mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-01-31 03:27:39 +00:00
900 lines
29 KiB
C
900 lines
29 KiB
C
/*
|
|
** 2010 July 12
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains an implementation of the "dbstat" virtual table.
|
|
**
|
|
** The dbstat virtual table is used to extract low-level storage
|
|
** information from an SQLite database in order to implement the
|
|
** "sqlite3_analyzer" utility. See the ../tool/spaceanal.tcl script
|
|
** for an example implementation.
|
|
**
|
|
** Additional information is available on the "dbstat.html" page of the
|
|
** official SQLite documentation.
|
|
*/
|
|
|
|
#include "third_party/sqlite3/sqliteInt.h" /* Requires access to internal data structures */
|
|
#if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \
|
|
&& !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
|
|
/*
|
|
** The pager and btree modules arrange objects in memory so that there are
|
|
** always approximately 200 bytes of addressable memory following each page
|
|
** buffer. This way small buffer overreads caused by corrupt database pages
|
|
** do not cause undefined behaviour. This module pads each page buffer
|
|
** by the following number of bytes for the same purpose.
|
|
*/
|
|
#define DBSTAT_PAGE_PADDING_BYTES 256
|
|
|
|
/*
|
|
** Page paths:
|
|
**
|
|
** The value of the 'path' column describes the path taken from the
|
|
** root-node of the b-tree structure to each page. The value of the
|
|
** root-node path is '/'.
|
|
**
|
|
** The value of the path for the left-most child page of the root of
|
|
** a b-tree is '/000/'. (Btrees store content ordered from left to right
|
|
** so the pages to the left have smaller keys than the pages to the right.)
|
|
** The next to left-most child of the root page is
|
|
** '/001', and so on, each sibling page identified by a 3-digit hex
|
|
** value. The children of the 451st left-most sibling have paths such
|
|
** as '/1c2/000/, '/1c2/001/' etc.
|
|
**
|
|
** Overflow pages are specified by appending a '+' character and a
|
|
** six-digit hexadecimal value to the path to the cell they are linked
|
|
** from. For example, the three overflow pages in a chain linked from
|
|
** the left-most cell of the 450th child of the root page are identified
|
|
** by the paths:
|
|
**
|
|
** '/1c2/000+000000' // First page in overflow chain
|
|
** '/1c2/000+000001' // Second page in overflow chain
|
|
** '/1c2/000+000002' // Third page in overflow chain
|
|
**
|
|
** If the paths are sorted using the BINARY collation sequence, then
|
|
** the overflow pages associated with a cell will appear earlier in the
|
|
** sort-order than its child page:
|
|
**
|
|
** '/1c2/000/' // Left-most child of 451st child of root
|
|
*/
|
|
static const char zDbstatSchema[] =
|
|
"CREATE TABLE x("
|
|
" name TEXT," /* 0 Name of table or index */
|
|
" path TEXT," /* 1 Path to page from root (NULL for agg) */
|
|
" pageno INTEGER," /* 2 Page number (page count for aggregates) */
|
|
" pagetype TEXT," /* 3 'internal', 'leaf', 'overflow', or NULL */
|
|
" ncell INTEGER," /* 4 Cells on page (0 for overflow) */
|
|
" payload INTEGER," /* 5 Bytes of payload on this page */
|
|
" unused INTEGER," /* 6 Bytes of unused space on this page */
|
|
" mx_payload INTEGER," /* 7 Largest payload size of all cells */
|
|
" pgoffset INTEGER," /* 8 Offset of page in file (NULL for agg) */
|
|
" pgsize INTEGER," /* 9 Size of the page (sum for aggregate) */
|
|
" schema TEXT HIDDEN," /* 10 Database schema being analyzed */
|
|
" aggregate BOOLEAN HIDDEN" /* 11 aggregate info for each table */
|
|
")"
|
|
;
|
|
|
|
/* Forward reference to data structured used in this module */
|
|
typedef struct StatTable StatTable;
|
|
typedef struct StatCursor StatCursor;
|
|
typedef struct StatPage StatPage;
|
|
typedef struct StatCell StatCell;
|
|
|
|
/* Size information for a single cell within a btree page */
|
|
struct StatCell {
|
|
int nLocal; /* Bytes of local payload */
|
|
u32 iChildPg; /* Child node (or 0 if this is a leaf) */
|
|
int nOvfl; /* Entries in aOvfl[] */
|
|
u32 *aOvfl; /* Array of overflow page numbers */
|
|
int nLastOvfl; /* Bytes of payload on final overflow page */
|
|
int iOvfl; /* Iterates through aOvfl[] */
|
|
};
|
|
|
|
/* Size information for a single btree page */
|
|
struct StatPage {
|
|
u32 iPgno; /* Page number */
|
|
u8 *aPg; /* Page buffer from sqlite3_malloc() */
|
|
int iCell; /* Current cell */
|
|
char *zPath; /* Path to this page */
|
|
|
|
/* Variables populated by statDecodePage(): */
|
|
u8 flags; /* Copy of flags byte */
|
|
int nCell; /* Number of cells on page */
|
|
int nUnused; /* Number of unused bytes on page */
|
|
StatCell *aCell; /* Array of parsed cells */
|
|
u32 iRightChildPg; /* Right-child page number (or 0) */
|
|
int nMxPayload; /* Largest payload of any cell on the page */
|
|
};
|
|
|
|
/* The cursor for scanning the dbstat virtual table */
|
|
struct StatCursor {
|
|
sqlite3_vtab_cursor base; /* base class. MUST BE FIRST! */
|
|
sqlite3_stmt *pStmt; /* Iterates through set of root pages */
|
|
u8 isEof; /* After pStmt has returned SQLITE_DONE */
|
|
u8 isAgg; /* Aggregate results for each table */
|
|
int iDb; /* Schema used for this query */
|
|
|
|
StatPage aPage[32]; /* Pages in path to current page */
|
|
int iPage; /* Current entry in aPage[] */
|
|
|
|
/* Values to return. */
|
|
u32 iPageno; /* Value of 'pageno' column */
|
|
char *zName; /* Value of 'name' column */
|
|
char *zPath; /* Value of 'path' column */
|
|
char *zPagetype; /* Value of 'pagetype' column */
|
|
int nPage; /* Number of pages in current btree */
|
|
int nCell; /* Value of 'ncell' column */
|
|
int nMxPayload; /* Value of 'mx_payload' column */
|
|
i64 nUnused; /* Value of 'unused' column */
|
|
i64 nPayload; /* Value of 'payload' column */
|
|
i64 iOffset; /* Value of 'pgOffset' column */
|
|
i64 szPage; /* Value of 'pgSize' column */
|
|
};
|
|
|
|
/* An instance of the DBSTAT virtual table */
|
|
struct StatTable {
|
|
sqlite3_vtab base; /* base class. MUST BE FIRST! */
|
|
sqlite3 *db; /* Database connection that owns this vtab */
|
|
int iDb; /* Index of database to analyze */
|
|
};
|
|
|
|
#ifndef get2byte
|
|
# define get2byte(x) ((x)[0]<<8 | (x)[1])
|
|
#endif
|
|
|
|
/*
|
|
** Connect to or create a new DBSTAT virtual table.
|
|
*/
|
|
static int statConnect(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVtab,
|
|
char **pzErr
|
|
){
|
|
StatTable *pTab = 0;
|
|
int rc = SQLITE_OK;
|
|
int iDb;
|
|
|
|
if( argc>=4 ){
|
|
Token nm;
|
|
sqlite3TokenInit(&nm, (char*)argv[3]);
|
|
iDb = sqlite3FindDb(db, &nm);
|
|
if( iDb<0 ){
|
|
*pzErr = sqlite3_mprintf("no such database: %s", argv[3]);
|
|
return SQLITE_ERROR;
|
|
}
|
|
}else{
|
|
iDb = 0;
|
|
}
|
|
sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
|
|
rc = sqlite3_declare_vtab(db, zDbstatSchema);
|
|
if( rc==SQLITE_OK ){
|
|
pTab = (StatTable *)sqlite3_malloc64(sizeof(StatTable));
|
|
if( pTab==0 ) rc = SQLITE_NOMEM_BKPT;
|
|
}
|
|
|
|
assert( rc==SQLITE_OK || pTab==0 );
|
|
if( rc==SQLITE_OK ){
|
|
memset(pTab, 0, sizeof(StatTable));
|
|
pTab->db = db;
|
|
pTab->iDb = iDb;
|
|
}
|
|
|
|
*ppVtab = (sqlite3_vtab*)pTab;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Disconnect from or destroy the DBSTAT virtual table.
|
|
*/
|
|
static int statDisconnect(sqlite3_vtab *pVtab){
|
|
sqlite3_free(pVtab);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Compute the best query strategy and return the result in idxNum.
|
|
**
|
|
** idxNum-Bit Meaning
|
|
** ---------- ----------------------------------------------
|
|
** 0x01 There is a schema=? term in the WHERE clause
|
|
** 0x02 There is a name=? term in the WHERE clause
|
|
** 0x04 There is an aggregate=? term in the WHERE clause
|
|
** 0x08 Output should be ordered by name and path
|
|
*/
|
|
static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
|
int i;
|
|
int iSchema = -1;
|
|
int iName = -1;
|
|
int iAgg = -1;
|
|
|
|
/* Look for a valid schema=? constraint. If found, change the idxNum to
|
|
** 1 and request the value of that constraint be sent to xFilter. And
|
|
** lower the cost estimate to encourage the constrained version to be
|
|
** used.
|
|
*/
|
|
for(i=0; i<pIdxInfo->nConstraint; i++){
|
|
if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
|
|
if( pIdxInfo->aConstraint[i].usable==0 ){
|
|
/* Force DBSTAT table should always be the right-most table in a join */
|
|
return SQLITE_CONSTRAINT;
|
|
}
|
|
switch( pIdxInfo->aConstraint[i].iColumn ){
|
|
case 0: { /* name */
|
|
iName = i;
|
|
break;
|
|
}
|
|
case 10: { /* schema */
|
|
iSchema = i;
|
|
break;
|
|
}
|
|
case 11: { /* aggregate */
|
|
iAgg = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
i = 0;
|
|
if( iSchema>=0 ){
|
|
pIdxInfo->aConstraintUsage[iSchema].argvIndex = ++i;
|
|
pIdxInfo->aConstraintUsage[iSchema].omit = 1;
|
|
pIdxInfo->idxNum |= 0x01;
|
|
}
|
|
if( iName>=0 ){
|
|
pIdxInfo->aConstraintUsage[iName].argvIndex = ++i;
|
|
pIdxInfo->idxNum |= 0x02;
|
|
}
|
|
if( iAgg>=0 ){
|
|
pIdxInfo->aConstraintUsage[iAgg].argvIndex = ++i;
|
|
pIdxInfo->idxNum |= 0x04;
|
|
}
|
|
pIdxInfo->estimatedCost = 1.0;
|
|
|
|
/* Records are always returned in ascending order of (name, path).
|
|
** If this will satisfy the client, set the orderByConsumed flag so that
|
|
** SQLite does not do an external sort.
|
|
*/
|
|
if( ( pIdxInfo->nOrderBy==1
|
|
&& pIdxInfo->aOrderBy[0].iColumn==0
|
|
&& pIdxInfo->aOrderBy[0].desc==0
|
|
) ||
|
|
( pIdxInfo->nOrderBy==2
|
|
&& pIdxInfo->aOrderBy[0].iColumn==0
|
|
&& pIdxInfo->aOrderBy[0].desc==0
|
|
&& pIdxInfo->aOrderBy[1].iColumn==1
|
|
&& pIdxInfo->aOrderBy[1].desc==0
|
|
)
|
|
){
|
|
pIdxInfo->orderByConsumed = 1;
|
|
pIdxInfo->idxNum |= 0x08;
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Open a new DBSTAT cursor.
|
|
*/
|
|
static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
|
StatTable *pTab = (StatTable *)pVTab;
|
|
StatCursor *pCsr;
|
|
|
|
pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor));
|
|
if( pCsr==0 ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}else{
|
|
memset(pCsr, 0, sizeof(StatCursor));
|
|
pCsr->base.pVtab = pVTab;
|
|
pCsr->iDb = pTab->iDb;
|
|
}
|
|
|
|
*ppCursor = (sqlite3_vtab_cursor *)pCsr;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static void statClearCells(StatPage *p){
|
|
int i;
|
|
if( p->aCell ){
|
|
for(i=0; i<p->nCell; i++){
|
|
sqlite3_free(p->aCell[i].aOvfl);
|
|
}
|
|
sqlite3_free(p->aCell);
|
|
}
|
|
p->nCell = 0;
|
|
p->aCell = 0;
|
|
}
|
|
|
|
static void statClearPage(StatPage *p){
|
|
u8 *aPg = p->aPg;
|
|
statClearCells(p);
|
|
sqlite3_free(p->zPath);
|
|
memset(p, 0, sizeof(StatPage));
|
|
p->aPg = aPg;
|
|
}
|
|
|
|
static void statResetCsr(StatCursor *pCsr){
|
|
int i;
|
|
/* In some circumstances, specifically if an OOM has occurred, the call
|
|
** to sqlite3_reset() may cause the pager to be reset (emptied). It is
|
|
** important that statClearPage() is called to free any page refs before
|
|
** this happens. dbsqlfuzz 9ed3e4e3816219d3509d711636c38542bf3f40b1. */
|
|
for(i=0; i<ArraySize(pCsr->aPage); i++){
|
|
statClearPage(&pCsr->aPage[i]);
|
|
sqlite3_free(pCsr->aPage[i].aPg);
|
|
pCsr->aPage[i].aPg = 0;
|
|
}
|
|
sqlite3_reset(pCsr->pStmt);
|
|
pCsr->iPage = 0;
|
|
sqlite3_free(pCsr->zPath);
|
|
pCsr->zPath = 0;
|
|
pCsr->isEof = 0;
|
|
}
|
|
|
|
/* Resize the space-used counters inside of the cursor */
|
|
static void statResetCounts(StatCursor *pCsr){
|
|
pCsr->nCell = 0;
|
|
pCsr->nMxPayload = 0;
|
|
pCsr->nUnused = 0;
|
|
pCsr->nPayload = 0;
|
|
pCsr->szPage = 0;
|
|
pCsr->nPage = 0;
|
|
}
|
|
|
|
/*
|
|
** Close a DBSTAT cursor.
|
|
*/
|
|
static int statClose(sqlite3_vtab_cursor *pCursor){
|
|
StatCursor *pCsr = (StatCursor *)pCursor;
|
|
statResetCsr(pCsr);
|
|
sqlite3_finalize(pCsr->pStmt);
|
|
sqlite3_free(pCsr);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** For a single cell on a btree page, compute the number of bytes of
|
|
** content (payload) stored on that page. That is to say, compute the
|
|
** number of bytes of content not found on overflow pages.
|
|
*/
|
|
static int getLocalPayload(
|
|
int nUsable, /* Usable bytes per page */
|
|
u8 flags, /* Page flags */
|
|
int nTotal /* Total record (payload) size */
|
|
){
|
|
int nLocal;
|
|
int nMinLocal;
|
|
int nMaxLocal;
|
|
|
|
if( flags==0x0D ){ /* Table leaf node */
|
|
nMinLocal = (nUsable - 12) * 32 / 255 - 23;
|
|
nMaxLocal = nUsable - 35;
|
|
}else{ /* Index interior and leaf nodes */
|
|
nMinLocal = (nUsable - 12) * 32 / 255 - 23;
|
|
nMaxLocal = (nUsable - 12) * 64 / 255 - 23;
|
|
}
|
|
|
|
nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4);
|
|
if( nLocal>nMaxLocal ) nLocal = nMinLocal;
|
|
return nLocal;
|
|
}
|
|
|
|
/* Populate the StatPage object with information about the all
|
|
** cells found on the page currently under analysis.
|
|
*/
|
|
static int statDecodePage(Btree *pBt, StatPage *p){
|
|
int nUnused;
|
|
int iOff;
|
|
int nHdr;
|
|
int isLeaf;
|
|
int szPage;
|
|
|
|
u8 *aData = p->aPg;
|
|
u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0];
|
|
|
|
p->flags = aHdr[0];
|
|
if( p->flags==0x0A || p->flags==0x0D ){
|
|
isLeaf = 1;
|
|
nHdr = 8;
|
|
}else if( p->flags==0x05 || p->flags==0x02 ){
|
|
isLeaf = 0;
|
|
nHdr = 12;
|
|
}else{
|
|
goto statPageIsCorrupt;
|
|
}
|
|
if( p->iPgno==1 ) nHdr += 100;
|
|
p->nCell = get2byte(&aHdr[3]);
|
|
p->nMxPayload = 0;
|
|
szPage = sqlite3BtreeGetPageSize(pBt);
|
|
|
|
nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell;
|
|
nUnused += (int)aHdr[7];
|
|
iOff = get2byte(&aHdr[1]);
|
|
while( iOff ){
|
|
int iNext;
|
|
if( iOff>=szPage ) goto statPageIsCorrupt;
|
|
nUnused += get2byte(&aData[iOff+2]);
|
|
iNext = get2byte(&aData[iOff]);
|
|
if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt;
|
|
iOff = iNext;
|
|
}
|
|
p->nUnused = nUnused;
|
|
p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]);
|
|
|
|
if( p->nCell ){
|
|
int i; /* Used to iterate through cells */
|
|
int nUsable; /* Usable bytes per page */
|
|
|
|
sqlite3BtreeEnter(pBt);
|
|
nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt);
|
|
sqlite3BtreeLeave(pBt);
|
|
p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell));
|
|
if( p->aCell==0 ) return SQLITE_NOMEM_BKPT;
|
|
memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell));
|
|
|
|
for(i=0; i<p->nCell; i++){
|
|
StatCell *pCell = &p->aCell[i];
|
|
|
|
iOff = get2byte(&aData[nHdr+i*2]);
|
|
if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt;
|
|
if( !isLeaf ){
|
|
pCell->iChildPg = sqlite3Get4byte(&aData[iOff]);
|
|
iOff += 4;
|
|
}
|
|
if( p->flags==0x05 ){
|
|
/* A table interior node. nPayload==0. */
|
|
}else{
|
|
u32 nPayload; /* Bytes of payload total (local+overflow) */
|
|
int nLocal; /* Bytes of payload stored locally */
|
|
iOff += getVarint32(&aData[iOff], nPayload);
|
|
if( p->flags==0x0D ){
|
|
u64 dummy;
|
|
iOff += sqlite3GetVarint(&aData[iOff], &dummy);
|
|
}
|
|
if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload;
|
|
nLocal = getLocalPayload(nUsable, p->flags, nPayload);
|
|
if( nLocal<0 ) goto statPageIsCorrupt;
|
|
pCell->nLocal = nLocal;
|
|
assert( nPayload>=(u32)nLocal );
|
|
assert( nLocal<=(nUsable-35) );
|
|
if( nPayload>(u32)nLocal ){
|
|
int j;
|
|
int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4);
|
|
if( iOff+nLocal+4>nUsable || nPayload>0x7fffffff ){
|
|
goto statPageIsCorrupt;
|
|
}
|
|
pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4);
|
|
pCell->nOvfl = nOvfl;
|
|
pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl);
|
|
if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT;
|
|
pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]);
|
|
for(j=1; j<nOvfl; j++){
|
|
int rc;
|
|
u32 iPrev = pCell->aOvfl[j-1];
|
|
DbPage *pPg = 0;
|
|
rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
assert( pPg==0 );
|
|
return rc;
|
|
}
|
|
pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg));
|
|
sqlite3PagerUnref(pPg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
|
|
statPageIsCorrupt:
|
|
p->flags = 0;
|
|
statClearCells(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on
|
|
** the current value of pCsr->iPageno.
|
|
*/
|
|
static void statSizeAndOffset(StatCursor *pCsr){
|
|
StatTable *pTab = (StatTable *)((sqlite3_vtab_cursor *)pCsr)->pVtab;
|
|
Btree *pBt = pTab->db->aDb[pTab->iDb].pBt;
|
|
Pager *pPager = sqlite3BtreePager(pBt);
|
|
sqlite3_file *fd;
|
|
sqlite3_int64 x[2];
|
|
|
|
/* If connected to a ZIPVFS backend, find the page size and
|
|
** offset from ZIPVFS.
|
|
*/
|
|
fd = sqlite3PagerFile(pPager);
|
|
x[0] = pCsr->iPageno;
|
|
if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){
|
|
pCsr->iOffset = x[0];
|
|
pCsr->szPage += x[1];
|
|
}else{
|
|
/* Not ZIPVFS: The default page size and offset */
|
|
pCsr->szPage += sqlite3BtreeGetPageSize(pBt);
|
|
pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Load a copy of the page data for page iPg into the buffer belonging
|
|
** to page object pPg. Allocate the buffer if necessary. Return SQLITE_OK
|
|
** if successful, or an SQLite error code otherwise.
|
|
*/
|
|
static int statGetPage(
|
|
Btree *pBt, /* Load page from this b-tree */
|
|
u32 iPg, /* Page number to load */
|
|
StatPage *pPg /* Load page into this object */
|
|
){
|
|
int pgsz = sqlite3BtreeGetPageSize(pBt);
|
|
DbPage *pDbPage = 0;
|
|
int rc;
|
|
|
|
if( pPg->aPg==0 ){
|
|
pPg->aPg = (u8*)sqlite3_malloc(pgsz + DBSTAT_PAGE_PADDING_BYTES);
|
|
if( pPg->aPg==0 ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
memset(&pPg->aPg[pgsz], 0, DBSTAT_PAGE_PADDING_BYTES);
|
|
}
|
|
|
|
rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPg, &pDbPage, 0);
|
|
if( rc==SQLITE_OK ){
|
|
const u8 *a = sqlite3PagerGetData(pDbPage);
|
|
memcpy(pPg->aPg, a, pgsz);
|
|
sqlite3PagerUnref(pDbPage);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Move a DBSTAT cursor to the next entry. Normally, the next
|
|
** entry will be the next page, but in aggregated mode (pCsr->isAgg!=0),
|
|
** the next entry is the next btree.
|
|
*/
|
|
static int statNext(sqlite3_vtab_cursor *pCursor){
|
|
int rc;
|
|
int nPayload;
|
|
char *z;
|
|
StatCursor *pCsr = (StatCursor *)pCursor;
|
|
StatTable *pTab = (StatTable *)pCursor->pVtab;
|
|
Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt;
|
|
Pager *pPager = sqlite3BtreePager(pBt);
|
|
|
|
sqlite3_free(pCsr->zPath);
|
|
pCsr->zPath = 0;
|
|
|
|
statNextRestart:
|
|
if( pCsr->iPage<0 ){
|
|
/* Start measuring space on the next btree */
|
|
statResetCounts(pCsr);
|
|
rc = sqlite3_step(pCsr->pStmt);
|
|
if( rc==SQLITE_ROW ){
|
|
int nPage;
|
|
u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1);
|
|
sqlite3PagerPagecount(pPager, &nPage);
|
|
if( nPage==0 ){
|
|
pCsr->isEof = 1;
|
|
return sqlite3_reset(pCsr->pStmt);
|
|
}
|
|
rc = statGetPage(pBt, iRoot, &pCsr->aPage[0]);
|
|
pCsr->aPage[0].iPgno = iRoot;
|
|
pCsr->aPage[0].iCell = 0;
|
|
if( !pCsr->isAgg ){
|
|
pCsr->aPage[0].zPath = z = sqlite3_mprintf("/");
|
|
if( z==0 ) rc = SQLITE_NOMEM_BKPT;
|
|
}
|
|
pCsr->iPage = 0;
|
|
pCsr->nPage = 1;
|
|
}else{
|
|
pCsr->isEof = 1;
|
|
return sqlite3_reset(pCsr->pStmt);
|
|
}
|
|
}else{
|
|
/* Continue analyzing the btree previously started */
|
|
StatPage *p = &pCsr->aPage[pCsr->iPage];
|
|
if( !pCsr->isAgg ) statResetCounts(pCsr);
|
|
while( p->iCell<p->nCell ){
|
|
StatCell *pCell = &p->aCell[p->iCell];
|
|
while( pCell->iOvfl<pCell->nOvfl ){
|
|
int nUsable, iOvfl;
|
|
sqlite3BtreeEnter(pBt);
|
|
nUsable = sqlite3BtreeGetPageSize(pBt) -
|
|
sqlite3BtreeGetReserveNoMutex(pBt);
|
|
sqlite3BtreeLeave(pBt);
|
|
pCsr->nPage++;
|
|
statSizeAndOffset(pCsr);
|
|
if( pCell->iOvfl<pCell->nOvfl-1 ){
|
|
pCsr->nPayload += nUsable - 4;
|
|
}else{
|
|
pCsr->nPayload += pCell->nLastOvfl;
|
|
pCsr->nUnused += nUsable - 4 - pCell->nLastOvfl;
|
|
}
|
|
iOvfl = pCell->iOvfl;
|
|
pCell->iOvfl++;
|
|
if( !pCsr->isAgg ){
|
|
pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
|
|
pCsr->iPageno = pCell->aOvfl[iOvfl];
|
|
pCsr->zPagetype = "overflow";
|
|
pCsr->zPath = z = sqlite3_mprintf(
|
|
"%s%.3x+%.6x", p->zPath, p->iCell, iOvfl
|
|
);
|
|
return z==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
|
|
}
|
|
}
|
|
if( p->iRightChildPg ) break;
|
|
p->iCell++;
|
|
}
|
|
|
|
if( !p->iRightChildPg || p->iCell>p->nCell ){
|
|
statClearPage(p);
|
|
pCsr->iPage--;
|
|
if( pCsr->isAgg && pCsr->iPage<0 ){
|
|
/* label-statNext-done: When computing aggregate space usage over
|
|
** an entire btree, this is the exit point from this function */
|
|
return SQLITE_OK;
|
|
}
|
|
goto statNextRestart; /* Tail recursion */
|
|
}
|
|
pCsr->iPage++;
|
|
if( pCsr->iPage>=ArraySize(pCsr->aPage) ){
|
|
statResetCsr(pCsr);
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
assert( p==&pCsr->aPage[pCsr->iPage-1] );
|
|
|
|
if( p->iCell==p->nCell ){
|
|
p[1].iPgno = p->iRightChildPg;
|
|
}else{
|
|
p[1].iPgno = p->aCell[p->iCell].iChildPg;
|
|
}
|
|
rc = statGetPage(pBt, p[1].iPgno, &p[1]);
|
|
pCsr->nPage++;
|
|
p[1].iCell = 0;
|
|
if( !pCsr->isAgg ){
|
|
p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell);
|
|
if( z==0 ) rc = SQLITE_NOMEM_BKPT;
|
|
}
|
|
p->iCell++;
|
|
}
|
|
|
|
|
|
/* Populate the StatCursor fields with the values to be returned
|
|
** by the xColumn() and xRowid() methods.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
int i;
|
|
StatPage *p = &pCsr->aPage[pCsr->iPage];
|
|
pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
|
|
pCsr->iPageno = p->iPgno;
|
|
|
|
rc = statDecodePage(pBt, p);
|
|
if( rc==SQLITE_OK ){
|
|
statSizeAndOffset(pCsr);
|
|
|
|
switch( p->flags ){
|
|
case 0x05: /* table internal */
|
|
case 0x02: /* index internal */
|
|
pCsr->zPagetype = "internal";
|
|
break;
|
|
case 0x0D: /* table leaf */
|
|
case 0x0A: /* index leaf */
|
|
pCsr->zPagetype = "leaf";
|
|
break;
|
|
default:
|
|
pCsr->zPagetype = "corrupted";
|
|
break;
|
|
}
|
|
pCsr->nCell += p->nCell;
|
|
pCsr->nUnused += p->nUnused;
|
|
if( p->nMxPayload>pCsr->nMxPayload ) pCsr->nMxPayload = p->nMxPayload;
|
|
if( !pCsr->isAgg ){
|
|
pCsr->zPath = z = sqlite3_mprintf("%s", p->zPath);
|
|
if( z==0 ) rc = SQLITE_NOMEM_BKPT;
|
|
}
|
|
nPayload = 0;
|
|
for(i=0; i<p->nCell; i++){
|
|
nPayload += p->aCell[i].nLocal;
|
|
}
|
|
pCsr->nPayload += nPayload;
|
|
|
|
/* If computing aggregate space usage by btree, continue with the
|
|
** next page. The loop will exit via the return at label-statNext-done
|
|
*/
|
|
if( pCsr->isAgg ) goto statNextRestart;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int statEof(sqlite3_vtab_cursor *pCursor){
|
|
StatCursor *pCsr = (StatCursor *)pCursor;
|
|
return pCsr->isEof;
|
|
}
|
|
|
|
/* Initialize a cursor according to the query plan idxNum using the
|
|
** arguments in argv[0]. See statBestIndex() for a description of the
|
|
** meaning of the bits in idxNum.
|
|
*/
|
|
static int statFilter(
|
|
sqlite3_vtab_cursor *pCursor,
|
|
int idxNum, const char *idxStr,
|
|
int argc, sqlite3_value **argv
|
|
){
|
|
StatCursor *pCsr = (StatCursor *)pCursor;
|
|
StatTable *pTab = (StatTable*)(pCursor->pVtab);
|
|
sqlite3_str *pSql; /* Query of btrees to analyze */
|
|
char *zSql; /* String value of pSql */
|
|
int iArg = 0; /* Count of argv[] parameters used so far */
|
|
int rc = SQLITE_OK; /* Result of this operation */
|
|
const char *zName = 0; /* Only provide analysis of this table */
|
|
|
|
statResetCsr(pCsr);
|
|
sqlite3_finalize(pCsr->pStmt);
|
|
pCsr->pStmt = 0;
|
|
if( idxNum & 0x01 ){
|
|
/* schema=? constraint is present. Get its value */
|
|
const char *zDbase = (const char*)sqlite3_value_text(argv[iArg++]);
|
|
pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase);
|
|
if( pCsr->iDb<0 ){
|
|
pCsr->iDb = 0;
|
|
pCsr->isEof = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
}else{
|
|
pCsr->iDb = pTab->iDb;
|
|
}
|
|
if( idxNum & 0x02 ){
|
|
/* name=? constraint is present */
|
|
zName = (const char*)sqlite3_value_text(argv[iArg++]);
|
|
}
|
|
if( idxNum & 0x04 ){
|
|
/* aggregate=? constraint is present */
|
|
pCsr->isAgg = sqlite3_value_double(argv[iArg++])!=0.0;
|
|
}else{
|
|
pCsr->isAgg = 0;
|
|
}
|
|
pSql = sqlite3_str_new(pTab->db);
|
|
sqlite3_str_appendf(pSql,
|
|
"SELECT * FROM ("
|
|
"SELECT 'sqlite_schema' AS name,1 AS rootpage,'table' AS type"
|
|
" UNION ALL "
|
|
"SELECT name,rootpage,type"
|
|
" FROM \"%w\".sqlite_schema WHERE rootpage!=0)",
|
|
pTab->db->aDb[pCsr->iDb].zDbSName);
|
|
if( zName ){
|
|
sqlite3_str_appendf(pSql, "WHERE name=%Q", zName);
|
|
}
|
|
if( idxNum & 0x08 ){
|
|
sqlite3_str_appendf(pSql, " ORDER BY name");
|
|
}
|
|
zSql = sqlite3_str_finish(pSql);
|
|
if( zSql==0 ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}else{
|
|
rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
|
|
sqlite3_free(zSql);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
pCsr->iPage = -1;
|
|
rc = statNext(pCursor);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int statColumn(
|
|
sqlite3_vtab_cursor *pCursor,
|
|
sqlite3_context *ctx,
|
|
int i
|
|
){
|
|
StatCursor *pCsr = (StatCursor *)pCursor;
|
|
switch( i ){
|
|
case 0: /* name */
|
|
sqlite3_result_text(ctx, pCsr->zName, -1, SQLITE_TRANSIENT);
|
|
break;
|
|
case 1: /* path */
|
|
if( !pCsr->isAgg ){
|
|
sqlite3_result_text(ctx, pCsr->zPath, -1, SQLITE_TRANSIENT);
|
|
}
|
|
break;
|
|
case 2: /* pageno */
|
|
if( pCsr->isAgg ){
|
|
sqlite3_result_int64(ctx, pCsr->nPage);
|
|
}else{
|
|
sqlite3_result_int64(ctx, pCsr->iPageno);
|
|
}
|
|
break;
|
|
case 3: /* pagetype */
|
|
if( !pCsr->isAgg ){
|
|
sqlite3_result_text(ctx, pCsr->zPagetype, -1, SQLITE_STATIC);
|
|
}
|
|
break;
|
|
case 4: /* ncell */
|
|
sqlite3_result_int(ctx, pCsr->nCell);
|
|
break;
|
|
case 5: /* payload */
|
|
sqlite3_result_int(ctx, pCsr->nPayload);
|
|
break;
|
|
case 6: /* unused */
|
|
sqlite3_result_int(ctx, pCsr->nUnused);
|
|
break;
|
|
case 7: /* mx_payload */
|
|
sqlite3_result_int(ctx, pCsr->nMxPayload);
|
|
break;
|
|
case 8: /* pgoffset */
|
|
if( !pCsr->isAgg ){
|
|
sqlite3_result_int64(ctx, pCsr->iOffset);
|
|
}
|
|
break;
|
|
case 9: /* pgsize */
|
|
sqlite3_result_int(ctx, pCsr->szPage);
|
|
break;
|
|
case 10: { /* schema */
|
|
sqlite3 *db = sqlite3_context_db_handle(ctx);
|
|
int iDb = pCsr->iDb;
|
|
sqlite3_result_text(ctx, db->aDb[iDb].zDbSName, -1, SQLITE_STATIC);
|
|
break;
|
|
}
|
|
default: { /* aggregate */
|
|
sqlite3_result_int(ctx, pCsr->isAgg);
|
|
break;
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
|
|
StatCursor *pCsr = (StatCursor *)pCursor;
|
|
*pRowid = pCsr->iPageno;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Invoke this routine to register the "dbstat" virtual table module
|
|
*/
|
|
int sqlite3DbstatRegister(sqlite3 *db){
|
|
static sqlite3_module dbstat_module = {
|
|
0, /* iVersion */
|
|
statConnect, /* xCreate */
|
|
statConnect, /* xConnect */
|
|
statBestIndex, /* xBestIndex */
|
|
statDisconnect, /* xDisconnect */
|
|
statDisconnect, /* xDestroy */
|
|
statOpen, /* xOpen - open a cursor */
|
|
statClose, /* xClose - close a cursor */
|
|
statFilter, /* xFilter - configure scan constraints */
|
|
statNext, /* xNext - advance a cursor */
|
|
statEof, /* xEof - check for end of scan */
|
|
statColumn, /* xColumn - read data */
|
|
statRowid, /* xRowid - read data */
|
|
0, /* xUpdate */
|
|
0, /* xBegin */
|
|
0, /* xSync */
|
|
0, /* xCommit */
|
|
0, /* xRollback */
|
|
0, /* xFindMethod */
|
|
0, /* xRename */
|
|
0, /* xSavepoint */
|
|
0, /* xRelease */
|
|
0, /* xRollbackTo */
|
|
0 /* xShadowName */
|
|
};
|
|
return sqlite3_create_module(db, "dbstat", &dbstat_module, 0);
|
|
}
|
|
#elif defined(SQLITE_ENABLE_DBSTAT_VTAB)
|
|
int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; }
|
|
#endif /* SQLITE_ENABLE_DBSTAT_VTAB */
|