mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-14 18:27:54 +00:00
260 lines
8.1 KiB
C++
260 lines
8.1 KiB
C++
#include "libc/assert.h"
|
|
#include "libc/calls/struct/timespec.h"
|
|
#include "libc/intrin/bsr.h"
|
|
#include "libc/macros.internal.h"
|
|
#include "libc/math.h"
|
|
#include "libc/mem/gc.h"
|
|
#include "libc/mem/leaks.h"
|
|
#include "libc/mem/mem.h"
|
|
#include "libc/runtime/runtime.h"
|
|
#include "libc/stdio/stdio.h"
|
|
#include "libc/testlib/benchmark.h"
|
|
#include "libc/x/xasprintf.h"
|
|
|
|
#define EXPENSIVE_TESTS 0
|
|
|
|
#define CHUNK 8
|
|
|
|
#define FASTMATH __attribute__((__optimize__("-O3,-ffast-math")))
|
|
#define PORTABLE __target_clones("avx512f,avx")
|
|
|
|
static unsigned long long lcg = 1;
|
|
|
|
int rand32(void) {
|
|
/* Knuth, D.E., "The Art of Computer Programming," Vol 2,
|
|
Seminumerical Algorithms, Third Edition, Addison-Wesley, 1998,
|
|
p. 106 (line 26) & p. 108 */
|
|
lcg *= 6364136223846793005;
|
|
lcg += 1442695040888963407;
|
|
return lcg >> 32;
|
|
}
|
|
|
|
float float01(unsigned x) { // (0,1)
|
|
return 1.f / 8388608 * ((x >> 9) + .5f);
|
|
}
|
|
|
|
float numba(void) { // (-1,1)
|
|
return float01(rand32()) * 2 - 1;
|
|
}
|
|
|
|
FASTMATH PORTABLE float fsumf_dubble(const float *p, size_t n) {
|
|
double s = 0;
|
|
for (size_t i = 0; i < n; ++i)
|
|
s += p[i];
|
|
return s;
|
|
}
|
|
|
|
PORTABLE float fsumf_kahan(const float *p, size_t n) {
|
|
size_t i;
|
|
float err, sum, t, y;
|
|
sum = err = 0;
|
|
for (i = 0; i < n; ++i) {
|
|
y = p[i] - err;
|
|
t = sum + y;
|
|
err = (t - sum) - y;
|
|
sum = t;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
FASTMATH PORTABLE float fsumf_naive(const float *p, size_t n) {
|
|
float s = 0;
|
|
for (size_t i = 0; i < n; ++i)
|
|
s += p[i];
|
|
return s;
|
|
}
|
|
|
|
#define fsumf_naive_tester(A, n, tol) \
|
|
do { \
|
|
float err = fabsf(fsumf_naive(A, n) - fsumf_dubble(A, n)); \
|
|
if (err > tol) { \
|
|
printf("%s:%d: error: n=%zu failed %g\n", __FILE__, __LINE__, (size_t)n, \
|
|
err); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
void test_fsumf_naive(void) {
|
|
float *A = new float[2 * 1024 * 1024 + 1];
|
|
for (size_t i = 0; i < 2 * 1024 * 1024 + 1; ++i)
|
|
A[i] = numba();
|
|
for (size_t n = 0; n < 1024; ++n)
|
|
fsumf_naive_tester(A, n, 1e-4);
|
|
#if EXPENSIVE_TESTS
|
|
fsumf_naive_tester(A, 128 * 1024, 1e-2);
|
|
fsumf_naive_tester(A, 256 * 1024, 1e-2);
|
|
fsumf_naive_tester(A, 1024 * 1024, 1e-1);
|
|
fsumf_naive_tester(A, 1024 * 1024 - 1, 1e-1);
|
|
fsumf_naive_tester(A, 1024 * 1024 + 1, 1e-1);
|
|
fsumf_naive_tester(A, 2 * 1024 * 1024, 1e-1);
|
|
fsumf_naive_tester(A, 2 * 1024 * 1024 - 1, 1e-1);
|
|
fsumf_naive_tester(A, 2 * 1024 * 1024 + 1, 1e-1);
|
|
#endif
|
|
delete[] A;
|
|
}
|
|
|
|
template <int N>
|
|
forceinline float hsum(const float *p) {
|
|
return hsum<N / 2>(p) + hsum<N / 2>(p + N / 2);
|
|
}
|
|
|
|
template <>
|
|
forceinline float hsum<1>(const float *p) {
|
|
return *p;
|
|
}
|
|
|
|
FASTMATH PORTABLE float fsumf_recursive(const float *p, size_t n) {
|
|
if (n > 32) {
|
|
float x, y;
|
|
x = fsumf_recursive(p, n / 2);
|
|
y = fsumf_recursive(p + n / 2, n - n / 2);
|
|
return x + y;
|
|
} else {
|
|
float s;
|
|
size_t i;
|
|
for (s = i = 0; i < n; ++i)
|
|
s += p[i];
|
|
return s;
|
|
}
|
|
}
|
|
|
|
FASTMATH PORTABLE float fsumf_ruler(const float *p, size_t n) {
|
|
size_t i, sp = 0;
|
|
int rule, step = 2;
|
|
float stack[bsr(n / CHUNK + 1) + 1];
|
|
for (i = 0; i + CHUNK * 4 <= n; i += CHUNK * 4, step += 2) {
|
|
float sum = 0;
|
|
for (size_t j = 0; j < CHUNK * 4; ++j)
|
|
sum += p[i + j];
|
|
for (rule = bsr(step & -step); --rule;)
|
|
sum += stack[--sp];
|
|
stack[sp++] = sum;
|
|
}
|
|
float res = 0;
|
|
while (sp)
|
|
res += stack[--sp];
|
|
while (i < n)
|
|
res += p[i++];
|
|
return res;
|
|
}
|
|
|
|
#define fsumf_ruler_tester(A, n, tol) \
|
|
do { \
|
|
float err = fabsf(fsumf_ruler(A, n) - fsumf_dubble(A, n)); \
|
|
if (err > tol) { \
|
|
printf("%s:%d: error: n=%zu failed %g\n", __FILE__, __LINE__, (size_t)n, \
|
|
err); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
void test_fsumf_ruler(void) {
|
|
float *A = new float[10 * 1024 * 1024 + 1];
|
|
for (size_t i = 0; i < 10 * 1024 * 1024 + 1; ++i)
|
|
A[i] = numba();
|
|
fsumf_ruler_tester(A, 96, 1e-6);
|
|
for (size_t n = 0; n < 1024; ++n)
|
|
fsumf_ruler_tester(A, n, 1e-5);
|
|
#if EXPENSIVE_TESTS
|
|
fsumf_ruler_tester(A, 128 * 1024, 1e-4);
|
|
fsumf_ruler_tester(A, 256 * 1024, 1e-4);
|
|
fsumf_ruler_tester(A, 1024 * 1024, 1e-3);
|
|
fsumf_ruler_tester(A, 1024 * 1024 - 1, 1e-3);
|
|
fsumf_ruler_tester(A, 1024 * 1024 + 1, 1e-3);
|
|
fsumf_ruler_tester(A, 2 * 1024 * 1024, 1e-3);
|
|
fsumf_ruler_tester(A, 2 * 1024 * 1024 - 1, 1e-3);
|
|
fsumf_ruler_tester(A, 2 * 1024 * 1024 + 1, 1e-3);
|
|
fsumf_ruler_tester(A, 8 * 1024 * 1024, 1e-3);
|
|
fsumf_ruler_tester(A, 10 * 1024 * 1024, 1e-3);
|
|
#endif
|
|
delete[] A;
|
|
}
|
|
|
|
FASTMATH PORTABLE float fsumf_hefty(const float *p, size_t n) {
|
|
unsigned i, par, len = 0;
|
|
float sum, res[n / CHUNK + 1];
|
|
for (res[0] = i = 0; i + CHUNK <= n; i += CHUNK)
|
|
res[len++] = hsum<CHUNK>(p + i);
|
|
if (i < n) {
|
|
for (sum = 0; i < n; i++)
|
|
sum += p[i];
|
|
res[len++] = sum;
|
|
}
|
|
for (par = len >> 1; par; par >>= 1, len >>= 1) {
|
|
for (i = 0; i < par; ++i)
|
|
res[i] += res[par + i];
|
|
if (len & 1)
|
|
res[par - 1] += res[len - 1];
|
|
}
|
|
return res[0];
|
|
}
|
|
|
|
#define fsumf_hefty_tester(A, n, tol) \
|
|
do { \
|
|
float err = fabsf(fsumf_hefty(A, n) - fsumf_dubble(A, n)); \
|
|
if (err > tol) { \
|
|
printf("%s:%d: error: n=%zu failed %g\n", __FILE__, __LINE__, (size_t)n, \
|
|
err); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
void test_fsumf_hefty(void) {
|
|
float *A = new float[10 * 1024 * 1024 + 1];
|
|
for (size_t i = 0; i < 10 * 1024 * 1024 + 1; ++i)
|
|
A[i] = numba();
|
|
for (size_t n = 0; n < 1024; ++n)
|
|
fsumf_hefty_tester(A, n, 1e-5);
|
|
#if EXPENSIVE_TESTS
|
|
fsumf_hefty_tester(A, 128 * 1024, 1e-4);
|
|
fsumf_hefty_tester(A, 256 * 1024, 1e-4);
|
|
fsumf_hefty_tester(A, 1024 * 1024, 1e-3);
|
|
fsumf_hefty_tester(A, 1024 * 1024 - 1, 1e-3);
|
|
fsumf_hefty_tester(A, 1024 * 1024 + 1, 1e-3);
|
|
fsumf_hefty_tester(A, 2 * 1024 * 1024, 1e-3);
|
|
fsumf_hefty_tester(A, 2 * 1024 * 1024 - 1, 1e-3);
|
|
fsumf_hefty_tester(A, 2 * 1024 * 1024 + 1, 1e-3);
|
|
fsumf_hefty_tester(A, 8 * 1024 * 1024, 1e-3);
|
|
fsumf_hefty_tester(A, 10 * 1024 * 1024, 1e-3);
|
|
#endif
|
|
delete[] A;
|
|
}
|
|
|
|
float nothing(float x) {
|
|
return x;
|
|
}
|
|
|
|
float (*barrier)(float) = nothing;
|
|
|
|
int main() {
|
|
ShowCrashReports();
|
|
|
|
#if EXPENSIVE_TESTS
|
|
size_t n = 4 * 1024 * 1024;
|
|
#else
|
|
size_t n = 1024;
|
|
#endif
|
|
|
|
float *p = new float[n];
|
|
for (size_t i = 0; i < n; ++i)
|
|
p[i] = numba();
|
|
float kahan, naive, dubble, recursive, hefty, ruler;
|
|
test_fsumf_naive();
|
|
test_fsumf_hefty();
|
|
test_fsumf_ruler();
|
|
BENCHMARK(20, 1, (kahan = barrier(fsumf_kahan(p, n))));
|
|
BENCHMARK(20, 1, (dubble = barrier(fsumf_dubble(p, n))));
|
|
BENCHMARK(20, 1, (naive = barrier(fsumf_naive(p, n))));
|
|
BENCHMARK(20, 1, (recursive = barrier(fsumf_recursive(p, n))));
|
|
BENCHMARK(20, 1, (ruler = barrier(fsumf_ruler(p, n))));
|
|
BENCHMARK(20, 1, (hefty = barrier(fsumf_hefty(p, n))));
|
|
printf("dubble = %f (%g)\n", dubble, fabs(dubble - dubble));
|
|
printf("kahan = %f (%g)\n", kahan, fabs(kahan - dubble));
|
|
printf("naive = %f (%g)\n", naive, fabs(naive - dubble));
|
|
printf("recursive = %f (%g)\n", recursive, fabs(recursive - dubble));
|
|
printf("ruler = %f (%g)\n", ruler, fabs(ruler - dubble));
|
|
printf("hefty = %f (%g)\n", hefty, fabs(hefty - dubble));
|
|
delete[] p;
|
|
|
|
CheckForMemoryLeaks();
|
|
}
|