cosmopolitan/test/libc/intrin/tree_test.c
Justine Tunney f7780de24b
Make realloc() go 100x faster on Linux/NetBSD
Cosmopolitan now supports mremap(), which is only supported on Linux and
NetBSD. First, it allows memory mappings to be relocated without copying
them; this can dramatically speed up data structures like std::vector if
the array size grows larger than 256kb. The mremap() system call is also
10x faster than munmap() when shrinking large memory mappings.

There's now two functions, getpagesize() and getgransize() which help to
write portable code that uses mmap(MAP_FIXED). Alternative sysconf() may
be called with our new _SC_GRANSIZE. The madvise() system call now has a
better wrapper with improved documentation.
2024-07-07 12:40:30 -07:00

276 lines
7.7 KiB
C

// Copyright 2024 Justine Alexandra Roberts Tunney
//
// Permission to use, copy, modify, and/or distribute this software for
// any purpose with or without fee is hereby granted, provided that the
// above copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
// WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
// AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
// DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
// PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
// TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
#include "libc/intrin/tree.h"
#include "libc/intrin/kprintf.h"
#include "libc/intrin/maps.h"
#include "libc/intrin/tree.h"
#include "libc/macros.internal.h"
#include "libc/mem/mem.h"
#include "libc/runtime/runtime.h"
#include "libc/stdio/rand.h"
#define NUMBER_CONTAINER(e) TREE_CONTAINER(struct number, elem, e)
void tree_checker(const struct Tree *node, const struct Tree *parent,
int black_count, int *black_height, tree_cmp_f *cmp) {
if (!node) {
// Leaf nodes are considered black
if (*black_height == -1) {
*black_height = black_count;
} else if (black_count != *black_height) {
// ILLEGAL TREE: Black height mismatch
__builtin_trap();
}
return;
}
if (node->parent != parent)
// ILLEGAL TREE: Parent link is incorrect
__builtin_trap();
if (parent) {
if (tree_get_left(parent) == node && cmp(parent, node) < 0)
// ILLEGAL TREE: Binary search property violated on left child
__builtin_trap();
if (parent->right == node && cmp(node, parent) < 0)
// ILLEGAL TREE: Binary search property violated on right child
__builtin_trap();
}
if (!tree_get_red(node)) {
black_count++;
} else if (parent && tree_get_red(parent)) {
// ILLEGAL TREE: Red node has red child
__builtin_trap();
}
tree_checker(tree_get_left(node), node, black_count, black_height, cmp);
tree_checker(node->right, node, black_count, black_height, cmp);
}
void tree_check(struct Tree *root, tree_cmp_f *cmp) {
if (root) {
if (tree_get_red(root))
// ILLEGAL TREE: root node must be black
__builtin_trap();
int black_height = -1;
tree_checker(root, 0, 0, &black_height, cmp);
}
}
struct number {
long number;
struct Tree elem;
};
int number_compare(const struct Tree *ra, const struct Tree *rb) {
const struct number *a = NUMBER_CONTAINER(ra);
const struct number *b = NUMBER_CONTAINER(rb);
return (a->number > b->number) - (a->number < b->number);
}
struct number *number_new(int number) {
struct number *res;
if ((res = malloc(sizeof(struct number))))
res->number = number;
return res;
}
void print(struct Tree *tree) {
for (struct Tree *e = tree_first(tree); e; e = tree_next(e))
kprintf("%3d", NUMBER_CONTAINER(e)->number);
kprintf("\n");
}
void print_reversed(struct Tree *tree) {
for (struct Tree *e = tree_last(tree); e; e = tree_prev(e))
kprintf("%3d", NUMBER_CONTAINER(e)->number);
kprintf("\n");
}
int number_search(const void *ra, const struct Tree *rb) {
long a = (long)ra;
const struct number *b = NUMBER_CONTAINER(rb);
return (a > b->number) - (a < b->number);
}
void simple_test(void) {
// 0 2 2 23 30 32 34 34 46 52 53 65 70 74 90 94 95 95 96 96
// 96 96 95 95 94 90 74 70 65 53 52 46 34 34 32 30 23 2 2 0
static const long kNumba[] = {74, 53, 96, 70, 34, 95, 30, 2, 96, 46,
23, 2, 52, 0, 34, 94, 90, 95, 32, 65};
// test insertion works
struct Tree *tree = 0;
for (int i = 0; i < 20; ++i) {
int number = kNumba[i];
kprintf("%3d", number);
tree_insert(&tree, &number_new(number)->elem, number_compare);
tree_check(tree, number_compare);
}
kprintf("\n");
// test iteration works
print(tree);
// test reverse iteration works
print_reversed(tree);
// test removal works
for (int i = 0; i < 20; ++i) {
tree_remove(&tree, tree_get(tree, (void *)kNumba[i], number_search));
tree_check(tree, number_compare);
print(tree);
}
// use up a bunch of memory
for (int i = 0; i < 100000; ++i)
tree_insert(&tree, &number_new(rand())->elem, number_compare);
tree_check(tree, number_compare);
tree_check(__maps.maps, __maps_compare);
// visually verify maps get coalesced
__print_maps(0);
}
void search_test(void) {
struct Tree *x, *tree = 0;
tree_insert(&tree, &number_new(1)->elem, number_compare);
tree_insert(&tree, &number_new(3)->elem, number_compare);
tree_insert(&tree, &number_new(5)->elem, number_compare);
tree_insert(&tree, &number_new(7)->elem, number_compare);
// Test tree_get()
//
// Returns node equal to given key.
//
// [1 3 5 7] [1 3 5 7] [1 3 5 7]
// NULL ↑ NULL
// 4 3 8
//
x = tree_get(tree, (void *)4l, number_search);
if (x)
exit(1);
x = tree_get(tree, (void *)3l, number_search);
if (!x)
exit(2);
if (NUMBER_CONTAINER(x)->number != 3)
exit(3);
if (!tree_get(tree, (void *)7l, number_search))
exit(27);
if (tree_get(tree, (void *)8l, number_search))
exit(28);
// Test tree_floor()
//
// Returns last node less than or equal to given key.
//
// [1 3 5 7] [1 3 5 7] [1 3 5 7]
// ↑ ↑ ↑
// 4 3 8
//
x = tree_floor(tree, (void *)4l, number_search);
if (!x)
exit(4);
if (NUMBER_CONTAINER(x)->number != 3)
exit(5);
x = tree_floor(tree, (void *)3l, number_search);
if (!x)
exit(6);
if (NUMBER_CONTAINER(x)->number != 3)
exit(7);
if (!tree_floor(tree, (void *)7l, number_search))
exit(24);
x = tree_floor(tree, (void *)8l, number_search);
if (!x)
exit(25);
if (NUMBER_CONTAINER(x)->number != 7)
exit(30);
if (tree_floor(tree, (void *)0l, number_search))
exit(31);
// Test tree_lower()
//
// Returns first node not less than given key.
//
// [1 3 5 7] [1 3 5 7] [1 3 5 7]
// ↑ ↑ NULL
// 4 3 8
//
x = tree_lower(tree, (void *)4l, number_search);
if (!x)
exit(4);
if (NUMBER_CONTAINER(x)->number != 5)
exit(8);
x = tree_lower(tree, (void *)3l, number_search);
if (!x)
exit(9);
if (NUMBER_CONTAINER(x)->number != 3)
exit(10);
if (!tree_lower(tree, (void *)7l, number_search))
exit(22);
if (tree_lower(tree, (void *)8l, number_search))
exit(23);
// Test tree_ceil()
//
// Returns first node greater than than given key.
//
// [1 3 5 7] [1 3 5 7] [1 3 5 7]
// ↑ ↑ NULL
// 4 3 8
//
x = tree_ceil(tree, (void *)4l, number_search);
if (!x)
exit(11);
if (NUMBER_CONTAINER(x)->number != 5)
exit(12);
x = tree_ceil(tree, (void *)3l, number_search);
if (!x)
exit(13);
if (NUMBER_CONTAINER(x)->number != 5)
exit(14);
if (tree_ceil(tree, (void *)7l, number_search))
exit(21);
// Test tree_first()
if (tree_first(NULL))
exit(15);
x = tree_first(tree);
if (!x)
exit(16);
if (NUMBER_CONTAINER(x)->number != 1)
exit(17);
// Test tree_last()
if (tree_last(NULL))
exit(18);
x = tree_last(tree);
if (!x)
exit(19);
if (NUMBER_CONTAINER(x)->number != 7)
exit(20);
}
int main() {
ShowCrashReports();
// show memory maps at startup
tree_check(__maps.maps, __maps_compare);
kprintf("\n");
__print_maps(0);
kprintf("\n");
// run tests
simple_test();
search_test();
}