cosmopolitan/libc/stdio/fread_unlocked.c
Justine Tunney af7bd80430
Eliminate cyclic locks in runtime
This change introduces a new deadlock detector for Cosmo's POSIX threads
implementation. Error check mutexes will now track a DAG of nested locks
and report EDEADLK when a deadlock is theoretically possible. These will
occur rarely, but it's important for production hardening your code. You
don't even need to change your mutexes to use the POSIX error check mode
because `cosmocc -mdbg` will enable error checking on mutexes by default
globally. When cycles are found, an error message showing your demangled
symbols describing the strongly connected component are printed and then
the SIGTRAP is raised, which means you'll also get a backtrace if you're
using ShowCrashReports() too. This new error checker is so low-level and
so pure that it's able to verify the relationships of every libc runtime
lock, including those locks upon which the mutex implementation depends.
2024-12-16 22:25:12 -08:00

165 lines
5 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│ vi: set et ft=c ts=8 sts=2 sw=2 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/assert.h"
#include "libc/calls/calls.h"
#include "libc/calls/struct/iovec.h"
#include "libc/errno.h"
#include "libc/macros.h"
#include "libc/stdckdint.h"
#include "libc/stdio/internal.h"
#include "libc/stdio/stdio.h"
#include "libc/str/str.h"
#include "libc/sysv/consts/o.h"
#include "libc/sysv/errfuns.h"
static ssize_t readvall(FILE *f, struct iovec *iov, int iovlen, size_t need) {
ssize_t rc;
size_t got, toto;
for (toto = 0;;) {
// perform i/o
if ((rc = readv(f->fd, iov, iovlen)) == -1) {
f->state = errno;
if (toto)
return toto;
return -1;
}
got = rc;
toto += got;
if (!got) {
f->state = EOF;
return toto;
}
// roll forward iov
// skip over empty elements
for (;;) {
if (!iov->iov_len) {
--iovlen;
++iov;
} else if (got >= iov->iov_len) {
got -= iov->iov_len;
--iovlen;
++iov;
} else {
iov->iov_base += got;
iov->iov_len -= got;
break;
}
if (!iovlen)
return toto;
}
// don't trigger eof condition if we're rolling greed to fill buffer
if (toto >= need)
return toto;
}
}
/**
* Reads data from stream.
*
* @param stride specifies the size of individual items
* @param count is the number of strides to fetch
* @return count on success, [0,count) on eof, or 0 on error or count==0
*/
size_t fread_unlocked(void *buf, size_t stride, size_t count, FILE *f) {
char *p;
ssize_t rc;
struct iovec iov[2];
size_t n, m, got, need;
// check state and parameters
if ((f->oflags & O_ACCMODE) == O_WRONLY) {
f->state = errno = EBADF;
return 0;
}
if (f->beg > f->end) {
f->state = errno = EINVAL;
return 0;
}
if (ckd_mul(&n, stride, count)) {
f->state = errno = EOVERFLOW;
return 0;
}
if (!n)
return 0;
// try to fulfill request from buffer if possible
p = buf;
m = f->end - f->beg;
if (n <= m) {
memcpy(p, f->buf + f->beg, n);
if ((f->beg += n) == f->end) {
f->beg = 0;
f->end = 0;
}
return count;
}
// handle end-of-file condition in fileless mode
if (f->fd == -1) {
m /= stride;
m *= stride;
if (m)
memcpy(p, f->buf + f->beg, m);
if ((f->beg += m) == f->end) {
f->state = EOF;
f->beg = 0;
f->end = 0;
}
return m / stride;
}
// `n` is number of bytes requested by caller
// `m` is how much of `n` came from existing buffer
// `iov[0]` reads remainder of the caller request
// `iov[1]` reads ahead extra content into buffer
if (m)
memcpy(p, f->buf + f->beg, m);
iov[0].iov_base = p + m;
iov[0].iov_len = need = n - m;
if (f->bufmode != _IONBF && n < f->size) {
iov[1].iov_base = f->buf;
if (f->size > PUSHBACK)
iov[1].iov_len = f->size - PUSHBACK;
else
iov[1].iov_len = f->size;
} else {
iov[1].iov_base = NULL;
iov[1].iov_len = 0;
}
rc = readvall(f, iov, 2, need);
if (rc == -1)
return 0;
got = rc;
// handle partial fulfillment
if (got < need) {
got += m;
f->beg = 0;
f->end = 0;
return got / stride;
}
// handle overfulfillment
f->beg = 0;
f->end = got - need;
return count;
}