2;
|
|
goto retry;
|
|
}
|
|
kmp_msg_t err_code = KMP_ERR(status);
|
|
__kmp_msg(kmp_ms_warning, // should this be fatal? BB
|
|
KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
|
|
err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
|
|
if (__kmp_generate_warnings == kmp_warnings_off) {
|
|
__kmp_str_free(&err_code.str);
|
|
}
|
|
}
|
|
#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
|
|
|
|
status =
|
|
pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
|
|
|
|
if (status != 0) {
|
|
#ifdef _POSIX_THREAD_ATTR_STACKSIZE
|
|
if (status == EINVAL) {
|
|
if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
|
|
__kmp_monitor_stksize *= 2;
|
|
goto retry;
|
|
}
|
|
__kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
|
|
KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
|
|
__kmp_msg_null);
|
|
}
|
|
if (status == ENOMEM) {
|
|
__kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
|
|
KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
|
|
__kmp_msg_null);
|
|
}
|
|
#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
|
|
if (status == EAGAIN) {
|
|
__kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
|
|
KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
|
|
}
|
|
KMP_SYSFAIL("pthread_create", status);
|
|
}
|
|
|
|
th->th.th_info.ds.ds_thread = handle;
|
|
|
|
#if KMP_REAL_TIME_FIX
|
|
// Wait for the monitor thread is really started and set its *priority*.
|
|
KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
|
|
sizeof(__kmp_global.g.g_time.dt.t_value));
|
|
__kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
|
|
&__kmp_neq_4, NULL);
|
|
#endif // KMP_REAL_TIME_FIX
|
|
|
|
#ifdef KMP_THREAD_ATTR
|
|
status = pthread_attr_destroy(&thread_attr);
|
|
if (status != 0) {
|
|
kmp_msg_t err_code = KMP_ERR(status);
|
|
__kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
|
|
__kmp_msg_null);
|
|
if (__kmp_generate_warnings == kmp_warnings_off) {
|
|
__kmp_str_free(&err_code.str);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
|
|
th->th.th_info.ds.ds_thread));
|
|
|
|
} // __kmp_create_monitor
|
|
#endif // KMP_USE_MONITOR
|
|
|
|
void __kmp_exit_thread(int exit_status) {
|
|
#if KMP_OS_WASI
|
|
// TODO: the wasm32-wasi-threads target does not yet support pthread_exit.
|
|
#else
|
|
pthread_exit((void *)(intptr_t)exit_status);
|
|
#endif
|
|
} // __kmp_exit_thread
|
|
|
|
#if KMP_USE_MONITOR
|
|
void __kmp_resume_monitor();
|
|
|
|
extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
|
|
int status;
|
|
void *exit_val;
|
|
|
|
KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
|
|
" %#.8lx\n",
|
|
th->th.th_info.ds.ds_thread));
|
|
|
|
// If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
|
|
// If both tid and gtid are 0, it means the monitor did not ever start.
|
|
// If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
|
|
KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
|
|
if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
|
|
KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
|
|
return;
|
|
}
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
/* First, check to see whether the monitor thread exists to wake it up. This
|
|
is to avoid performance problem when the monitor sleeps during
|
|
blocktime-size interval */
|
|
|
|
status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
|
|
if (status != ESRCH) {
|
|
__kmp_resume_monitor(); // Wake up the monitor thread
|
|
}
|
|
KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
|
|
status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
|
|
if (exit_val != th) {
|
|
__kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
|
|
}
|
|
|
|
th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
|
|
th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
|
|
|
|
KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
|
|
" %#.8lx\n",
|
|
th->th.th_info.ds.ds_thread));
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
}
|
|
#else
|
|
// Empty symbol to export (see exports_so.txt) when
|
|
// monitor thread feature is disabled
|
|
extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
|
|
(void)th;
|
|
}
|
|
#endif // KMP_USE_MONITOR
|
|
|
|
void __kmp_reap_worker(kmp_info_t *th) {
|
|
int status;
|
|
void *exit_val;
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
|
|
KA_TRACE(
|
|
10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
|
|
|
|
status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
|
|
#ifdef KMP_DEBUG
|
|
/* Don't expose these to the user until we understand when they trigger */
|
|
if (status != 0) {
|
|
__kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
|
|
}
|
|
if (exit_val != th) {
|
|
KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
|
|
"exit_val = %p\n",
|
|
th->th.th_info.ds.ds_gtid, exit_val));
|
|
}
|
|
#else
|
|
(void)status; // unused variable
|
|
#endif /* KMP_DEBUG */
|
|
|
|
KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
|
|
th->th.th_info.ds.ds_gtid));
|
|
|
|
KMP_MB(); /* Flush all pending memory write invalidates. */
|
|
}
|
|
|
|
#if KMP_HANDLE_SIGNALS
|
|
|
|
static void __kmp_null_handler(int signo) {
|
|
// Do nothing, for doing SIG_IGN-type actions.
|
|
} // __kmp_null_handler
|
|
|
|
static void __kmp_team_handler(int signo) {
|
|
if (__kmp_global.g.g_abort == 0) {
|
|
/* Stage 1 signal handler, let's shut down all of the threads */
|
|
#ifdef KMP_DEBUG
|
|
__kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
|
|
#endif
|
|
switch (signo) {
|
|
case SIGHUP:
|
|
case SIGINT:
|
|
case SIGQUIT:
|
|
case SIGILL:
|
|
case SIGABRT:
|
|
case SIGFPE:
|
|
case SIGBUS:
|
|
case SIGSEGV:
|
|
#ifdef SIGSYS
|
|
case SIGSYS:
|
|
#endif
|
|
case SIGTERM:
|
|
if (__kmp_debug_buf) {
|
|
__kmp_dump_debug_buffer();
|
|
}
|
|
__kmp_unregister_library(); // cleanup shared memory
|
|
KMP_MB(); // Flush all pending memory write invalidates.
|
|
TCW_4(__kmp_global.g.g_abort, signo);
|
|
KMP_MB(); // Flush all pending memory write invalidates.
|
|
TCW_4(__kmp_global.g.g_done, TRUE);
|
|
KMP_MB(); // Flush all pending memory write invalidates.
|
|
break;
|
|
default:
|
|
#ifdef KMP_DEBUG
|
|
__kmp_debug_printf("__kmp_team_handler: unknown signal type");
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
} // __kmp_team_handler
|
|
|
|
static void __kmp_sigaction(int signum, const struct sigaction *act,
|
|
struct sigaction *oldact) {
|
|
int rc = sigaction(signum, act, oldact);
|
|
KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
|
|
}
|
|
|
|
static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
|
|
int parallel_init) {
|
|
KMP_MB(); // Flush all pending memory write invalidates.
|
|
KB_TRACE(60,
|
|
("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
|
|
if (parallel_init) {
|
|
struct sigaction new_action;
|
|
struct sigaction old_action;
|
|
new_action.sa_handler = handler_func;
|
|
new_action.sa_flags = 0;
|
|
sigfillset(&new_action.sa_mask);
|
|
__kmp_sigaction(sig, &new_action, &old_action);
|
|
if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
|
|
sigaddset(&__kmp_sigset, sig);
|
|
} else {
|
|
// Restore/keep user's handler if one previously installed.
|
|
__kmp_sigaction(sig, &old_action, NULL);
|
|
}
|
|
} else {
|
|
// Save initial/system signal handlers to see if user handlers installed.
|
|
__kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
|
|
}
|
|
KMP_MB(); // Flush all pending memory write invalidates.
|
|
} // __kmp_install_one_handler
|
|
|
|
static void __kmp_remove_one_handler(int sig) {
|
|
KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
|
|
if (sigismember(&__kmp_sigset, sig)) {
|
|
struct sigaction old;
|
|
KMP_MB(); // Flush all pending memory write invalidates.
|
|
__kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
|
|
if ((old.sa_handler != __kmp_team_handler) &&
|
|
(old.sa_handler != __kmp_null_handler)) {
|
|
// Restore the users signal handler.
|
|
KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
|
|
"restoring: sig=%d\n",
|
|
sig));
|
|
__kmp_sigaction(sig, &old, NULL);
|
|
}
|
|
sigdelset(&__kmp_sigset, sig);
|
|
KMP_MB(); // Flush all pending memory write invalidates.
|
|
}
|
|
} // __kmp_remove_one_handler
|
|
|
|
void __kmp_install_signals(int parallel_init) {
|
|
KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
|
|
if (__kmp_handle_signals || !parallel_init) {
|
|
// If ! parallel_init, we do not install handlers, just save original
|
|
// handlers. Let us do it even __handle_signals is 0.
|
|
sigemptyset(&__kmp_sigset);
|
|
__kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
|
|
__kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
|
|
__kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
|
|
__kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
|
|
__kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
|
|
__kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
|
|
__kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
|
|
__kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
|
|
#ifdef SIGSYS
|
|
__kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
|
|
#endif // SIGSYS
|
|
__kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
|
|
#ifdef SIGPIPE
|
|
__kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
|
|
#endif // SIGPIPE
|
|
}
|
|
} // __kmp_install_signals
|
|
|
|
void __kmp_remove_signals(void) {
|
|
int sig;
|
|
KB_TRACE(10, ("__kmp_remove_signals()\n"));
|
|
for (sig = 1; sig < NSIG; ++sig) {
|
|
__kmp_remove_one_handler(sig);
|
|
}
|
|
} // __kmp_remove_signals
|
|
|
|
#endif // KMP_HANDLE_SIGNALS
|
|
|
|
void __kmp_enable(int new_state) {
|
|
#ifdef KMP_CANCEL_THREADS
|
|
int status, old_state;
|
|
status = pthread_setcancelstate(new_state, &old_state);
|
|
KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
|
|
KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
|
|
#endif
|
|
}
|
|
|
|
void __kmp_disable(int *old_state) {
|
|
#ifdef KMP_CANCEL_THREADS
|
|
int status;
|
|
status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
|
|
KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
|
|
#endif
|
|
}
|
|
|
|
static void __kmp_atfork_prepare(void) {
|
|
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
|
|
__kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
}
|
|
|
|
static void __kmp_atfork_parent(void) {
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
}
|
|
|
|
/* Reset the library so execution in the child starts "all over again" with
|
|
clean data structures in initial states. Don't worry about freeing memory
|
|
allocated by parent, just abandon it to be safe. */
|
|
static void __kmp_atfork_child(void) {
|
|
__kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
|
|
__kmp_release_bootstrap_lock(&__kmp_initz_lock);
|
|
/* TODO make sure this is done right for nested/sibling */
|
|
// ATT: Memory leaks are here? TODO: Check it and fix.
|
|
/* KMP_ASSERT( 0 ); */
|
|
|
|
++__kmp_fork_count;
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
#if KMP_OS_LINUX || KMP_OS_FREEBSD
|
|
// reset the affinity in the child to the initial thread
|
|
// affinity in the parent
|
|
kmp_set_thread_affinity_mask_initial();
|
|
#endif
|
|
// Set default not to bind threads tightly in the child (we're expecting
|
|
// over-subscription after the fork and this can improve things for
|
|
// scripting languages that use OpenMP inside process-parallel code).
|
|
if (__kmp_nested_proc_bind.bind_types != NULL) {
|
|
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
|
|
}
|
|
for (kmp_affinity_t *affinity : __kmp_affinities)
|
|
*affinity = KMP_AFFINITY_INIT(affinity->env_var);
|
|
__kmp_affin_fullMask = nullptr;
|
|
__kmp_affin_origMask = nullptr;
|
|
__kmp_topology = nullptr;
|
|
#endif // KMP_AFFINITY_SUPPORTED
|
|
|
|
#if KMP_USE_MONITOR
|
|
__kmp_init_monitor = 0;
|
|
#endif
|
|
__kmp_init_parallel = FALSE;
|
|
__kmp_init_middle = FALSE;
|
|
__kmp_init_serial = FALSE;
|
|
TCW_4(__kmp_init_gtid, FALSE);
|
|
__kmp_init_common = FALSE;
|
|
|
|
TCW_4(__kmp_init_user_locks, FALSE);
|
|
#if !KMP_USE_DYNAMIC_LOCK
|
|
__kmp_user_lock_table.used = 1;
|
|
__kmp_user_lock_table.allocated = 0;
|
|
__kmp_user_lock_table.table = NULL;
|
|
__kmp_lock_blocks = NULL;
|
|
#endif
|
|
|
|
__kmp_all_nth = 0;
|
|
TCW_4(__kmp_nth, 0);
|
|
|
|
__kmp_thread_pool = NULL;
|
|
__kmp_thread_pool_insert_pt = NULL;
|
|
__kmp_team_pool = NULL;
|
|
|
|
/* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
|
|
here so threadprivate doesn't use stale data */
|
|
KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
|
|
__kmp_threadpriv_cache_list));
|
|
|
|
while (__kmp_threadpriv_cache_list != NULL) {
|
|
|
|
if (*__kmp_threadpriv_cache_list->addr != NULL) {
|
|
KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
|
|
&(*__kmp_threadpriv_cache_list->addr)));
|
|
|
|
*__kmp_threadpriv_cache_list->addr = NULL;
|
|
}
|
|
__kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
|
|
}
|
|
|
|
__kmp_init_runtime = FALSE;
|
|
|
|
/* reset statically initialized locks */
|
|
__kmp_init_bootstrap_lock(&__kmp_initz_lock);
|
|
__kmp_init_bootstrap_lock(&__kmp_stdio_lock);
|
|
__kmp_init_bootstrap_lock(&__kmp_console_lock);
|
|
__kmp_init_bootstrap_lock(&__kmp_task_team_lock);
|
|
|
|
#if USE_ITT_BUILD
|
|
__kmp_itt_reset(); // reset ITT's global state
|
|
#endif /* USE_ITT_BUILD */
|
|
|
|
{
|
|
// Child process often get terminated without any use of OpenMP. That might
|
|
// cause mapped shared memory file to be left unattended. Thus we postpone
|
|
// library registration till middle initialization in the child process.
|
|
__kmp_need_register_serial = FALSE;
|
|
__kmp_serial_initialize();
|
|
}
|
|
|
|
/* This is necessary to make sure no stale data is left around */
|
|
/* AC: customers complain that we use unsafe routines in the atfork
|
|
handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
|
|
in dynamic_link when check the presence of shared tbbmalloc library.
|
|
Suggestion is to make the library initialization lazier, similar
|
|
to what done for __kmpc_begin(). */
|
|
// TODO: synchronize all static initializations with regular library
|
|
// startup; look at kmp_global.cpp and etc.
|
|
//__kmp_internal_begin ();
|
|
}
|
|
|
|
void __kmp_register_atfork(void) {
|
|
if (__kmp_need_register_atfork) {
|
|
#if !KMP_OS_WASI
|
|
int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
|
|
__kmp_atfork_child);
|
|
KMP_CHECK_SYSFAIL("pthread_atfork", status);
|
|
#endif
|
|
__kmp_need_register_atfork = FALSE;
|
|
}
|
|
}
|
|
|
|
void __kmp_suspend_initialize(void) {
|
|
int status;
|
|
status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
|
|
status = pthread_condattr_init(&__kmp_suspend_cond_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
|
|
}
|
|
|
|
void __kmp_suspend_initialize_thread(kmp_info_t *th) {
|
|
int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
|
|
int new_value = __kmp_fork_count + 1;
|
|
// Return if already initialized
|
|
if (old_value == new_value)
|
|
return;
|
|
// Wait, then return if being initialized
|
|
if (old_value == -1 || !__kmp_atomic_compare_store(
|
|
&th->th.th_suspend_init_count, old_value, -1)) {
|
|
while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
|
|
KMP_CPU_PAUSE();
|
|
}
|
|
} else {
|
|
// Claim to be the initializer and do initializations
|
|
int status;
|
|
status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
|
|
&__kmp_suspend_cond_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_init", status);
|
|
status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
|
|
&__kmp_suspend_mutex_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
|
|
KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
|
|
}
|
|
}
|
|
|
|
void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
|
|
if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
|
|
/* this means we have initialize the suspension pthread objects for this
|
|
thread in this instance of the process */
|
|
int status;
|
|
|
|
status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
|
|
if (status != 0 && status != EBUSY) {
|
|
KMP_SYSFAIL("pthread_cond_destroy", status);
|
|
}
|
|
status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
|
|
if (status != 0 && status != EBUSY) {
|
|
KMP_SYSFAIL("pthread_mutex_destroy", status);
|
|
}
|
|
--th->th.th_suspend_init_count;
|
|
KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
|
|
__kmp_fork_count);
|
|
}
|
|
}
|
|
|
|
// return true if lock obtained, false otherwise
|
|
int __kmp_try_suspend_mx(kmp_info_t *th) {
|
|
return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
|
|
}
|
|
|
|
void __kmp_lock_suspend_mx(kmp_info_t *th) {
|
|
int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
|
|
}
|
|
|
|
void __kmp_unlock_suspend_mx(kmp_info_t *th) {
|
|
int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
|
|
}
|
|
|
|
/* This routine puts the calling thread to sleep after setting the
|
|
sleep bit for the indicated flag variable to true. */
|
|
template <class C>
|
|
static inline void __kmp_suspend_template(int th_gtid, C *flag) {
|
|
KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
|
|
kmp_info_t *th = __kmp_threads[th_gtid];
|
|
int status;
|
|
typename C::flag_t old_spin;
|
|
|
|
KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
|
|
flag->get()));
|
|
|
|
__kmp_suspend_initialize_thread(th);
|
|
|
|
__kmp_lock_suspend_mx(th);
|
|
|
|
KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
|
|
th_gtid, flag->get()));
|
|
|
|
/* TODO: shouldn't this use release semantics to ensure that
|
|
__kmp_suspend_initialize_thread gets called first? */
|
|
old_spin = flag->set_sleeping();
|
|
TCW_PTR(th->th.th_sleep_loc, (void *)flag);
|
|
th->th.th_sleep_loc_type = flag->get_type();
|
|
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
|
|
__kmp_pause_status != kmp_soft_paused) {
|
|
flag->unset_sleeping();
|
|
TCW_PTR(th->th.th_sleep_loc, NULL);
|
|
th->th.th_sleep_loc_type = flag_unset;
|
|
__kmp_unlock_suspend_mx(th);
|
|
return;
|
|
}
|
|
KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
|
|
" was %x\n",
|
|
th_gtid, flag->get(), flag->load(), old_spin));
|
|
|
|
if (flag->done_check_val(old_spin) || flag->done_check()) {
|
|
flag->unset_sleeping();
|
|
TCW_PTR(th->th.th_sleep_loc, NULL);
|
|
th->th.th_sleep_loc_type = flag_unset;
|
|
KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
|
|
"for spin(%p)\n",
|
|
th_gtid, flag->get()));
|
|
} else {
|
|
/* Encapsulate in a loop as the documentation states that this may
|
|
"with low probability" return when the condition variable has
|
|
not been signaled or broadcast */
|
|
int deactivated = FALSE;
|
|
|
|
while (flag->is_sleeping()) {
|
|
#ifdef DEBUG_SUSPEND
|
|
char buffer[128];
|
|
__kmp_suspend_count++;
|
|
__kmp_print_cond(buffer, &th->th.th_suspend_cv);
|
|
__kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
|
|
buffer);
|
|
#endif
|
|
// Mark the thread as no longer active (only in the first iteration of the
|
|
// loop).
|
|
if (!deactivated) {
|
|
th->th.th_active = FALSE;
|
|
if (th->th.th_active_in_pool) {
|
|
th->th.th_active_in_pool = FALSE;
|
|
KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
|
|
KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
|
|
}
|
|
deactivated = TRUE;
|
|
}
|
|
|
|
KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
|
|
KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type);
|
|
|
|
#if USE_SUSPEND_TIMEOUT
|
|
struct timespec now;
|
|
struct timeval tval;
|
|
int msecs;
|
|
|
|
status = gettimeofday(&tval, NULL);
|
|
KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
|
|
TIMEVAL_TO_TIMESPEC(&tval, &now);
|
|
|
|
msecs = (4 * __kmp_dflt_blocktime) + 200;
|
|
now.tv_sec += msecs / 1000;
|
|
now.tv_nsec += (msecs % 1000) * 1000;
|
|
|
|
KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
|
|
"pthread_cond_timedwait\n",
|
|
th_gtid));
|
|
status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
|
|
&th->th.th_suspend_mx.m_mutex, &now);
|
|
#else
|
|
KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
|
|
" pthread_cond_wait\n",
|
|
th_gtid));
|
|
status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
|
|
&th->th.th_suspend_mx.m_mutex);
|
|
#endif // USE_SUSPEND_TIMEOUT
|
|
|
|
if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
|
|
KMP_SYSFAIL("pthread_cond_wait", status);
|
|
}
|
|
|
|
KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type());
|
|
|
|
if (!flag->is_sleeping() &&
|
|
((status == EINTR) || (status == ETIMEDOUT))) {
|
|
// if interrupt or timeout, and thread is no longer sleeping, we need to
|
|
// make sure sleep_loc gets reset; however, this shouldn't be needed if
|
|
// we woke up with resume
|
|
flag->unset_sleeping();
|
|
TCW_PTR(th->th.th_sleep_loc, NULL);
|
|
th->th.th_sleep_loc_type = flag_unset;
|
|
}
|
|
#ifdef KMP_DEBUG
|
|
if (status == ETIMEDOUT) {
|
|
if (flag->is_sleeping()) {
|
|
KF_TRACE(100,
|
|
("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
|
|
} else {
|
|
KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
|
|
"not set!\n",
|
|
th_gtid));
|
|
TCW_PTR(th->th.th_sleep_loc, NULL);
|
|
th->th.th_sleep_loc_type = flag_unset;
|
|
}
|
|
} else if (flag->is_sleeping()) {
|
|
KF_TRACE(100,
|
|
("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
|
|
}
|
|
#endif
|
|
} // while
|
|
|
|
// Mark the thread as active again (if it was previous marked as inactive)
|
|
if (deactivated) {
|
|
th->th.th_active = TRUE;
|
|
if (TCR_4(th->th.th_in_pool)) {
|
|
KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
|
|
th->th.th_active_in_pool = TRUE;
|
|
}
|
|
}
|
|
}
|
|
// We may have had the loop variable set before entering the loop body;
|
|
// so we need to reset sleep_loc.
|
|
TCW_PTR(th->th.th_sleep_loc, NULL);
|
|
th->th.th_sleep_loc_type = flag_unset;
|
|
|
|
KMP_DEBUG_ASSERT(!flag->is_sleeping());
|
|
KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
|
|
#ifdef DEBUG_SUSPEND
|
|
{
|
|
char buffer[128];
|
|
__kmp_print_cond(buffer, &th->th.th_suspend_cv);
|
|
__kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
|
|
buffer);
|
|
}
|
|
#endif
|
|
|
|
__kmp_unlock_suspend_mx(th);
|
|
KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
|
|
}
|
|
|
|
template <bool C, bool S>
|
|
void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
|
|
__kmp_suspend_template(th_gtid, flag);
|
|
}
|
|
template <bool C, bool S>
|
|
void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
|
|
__kmp_suspend_template(th_gtid, flag);
|
|
}
|
|
template <bool C, bool S>
|
|
void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
|
|
__kmp_suspend_template(th_gtid, flag);
|
|
}
|
|
void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
|
|
__kmp_suspend_template(th_gtid, flag);
|
|
}
|
|
|
|
template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
|
|
template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
|
|
template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
|
|
template void
|
|
__kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
|
|
template void
|
|
__kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
|
|
|
|
/* This routine signals the thread specified by target_gtid to wake up
|
|
after setting the sleep bit indicated by the flag argument to FALSE.
|
|
The target thread must already have called __kmp_suspend_template() */
|
|
template <class C>
|
|
static inline void __kmp_resume_template(int target_gtid, C *flag) {
|
|
KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
|
|
kmp_info_t *th = __kmp_threads[target_gtid];
|
|
int status;
|
|
|
|
#ifdef KMP_DEBUG
|
|
int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
|
|
#endif
|
|
|
|
KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
|
|
gtid, target_gtid));
|
|
KMP_DEBUG_ASSERT(gtid != target_gtid);
|
|
|
|
__kmp_suspend_initialize_thread(th);
|
|
|
|
__kmp_lock_suspend_mx(th);
|
|
|
|
if (!flag || flag != th->th.th_sleep_loc) {
|
|
// coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
|
|
// different location; wake up at new location
|
|
flag = (C *)CCAST(void *, th->th.th_sleep_loc);
|
|
}
|
|
|
|
// First, check if the flag is null or its type has changed. If so, someone
|
|
// else woke it up.
|
|
if (!flag) { // Thread doesn't appear to be sleeping on anything
|
|
KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
|
|
"awake: flag(%p)\n",
|
|
gtid, target_gtid, (void *)NULL));
|
|
__kmp_unlock_suspend_mx(th);
|
|
return;
|
|
} else if (flag->get_type() != th->th.th_sleep_loc_type) {
|
|
// Flag type does not appear to match this function template; possibly the
|
|
// thread is sleeping on something else. Try null resume again.
|
|
KF_TRACE(
|
|
5,
|
|
("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), "
|
|
"spin(%p) type=%d ptr_type=%d\n",
|
|
gtid, target_gtid, flag, flag->get(), flag->get_type(),
|
|
th->th.th_sleep_loc_type));
|
|
__kmp_unlock_suspend_mx(th);
|
|
__kmp_null_resume_wrapper(th);
|
|
return;
|
|
} else { // if multiple threads are sleeping, flag should be internally
|
|
// referring to a specific thread here
|
|
if (!flag->is_sleeping()) {
|
|
KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
|
|
"awake: flag(%p): %u\n",
|
|
gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
|
|
__kmp_unlock_suspend_mx(th);
|
|
return;
|
|
}
|
|
}
|
|
KMP_DEBUG_ASSERT(flag);
|
|
flag->unset_sleeping();
|
|
TCW_PTR(th->th.th_sleep_loc, NULL);
|
|
th->th.th_sleep_loc_type = flag_unset;
|
|
|
|
KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
|
|
"sleep bit for flag's loc(%p): %u\n",
|
|
gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
|
|
|
|
#ifdef DEBUG_SUSPEND
|
|
{
|
|
char buffer[128];
|
|
__kmp_print_cond(buffer, &th->th.th_suspend_cv);
|
|
__kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
|
|
target_gtid, buffer);
|
|
}
|
|
#endif
|
|
status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
|
|
__kmp_unlock_suspend_mx(th);
|
|
KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
|
|
" for T#%d\n",
|
|
gtid, target_gtid));
|
|
}
|
|
|
|
template <bool C, bool S>
|
|
void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
|
|
__kmp_resume_template(target_gtid, flag);
|
|
}
|
|
template <bool C, bool S>
|
|
void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
|
|
__kmp_resume_template(target_gtid, flag);
|
|
}
|
|
template <bool C, bool S>
|
|
void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
|
|
__kmp_resume_template(target_gtid, flag);
|
|
}
|
|
void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
|
|
__kmp_resume_template(target_gtid, flag);
|
|
}
|
|
|
|
template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
|
|
template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
|
|
template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
|
|
template void
|
|
__kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
|
|
|
|
#if KMP_USE_MONITOR
|
|
void __kmp_resume_monitor() {
|
|
KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
|
|
int status;
|
|
#ifdef KMP_DEBUG
|
|
int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
|
|
KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
|
|
KMP_GTID_MONITOR));
|
|
KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
|
|
#endif
|
|
status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
|
|
#ifdef DEBUG_SUSPEND
|
|
{
|
|
char buffer[128];
|
|
__kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
|
|
__kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
|
|
KMP_GTID_MONITOR, buffer);
|
|
}
|
|
#endif
|
|
status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
|
|
status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
|
|
KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
|
|
" for T#%d\n",
|
|
gtid, KMP_GTID_MONITOR));
|
|
}
|
|
#endif // KMP_USE_MONITOR
|
|
|
|
void __kmp_yield() { sched_yield(); }
|
|
|
|
void __kmp_gtid_set_specific(int gtid) {
|
|
if (__kmp_init_gtid) {
|
|
int status;
|
|
status = pthread_setspecific(__kmp_gtid_threadprivate_key,
|
|
(void *)(intptr_t)(gtid + 1));
|
|
KMP_CHECK_SYSFAIL("pthread_setspecific", status);
|
|
} else {
|
|
KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
|
|
}
|
|
}
|
|
|
|
int __kmp_gtid_get_specific() {
|
|
int gtid;
|
|
if (!__kmp_init_gtid) {
|
|
KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
|
|
"KMP_GTID_SHUTDOWN\n"));
|
|
return KMP_GTID_SHUTDOWN;
|
|
}
|
|
gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
|
|
if (gtid == 0) {
|
|
gtid = KMP_GTID_DNE;
|
|
} else {
|
|
gtid--;
|
|
}
|
|
KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
|
|
__kmp_gtid_threadprivate_key, gtid));
|
|
return gtid;
|
|
}
|
|
|
|
double __kmp_read_cpu_time(void) {
|
|
/*clock_t t;*/
|
|
struct tms buffer;
|
|
|
|
/*t =*/times(&buffer);
|
|
|
|
return (double)(buffer.tms_utime + buffer.tms_cutime) /
|
|
(double)CLOCKS_PER_SEC;
|
|
}
|
|
|
|
int __kmp_read_system_info(struct kmp_sys_info *info) {
|
|
int status;
|
|
struct rusage r_usage;
|
|
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
status = getrusage(RUSAGE_SELF, &r_usage);
|
|
KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
|
|
|
|
#if !KMP_OS_WASI
|
|
// The maximum resident set size utilized (in kilobytes)
|
|
info->maxrss = r_usage.ru_maxrss;
|
|
// The number of page faults serviced without any I/O
|
|
info->minflt = r_usage.ru_minflt;
|
|
// The number of page faults serviced that required I/O
|
|
info->majflt = r_usage.ru_majflt;
|
|
// The number of times a process was "swapped" out of memory
|
|
info->nswap = r_usage.ru_nswap;
|
|
// The number of times the file system had to perform input
|
|
info->inblock = r_usage.ru_inblock;
|
|
// The number of times the file system had to perform output
|
|
info->oublock = r_usage.ru_oublock;
|
|
// The number of times a context switch was voluntarily
|
|
info->nvcsw = r_usage.ru_nvcsw;
|
|
// The number of times a context switch was forced
|
|
info->nivcsw = r_usage.ru_nivcsw;
|
|
#endif
|
|
|
|
return (status != 0);
|
|
}
|
|
|
|
void __kmp_read_system_time(double *delta) {
|
|
double t_ns;
|
|
struct timeval tval;
|
|
struct timespec stop;
|
|
int status;
|
|
|
|
status = gettimeofday(&tval, NULL);
|
|
KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
|
|
TIMEVAL_TO_TIMESPEC(&tval, &stop);
|
|
t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
|
|
*delta = (t_ns * 1e-9);
|
|
}
|
|
|
|
void __kmp_clear_system_time(void) {
|
|
struct timeval tval;
|
|
int status;
|
|
status = gettimeofday(&tval, NULL);
|
|
KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
|
|
TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
|
|
}
|
|
|
|
static int __kmp_get_xproc(void) {
|
|
|
|
int r = 0;
|
|
|
|
#if KMP_OS_LINUX
|
|
|
|
__kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r));
|
|
|
|
#elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \
|
|
KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX
|
|
|
|
__kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
|
|
|
|
#elif KMP_OS_DARWIN
|
|
|
|
// Bug C77011 High "OpenMP Threads and number of active cores".
|
|
|
|
// Find the number of available CPUs.
|
|
kern_return_t rc;
|
|
host_basic_info_data_t info;
|
|
mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
|
|
rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
|
|
if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
|
|
// Cannot use KA_TRACE() here because this code works before trace support
|
|
// is initialized.
|
|
r = info.avail_cpus;
|
|
} else {
|
|
KMP_WARNING(CantGetNumAvailCPU);
|
|
KMP_INFORM(AssumedNumCPU);
|
|
}
|
|
|
|
#else
|
|
|
|
#error "Unknown or unsupported OS."
|
|
|
|
#endif
|
|
|
|
return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
|
|
|
|
} // __kmp_get_xproc
|
|
|
|
int __kmp_read_from_file(char const *path, char const *format, ...) {
|
|
int result;
|
|
va_list args;
|
|
|
|
va_start(args, format);
|
|
FILE *f = fopen(path, "rb");
|
|
if (f == NULL) {
|
|
va_end(args);
|
|
return 0;
|
|
}
|
|
result = vfscanf(f, format, args);
|
|
fclose(f);
|
|
va_end(args);
|
|
|
|
return result;
|
|
}
|
|
|
|
void __kmp_runtime_initialize(void) {
|
|
int status;
|
|
pthread_mutexattr_t mutex_attr;
|
|
pthread_condattr_t cond_attr;
|
|
|
|
if (__kmp_init_runtime) {
|
|
return;
|
|
}
|
|
|
|
#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
|
|
if (!__kmp_cpuinfo.initialized) {
|
|
__kmp_query_cpuid(&__kmp_cpuinfo);
|
|
}
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
__kmp_xproc = __kmp_get_xproc();
|
|
|
|
#if !KMP_32_BIT_ARCH
|
|
struct rlimit rlim;
|
|
// read stack size of calling thread, save it as default for worker threads;
|
|
// this should be done before reading environment variables
|
|
status = getrlimit(RLIMIT_STACK, &rlim);
|
|
if (status == 0) { // success?
|
|
__kmp_stksize = rlim.rlim_cur;
|
|
__kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
|
|
}
|
|
#endif /* KMP_32_BIT_ARCH */
|
|
|
|
if (sysconf(_SC_THREADS)) {
|
|
|
|
/* Query the maximum number of threads */
|
|
__kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
|
|
#ifdef __ve__
|
|
if (__kmp_sys_max_nth == -1) {
|
|
// VE's pthread supports only up to 64 threads per a VE process.
|
|
// So we use that KMP_MAX_NTH (predefined as 64) here.
|
|
__kmp_sys_max_nth = KMP_MAX_NTH;
|
|
}
|
|
#else
|
|
if (__kmp_sys_max_nth == -1) {
|
|
/* Unlimited threads for NPTL */
|
|
__kmp_sys_max_nth = INT_MAX;
|
|
} else if (__kmp_sys_max_nth <= 1) {
|
|
/* Can't tell, just use PTHREAD_THREADS_MAX */
|
|
__kmp_sys_max_nth = KMP_MAX_NTH;
|
|
}
|
|
#endif
|
|
|
|
/* Query the minimum stack size */
|
|
__kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
|
|
if (__kmp_sys_min_stksize <= 1) {
|
|
__kmp_sys_min_stksize = KMP_MIN_STKSIZE;
|
|
}
|
|
}
|
|
|
|
/* Set up minimum number of threads to switch to TLS gtid */
|
|
__kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
|
|
|
|
status = pthread_key_create(&__kmp_gtid_threadprivate_key,
|
|
__kmp_internal_end_dest);
|
|
KMP_CHECK_SYSFAIL("pthread_key_create", status);
|
|
status = pthread_mutexattr_init(&mutex_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
|
|
status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
|
|
status = pthread_mutexattr_destroy(&mutex_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
|
|
status = pthread_condattr_init(&cond_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
|
|
status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_init", status);
|
|
status = pthread_condattr_destroy(&cond_attr);
|
|
KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
|
|
#if USE_ITT_BUILD
|
|
__kmp_itt_initialize();
|
|
#endif /* USE_ITT_BUILD */
|
|
|
|
__kmp_init_runtime = TRUE;
|
|
}
|
|
|
|
void __kmp_runtime_destroy(void) {
|
|
int status;
|
|
|
|
if (!__kmp_init_runtime) {
|
|
return; // Nothing to do.
|
|
}
|
|
|
|
#if USE_ITT_BUILD
|
|
__kmp_itt_destroy();
|
|
#endif /* USE_ITT_BUILD */
|
|
|
|
status = pthread_key_delete(__kmp_gtid_threadprivate_key);
|
|
KMP_CHECK_SYSFAIL("pthread_key_delete", status);
|
|
|
|
status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
|
|
if (status != 0 && status != EBUSY) {
|
|
KMP_SYSFAIL("pthread_mutex_destroy", status);
|
|
}
|
|
status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
|
|
if (status != 0 && status != EBUSY) {
|
|
KMP_SYSFAIL("pthread_cond_destroy", status);
|
|
}
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
__kmp_affinity_uninitialize();
|
|
#endif
|
|
|
|
__kmp_init_runtime = FALSE;
|
|
}
|
|
|
|
/* Put the thread to sleep for a time period */
|
|
/* NOTE: not currently used anywhere */
|
|
void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
|
|
|
|
/* Calculate the elapsed wall clock time for the user */
|
|
void __kmp_elapsed(double *t) {
|
|
int status;
|
|
#ifdef FIX_SGI_CLOCK
|
|
struct timespec ts;
|
|
|
|
status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
|
|
KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
|
|
*t =
|
|
(double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
|
|
#else
|
|
struct timeval tv;
|
|
|
|
status = gettimeofday(&tv, NULL);
|
|
KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
|
|
*t =
|
|
(double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
|
|
#endif
|
|
}
|
|
|
|
/* Calculate the elapsed wall clock tick for the user */
|
|
void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
|
|
|
|
/* Return the current time stamp in nsec */
|
|
kmp_uint64 __kmp_now_nsec() {
|
|
struct timeval t;
|
|
gettimeofday(&t, NULL);
|
|
kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
|
|
(kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
|
|
return nsec;
|
|
}
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
/* Measure clock ticks per millisecond */
|
|
void __kmp_initialize_system_tick() {
|
|
kmp_uint64 now, nsec2, diff;
|
|
kmp_uint64 delay = 1000000; // ~450 usec on most machines.
|
|
kmp_uint64 nsec = __kmp_now_nsec();
|
|
kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
|
|
while ((now = __kmp_hardware_timestamp()) < goal)
|
|
;
|
|
nsec2 = __kmp_now_nsec();
|
|
diff = nsec2 - nsec;
|
|
if (diff > 0) {
|
|
double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff;
|
|
if (tpus > 0.0) {
|
|
__kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0);
|
|
__kmp_ticks_per_usec = (kmp_uint64)tpus;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef __COSMOPOLITAN__
|
|
/* Determine whether the given address is mapped into the current address
|
|
space. */
|
|
|
|
int __kmp_is_address_mapped(void *addr) {
|
|
|
|
int found = 0;
|
|
int rc;
|
|
|
|
#if KMP_OS_LINUX || KMP_OS_HURD
|
|
|
|
/* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
|
|
address ranges mapped into the address space. */
|
|
|
|
char *name = __kmp_str_format("/proc/%d/maps", getpid());
|
|
FILE *file = NULL;
|
|
|
|
file = fopen(name, "r");
|
|
KMP_ASSERT(file != NULL);
|
|
|
|
for (;;) {
|
|
|
|
void *beginning = NULL;
|
|
void *ending = NULL;
|
|
char perms[5];
|
|
|
|
rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
|
|
if (rc == EOF) {
|
|
break;
|
|
}
|
|
KMP_ASSERT(rc == 3 &&
|
|
KMP_STRLEN(perms) == 4); // Make sure all fields are read.
|
|
|
|
// Ending address is not included in the region, but beginning is.
|
|
if ((addr >= beginning) && (addr < ending)) {
|
|
perms[2] = 0; // 3th and 4th character does not matter.
|
|
if (strcmp(perms, "rw") == 0) {
|
|
// Memory we are looking for should be readable and writable.
|
|
found = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Free resources.
|
|
fclose(file);
|
|
KMP_INTERNAL_FREE(name);
|
|
#elif KMP_OS_FREEBSD
|
|
char *buf;
|
|
size_t lstsz;
|
|
int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
|
|
rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
|
|
if (rc < 0)
|
|
return 0;
|
|
// We pass from number of vm entry's semantic
|
|
// to size of whole entry map list.
|
|
lstsz = lstsz * 4 / 3;
|
|
buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
|
|
rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
|
|
if (rc < 0) {
|
|
kmpc_free(buf);
|
|
return 0;
|
|
}
|
|
|
|
char *lw = buf;
|
|
char *up = buf + lstsz;
|
|
|
|
while (lw < up) {
|
|
struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
|
|
size_t cursz = cur->kve_structsize;
|
|
if (cursz == 0)
|
|
break;
|
|
void *start = reinterpret_cast<void *>(cur->kve_start);
|
|
void *end = reinterpret_cast<void *>(cur->kve_end);
|
|
// Readable/Writable addresses within current map entry
|
|
if ((addr >= start) && (addr < end)) {
|
|
if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
|
|
(cur->kve_protection & KVME_PROT_WRITE) != 0) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
lw += cursz;
|
|
}
|
|
kmpc_free(buf);
|
|
|
|
#elif KMP_OS_DARWIN
|
|
|
|
/* On OS X*, /proc pseudo filesystem is not available. Try to read memory
|
|
using vm interface. */
|
|
|
|
int buffer;
|
|
vm_size_t count;
|
|
rc = vm_read_overwrite(
|
|
mach_task_self(), // Task to read memory of.
|
|
(vm_address_t)(addr), // Address to read from.
|
|
1, // Number of bytes to be read.
|
|
(vm_address_t)(&buffer), // Address of buffer to save read bytes in.
|
|
&count // Address of var to save number of read bytes in.
|
|
);
|
|
if (rc == 0) {
|
|
// Memory successfully read.
|
|
found = 1;
|
|
}
|
|
|
|
#elif KMP_OS_NETBSD
|
|
|
|
int mib[5];
|
|
mib[0] = CTL_VM;
|
|
mib[1] = VM_PROC;
|
|
mib[2] = VM_PROC_MAP;
|
|
mib[3] = getpid();
|
|
mib[4] = sizeof(struct kinfo_vmentry);
|
|
|
|
size_t size;
|
|
rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
|
|
KMP_ASSERT(!rc);
|
|
KMP_ASSERT(size);
|
|
|
|
size = size * 4 / 3;
|
|
struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
|
|
KMP_ASSERT(kiv);
|
|
|
|
rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
|
|
KMP_ASSERT(!rc);
|
|
KMP_ASSERT(size);
|
|
|
|
for (size_t i = 0; i < size; i++) {
|
|
if (kiv[i].kve_start >= (uint64_t)addr &&
|
|
kiv[i].kve_end <= (uint64_t)addr) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
KMP_INTERNAL_FREE(kiv);
|
|
#elif KMP_OS_OPENBSD
|
|
|
|
int mib[3];
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC_VMMAP;
|
|
mib[2] = getpid();
|
|
|
|
size_t size;
|
|
uint64_t end;
|
|
rc = sysctl(mib, 3, NULL, &size, NULL, 0);
|
|
KMP_ASSERT(!rc);
|
|
KMP_ASSERT(size);
|
|
end = size;
|
|
|
|
struct kinfo_vmentry kiv = {.kve_start = 0};
|
|
|
|
while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
|
|
KMP_ASSERT(size);
|
|
if (kiv.kve_end == end)
|
|
break;
|
|
|
|
if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
kiv.kve_start += 1;
|
|
}
|
|
#elif KMP_OS_WASI
|
|
found = (int)addr < (__builtin_wasm_memory_size(0) * PAGESIZE);
|
|
#elif KMP_OS_DRAGONFLY || KMP_OS_SOLARIS || KMP_OS_AIX
|
|
|
|
// FIXME(DragonFly, Solaris, AIX): Implement this
|
|
found = 1;
|
|
|
|
#else
|
|
|
|
#error "Unknown or unsupported OS"
|
|
|
|
#endif
|
|
|
|
return found;
|
|
|
|
} // __kmp_is_address_mapped
|
|
#endif // __COSMOPOLITAN__
|
|
|
|
#ifdef USE_LOAD_BALANCE
|
|
|
|
// The function returns the rounded value of the system load average
|
|
// during given time interval which depends on the value of
|
|
// __kmp_load_balance_interval variable (default is 60 sec, other values
|
|
// may be 300 sec or 900 sec).
|
|
// It returns -1 in case of error.
|
|
static int __kmp_get_load_balance_getloadavg(int max) {
|
|
double averages[3];
|
|
int ret_avg = 0;
|
|
|
|
int res = getloadavg(averages, 3);
|
|
|
|
// Check __kmp_load_balance_interval to determine which of averages to use.
|
|
// getloadavg() may return the number of samples less than requested that is
|
|
// less than 3.
|
|
if (__kmp_load_balance_interval < 180 && (res >= 1)) {
|
|
ret_avg = (int)averages[0]; // 1 min
|
|
} else if ((__kmp_load_balance_interval >= 180 &&
|
|
__kmp_load_balance_interval < 600) &&
|
|
(res >= 2)) {
|
|
ret_avg = (int)averages[1]; // 5 min
|
|
} else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
|
|
ret_avg = (int)averages[2]; // 15 min
|
|
} else { // Error occurred
|
|
return -1;
|
|
}
|
|
|
|
return ret_avg;
|
|
}
|
|
|
|
// The function returns number of running (not sleeping) threads, or -1 in case
|
|
// of error. Error could be reported if Linux* OS kernel too old (without
|
|
// "/proc" support). Counting running threads stops if max running threads
|
|
// encountered.
|
|
static int __kmp_get_load_balance_linux(int max) {
|
|
static int permanent_error = 0;
|
|
static int glb_running_threads = 0; // Saved count of the running threads for
|
|
// the thread balance algorithm
|
|
static double glb_call_time = 0; /* Thread balance algorithm call time */
|
|
|
|
int running_threads = 0; // Number of running threads in the system.
|
|
|
|
DIR *proc_dir = NULL; // Handle of "/proc/" directory.
|
|
struct dirent *proc_entry = NULL;
|
|
|
|
kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
|
|
DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
|
|
struct dirent *task_entry = NULL;
|
|
int task_path_fixed_len;
|
|
|
|
kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
|
|
int stat_file = -1;
|
|
int stat_path_fixed_len;
|
|
|
|
#ifdef KMP_DEBUG
|
|
int total_processes = 0; // Total number of processes in system.
|
|
#endif
|
|
|
|
double call_time = 0.0;
|
|
|
|
__kmp_str_buf_init(&task_path);
|
|
__kmp_str_buf_init(&stat_path);
|
|
|
|
__kmp_elapsed(&call_time);
|
|
|
|
if (glb_call_time &&
|
|
(call_time - glb_call_time < __kmp_load_balance_interval)) {
|
|
running_threads = glb_running_threads;
|
|
goto finish;
|
|
}
|
|
|
|
glb_call_time = call_time;
|
|
|
|
// Do not spend time on scanning "/proc/" if we have a permanent error.
|
|
if (permanent_error) {
|
|
running_threads = -1;
|
|
goto finish;
|
|
}
|
|
|
|
if (max <= 0) {
|
|
max = INT_MAX;
|
|
}
|
|
|
|
// Open "/proc/" directory.
|
|
proc_dir = opendir("/proc");
|
|
if (proc_dir == NULL) {
|
|
// Cannot open "/proc/". Probably the kernel does not support it. Return an
|
|
// error now and in subsequent calls.
|
|
running_threads = -1;
|
|
permanent_error = 1;
|
|
goto finish;
|
|
}
|
|
|
|
// Initialize fixed part of task_path. This part will not change.
|
|
__kmp_str_buf_cat(&task_path, "/proc/", 6);
|
|
task_path_fixed_len = task_path.used; // Remember number of used characters.
|
|
|
|
proc_entry = readdir(proc_dir);
|
|
while (proc_entry != NULL) {
|
|
#if KMP_OS_AIX
|
|
// Proc entry name starts with a digit. Assume it is a process' directory.
|
|
if (isdigit(proc_entry->d_name[0])) {
|
|
#else
|
|
// Proc entry is a directory and name starts with a digit. Assume it is a
|
|
// process' directory.
|
|
if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
|
|
#endif
|
|
|
|
#ifdef KMP_DEBUG
|
|
++total_processes;
|
|
#endif
|
|
// Make sure init process is the very first in "/proc", so we can replace
|
|
// strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
|
|
// 1. We are going to check that total_processes == 1 => d_name == "1" is
|
|
// true (where "=>" is implication). Since C++ does not have => operator,
|
|
// let us replace it with its equivalent: a => b == ! a || b.
|
|
KMP_DEBUG_ASSERT(total_processes != 1 ||
|
|
strcmp(proc_entry->d_name, "1") == 0);
|
|
|
|
// Construct task_path.
|
|
task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
|
|
__kmp_str_buf_cat(&task_path, proc_entry->d_name,
|
|
KMP_STRLEN(proc_entry->d_name));
|
|
__kmp_str_buf_cat(&task_path, "/task", 5);
|
|
|
|
task_dir = opendir(task_path.str);
|
|
if (task_dir == NULL) {
|
|
// Process can finish between reading "/proc/" directory entry and
|
|
// opening process' "task/" directory. So, in general case we should not
|
|
// complain, but have to skip this process and read the next one. But on
|
|
// systems with no "task/" support we will spend lot of time to scan
|
|
// "/proc/" tree again and again without any benefit. "init" process
|
|
// (its pid is 1) should exist always, so, if we cannot open
|
|
// "/proc/1/task/" directory, it means "task/" is not supported by
|
|
// kernel. Report an error now and in the future.
|
|
if (strcmp(proc_entry->d_name, "1") == 0) {
|
|
running_threads = -1;
|
|
permanent_error = 1;
|
|
goto finish;
|
|
}
|
|
} else {
|
|
// Construct fixed part of stat file path.
|
|
__kmp_str_buf_clear(&stat_path);
|
|
__kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
|
|
__kmp_str_buf_cat(&stat_path, "/", 1);
|
|
stat_path_fixed_len = stat_path.used;
|
|
|
|
task_entry = readdir(task_dir);
|
|
while (task_entry != NULL) {
|
|
// It is a directory and name starts with a digit.
|
|
#if KMP_OS_AIX
|
|
if (isdigit(task_entry->d_name[0])) {
|
|
#else
|
|
if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
|
|
#endif
|
|
|
|
// Construct complete stat file path. Easiest way would be:
|
|
// __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
|
|
// task_entry->d_name );
|
|
// but seriae of __kmp_str_buf_cat works a bit faster.
|
|
stat_path.used =
|
|
stat_path_fixed_len; // Reset stat path to its fixed part.
|
|
__kmp_str_buf_cat(&stat_path, task_entry->d_name,
|
|
KMP_STRLEN(task_entry->d_name));
|
|
__kmp_str_buf_cat(&stat_path, "/stat", 5);
|
|
|
|
// Note: Low-level API (open/read/close) is used. High-level API
|
|
// (fopen/fclose) works ~ 30 % slower.
|
|
stat_file = open(stat_path.str, O_RDONLY);
|
|
if (stat_file == -1) {
|
|
// We cannot report an error because task (thread) can terminate
|
|
// just before reading this file.
|
|
} else {
|
|
/* Content of "stat" file looks like:
|
|
24285 (program) S ...
|
|
|
|
It is a single line (if program name does not include funny
|
|
symbols). First number is a thread id, then name of executable
|
|
file name in paretheses, then state of the thread. We need just
|
|
thread state.
|
|
|
|
Good news: Length of program name is 15 characters max. Longer
|
|
names are truncated.
|
|
|
|
Thus, we need rather short buffer: 15 chars for program name +
|
|
2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
|
|
|
|
Bad news: Program name may contain special symbols like space,
|
|
closing parenthesis, or even new line. This makes parsing
|
|
"stat" file not 100 % reliable. In case of fanny program names
|
|
parsing may fail (report incorrect thread state).
|
|
|
|
Parsing "status" file looks more promissing (due to different
|
|
file structure and escaping special symbols) but reading and
|
|
parsing of "status" file works slower.
|
|
-- ln
|
|
*/
|
|
char buffer[65];
|
|
ssize_t len;
|
|
len = read(stat_file, buffer, sizeof(buffer) - 1);
|
|
if (len >= 0) {
|
|
buffer[len] = 0;
|
|
// Using scanf:
|
|
// sscanf( buffer, "%*d (%*s) %c ", & state );
|
|
// looks very nice, but searching for a closing parenthesis
|
|
// works a bit faster.
|
|
char *close_parent = strstr(buffer, ") ");
|
|
if (close_parent != NULL) {
|
|
char state = *(close_parent + 2);
|
|
if (state == 'R') {
|
|
++running_threads;
|
|
if (running_threads >= max) {
|
|
goto finish;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
close(stat_file);
|
|
stat_file = -1;
|
|
}
|
|
}
|
|
task_entry = readdir(task_dir);
|
|
}
|
|
closedir(task_dir);
|
|
task_dir = NULL;
|
|
}
|
|
}
|
|
proc_entry = readdir(proc_dir);
|
|
}
|
|
|
|
// There _might_ be a timing hole where the thread executing this
|
|
// code get skipped in the load balance, and running_threads is 0.
|
|
// Assert in the debug builds only!!!
|
|
KMP_DEBUG_ASSERT(running_threads > 0);
|
|
if (running_threads <= 0) {
|
|
running_threads = 1;
|
|
}
|
|
|
|
finish: // Clean up and exit.
|
|
if (proc_dir != NULL) {
|
|
closedir(proc_dir);
|
|
}
|
|
__kmp_str_buf_free(&task_path);
|
|
if (task_dir != NULL) {
|
|
closedir(task_dir);
|
|
}
|
|
__kmp_str_buf_free(&stat_path);
|
|
if (stat_file != -1) {
|
|
close(stat_file);
|
|
}
|
|
|
|
glb_running_threads = running_threads;
|
|
|
|
return running_threads;
|
|
|
|
} // __kmp_get_load_balance_linux
|
|
|
|
int __kmp_get_load_balance(int max) {
|
|
#if KMP_OS_DARWIN || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
|
|
KMP_OS_OPENBSD || KMP_OS_SOLARIS
|
|
return __kmp_get_load_balance_getloadavg(max);
|
|
#else // Linux* OS
|
|
return __kmp_get_load_balance_linux(max);
|
|
#endif // KMP_OS_DARWIN
|
|
} // __kmp_get_load_balance
|
|
|
|
#endif // USE_LOAD_BALANCE
|
|
|
|
#if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
|
|
((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \
|
|
KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \
|
|
KMP_ARCH_ARM || KMP_ARCH_VE || KMP_ARCH_S390X || KMP_ARCH_PPC_XCOFF)
|
|
|
|
// we really only need the case with 1 argument, because CLANG always build
|
|
// a struct of pointers to shared variables referenced in the outlined function
|
|
int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
|
|
void *p_argv[]
|
|
#if OMPT_SUPPORT
|
|
,
|
|
void **exit_frame_ptr
|
|
#endif
|
|
) {
|
|
#if OMPT_SUPPORT
|
|
*exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
|
|
#endif
|
|
|
|
switch (argc) {
|
|
default:
|
|
fprintf(stderr, "Too many args to microtask: %d!\n", argc);
|
|
fflush(stderr);
|
|
exit(-1);
|
|
case 0:
|
|
(*pkfn)(>id, &tid);
|
|
break;
|
|
case 1:
|
|
(*pkfn)(>id, &tid, p_argv[0]);
|
|
break;
|
|
case 2:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1]);
|
|
break;
|
|
case 3:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]);
|
|
break;
|
|
case 4:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
|
|
break;
|
|
case 5:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
|
|
break;
|
|
case 6:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5]);
|
|
break;
|
|
case 7:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5], p_argv[6]);
|
|
break;
|
|
case 8:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5], p_argv[6], p_argv[7]);
|
|
break;
|
|
case 9:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
|
|
break;
|
|
case 10:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
|
|
break;
|
|
case 11:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
|
|
break;
|
|
case 12:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
|
|
p_argv[11]);
|
|
break;
|
|
case 13:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
|
|
p_argv[11], p_argv[12]);
|
|
break;
|
|
case 14:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
|
|
p_argv[11], p_argv[12], p_argv[13]);
|
|
break;
|
|
case 15:
|
|
(*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
|
|
p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
|
|
p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if KMP_OS_LINUX
|
|
// Functions for hidden helper task
|
|
namespace {
|
|
// Condition variable for initializing hidden helper team
|
|
pthread_cond_t hidden_helper_threads_initz_cond_var;
|
|
pthread_mutex_t hidden_helper_threads_initz_lock;
|
|
volatile int hidden_helper_initz_signaled = FALSE;
|
|
|
|
// Condition variable for deinitializing hidden helper team
|
|
pthread_cond_t hidden_helper_threads_deinitz_cond_var;
|
|
pthread_mutex_t hidden_helper_threads_deinitz_lock;
|
|
volatile int hidden_helper_deinitz_signaled = FALSE;
|
|
|
|
// Condition variable for the wrapper function of main thread
|
|
pthread_cond_t hidden_helper_main_thread_cond_var;
|
|
pthread_mutex_t hidden_helper_main_thread_lock;
|
|
volatile int hidden_helper_main_thread_signaled = FALSE;
|
|
|
|
// Semaphore for worker threads. We don't use condition variable here in case
|
|
// that when multiple signals are sent at the same time, only one thread might
|
|
// be waken.
|
|
sem_t hidden_helper_task_sem;
|
|
} // namespace
|
|
|
|
void __kmp_hidden_helper_worker_thread_wait() {
|
|
int status = sem_wait(&hidden_helper_task_sem);
|
|
KMP_CHECK_SYSFAIL("sem_wait", status);
|
|
}
|
|
|
|
void __kmp_do_initialize_hidden_helper_threads() {
|
|
// Initialize condition variable
|
|
int status =
|
|
pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_init", status);
|
|
|
|
status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_init", status);
|
|
|
|
status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_init", status);
|
|
|
|
status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
|
|
|
|
status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
|
|
|
|
status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
|
|
|
|
// Initialize the semaphore
|
|
status = sem_init(&hidden_helper_task_sem, 0, 0);
|
|
KMP_CHECK_SYSFAIL("sem_init", status);
|
|
|
|
// Create a new thread to finish initialization
|
|
pthread_t handle;
|
|
status = pthread_create(
|
|
&handle, nullptr,
|
|
[](void *) -> void * {
|
|
__kmp_hidden_helper_threads_initz_routine();
|
|
return nullptr;
|
|
},
|
|
nullptr);
|
|
KMP_CHECK_SYSFAIL("pthread_create", status);
|
|
}
|
|
|
|
void __kmp_hidden_helper_threads_initz_wait() {
|
|
// Initial thread waits here for the completion of the initialization. The
|
|
// condition variable will be notified by main thread of hidden helper teams.
|
|
int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
|
|
|
|
if (!TCR_4(hidden_helper_initz_signaled)) {
|
|
status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
|
|
&hidden_helper_threads_initz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
|
|
}
|
|
|
|
status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
|
|
}
|
|
|
|
void __kmp_hidden_helper_initz_release() {
|
|
// After all initialization, reset __kmp_init_hidden_helper_threads to false.
|
|
int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
|
|
|
|
status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
|
|
|
|
TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
|
|
|
|
status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
|
|
}
|
|
|
|
void __kmp_hidden_helper_main_thread_wait() {
|
|
// The main thread of hidden helper team will be blocked here. The
|
|
// condition variable can only be signal in the destructor of RTL.
|
|
int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
|
|
|
|
if (!TCR_4(hidden_helper_main_thread_signaled)) {
|
|
status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
|
|
&hidden_helper_main_thread_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
|
|
}
|
|
|
|
status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
|
|
}
|
|
|
|
void __kmp_hidden_helper_main_thread_release() {
|
|
// The initial thread of OpenMP RTL should call this function to wake up the
|
|
// main thread of hidden helper team.
|
|
int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
|
|
|
|
status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
|
|
|
|
// The hidden helper team is done here
|
|
TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
|
|
|
|
status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
|
|
}
|
|
|
|
void __kmp_hidden_helper_worker_thread_signal() {
|
|
int status = sem_post(&hidden_helper_task_sem);
|
|
KMP_CHECK_SYSFAIL("sem_post", status);
|
|
}
|
|
|
|
void __kmp_hidden_helper_threads_deinitz_wait() {
|
|
// Initial thread waits here for the completion of the deinitialization. The
|
|
// condition variable will be notified by main thread of hidden helper teams.
|
|
int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
|
|
|
|
if (!TCR_4(hidden_helper_deinitz_signaled)) {
|
|
status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
|
|
&hidden_helper_threads_deinitz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
|
|
}
|
|
|
|
status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
|
|
}
|
|
|
|
void __kmp_hidden_helper_threads_deinitz_release() {
|
|
int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
|
|
|
|
status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
|
|
KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
|
|
|
|
TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
|
|
|
|
status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
|
|
KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
|
|
}
|
|
#else // KMP_OS_LINUX
|
|
void __kmp_hidden_helper_worker_thread_wait() {
|
|
KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
|
|
}
|
|
|
|
void __kmp_do_initialize_hidden_helper_threads() {
|
|
KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
|
|
}
|
|
|
|
void __kmp_hidden_helper_threads_initz_wait() {
|
|
KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
|
|
}
|
|
|
|
void __kmp_hidden_helper_initz_release() {
|
|
KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
|
|
}
|
|
|
|
void __kmp_hidden_helper_main_thread_wait() {
|
|
KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
|
|
}
|
|
|
|
void __kmp_hidden_helper_main_thread_release() {
|
|
KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
|
|
}
|
|
|
|
void __kmp_hidden_helper_worker_thread_signal() {
|
|
KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
|
|
}
|
|
|
|
void __kmp_hidden_helper_threads_deinitz_wait() {
|
|
KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
|
|
}
|
|
|
|
void __kmp_hidden_helper_threads_deinitz_release() {
|
|
KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
|
|
}
|
|
#endif // KMP_OS_LINUX
|
|
|
|
bool __kmp_detect_shm() {
|
|
DIR *dir = opendir("/dev/shm");
|
|
if (dir) { // /dev/shm exists
|
|
closedir(dir);
|
|
return true;
|
|
} else if (ENOENT == errno) { // /dev/shm does not exist
|
|
return false;
|
|
} else { // opendir() failed
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool __kmp_detect_tmp() {
|
|
DIR *dir = opendir("/tmp");
|
|
if (dir) { // /tmp exists
|
|
closedir(dir);
|
|
return true;
|
|
} else if (ENOENT == errno) { // /tmp does not exist
|
|
return false;
|
|
} else { // opendir() failed
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// end of file //
|