cosmopolitan/third_party/python/Modules/_decimal/libmpdec/sixstep.c
Justine Tunney fa20edc44d
Reduce header complexity
- Remove most __ASSEMBLER__ __LINKER__ ifdefs
- Rename libc/intrin/bits.h to libc/serialize.h
- Block pthread cancelation in fchmodat() polyfill
- Remove `clang-format off` statements in third_party
2023-11-28 14:39:42 -08:00

240 lines
8.9 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │
│ │
│ Redistribution and use in source and binary forms, with or without │
│ modification, are permitted provided that the following conditions │
│ are met: │
│ │
│ 1. Redistributions of source code must retain the above copyright │
│ notice, this list of conditions and the following disclaimer. │
│ │
│ 2. Redistributions in binary form must reproduce the above copyright │
│ notice, this list of conditions and the following disclaimer in │
│ the documentation and/or other materials provided with the │
│ distribution. │
│ │
│ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │
│ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │
│ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │
│ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │
│ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │
│ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │
│ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │
│ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │
│ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │
│ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │
│ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/python/Modules/_decimal/libmpdec/bits.h"
#include "third_party/python/Modules/_decimal/libmpdec/difradix2.h"
#include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h"
#include "third_party/python/Modules/_decimal/libmpdec/numbertheory.h"
#include "third_party/python/Modules/_decimal/libmpdec/sixstep.h"
#include "third_party/python/Modules/_decimal/libmpdec/transpose.h"
#include "third_party/python/Modules/_decimal/libmpdec/umodarith.h"
asm(".ident\t\"\\n\\n\
libmpdec (BSD-2)\\n\
Copyright 2008-2016 Stefan Krah\"");
asm(".include \"libc/disclaimer.inc\"");
/*
Cache Efficient Matrix Fourier Transform
for arrays of form 2ⁿ
The Six Step Transform
══════════════════════
In libmpdec, the six-step transform is the Matrix Fourier Transform in
disguise. It is called six-step transform after a variant that appears
in [1]. The algorithm requires that the input array can be viewed as an
R×C matrix.
Algorithm six-step (forward transform)
──────────────────────────────────────
1a) Transpose the matrix.
1b) Apply a length R FNT to each row.
1c) Transpose the matrix.
2) Multiply each matrix element (addressed by j×C+m) by r**(j×m).
3) Apply a length C FNT to each row.
4) Transpose the matrix.
Note that steps 1a) - 1c) are exactly equivalent to step 1) of the Matrix
Fourier Transform. For large R, it is faster to transpose twice and do
a transform on the rows than to perform a column transpose directly.
Algorithm six-step (inverse transform)
──────────────────────────────────────
0) View the matrix as a C×R matrix.
1) Transpose the matrix, producing an R×C matrix.
2) Apply a length C FNT to each row.
3) Multiply each matrix element (addressed by i×C+n) by r**(i×n).
4a) Transpose the matrix.
4b) Apply a length R FNT to each row.
4c) Transpose the matrix.
Again, steps 4a) - 4c) are equivalent to step 4) of the Matrix Fourier
Transform.
──
[1] David H. Bailey: FFTs in External or Hierarchical Memory
http://crd.lbl.gov/~dhbailey/dhbpapers/
*/
/* forward transform with sign = -1 */
int
six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
struct fnt_params *tparams;
mpd_size_t log2n, C, R;
mpd_uint_t kernel;
mpd_uint_t umod;
mpd_uint_t *x, w0, w1, wstep;
mpd_size_t i, k;
assert(ispower2(n));
assert(n >= 16);
assert(n <= MPD_MAXTRANSFORM_2N);
log2n = mpd_bsr(n);
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
/* Transpose the matrix. */
if (!transpose_pow2(a, R, C)) {
return 0;
}
/* Length R transform on the rows. */
if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
return 0;
}
for (x = a; x < a+n; x += R) {
fnt_dif2(x, R, tparams);
}
/* Transpose the matrix. */
if (!transpose_pow2(a, C, R)) {
mpd_free(tparams);
return 0;
}
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
SETMODULUS(modnum);
kernel = _mpd_getkernel(n, -1, modnum);
for (i = 1; i < R; i++) {
w0 = 1; /* r**(i*0): initial value for k=0 */
w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */
wstep = MULMOD(w1, w1); /* r**(2*i) */
for (k = 0; k < C; k += 2) {
mpd_uint_t x0 = a[i*C+k];
mpd_uint_t x1 = a[i*C+k+1];
MULMOD2(&x0, w0, &x1, w1);
MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
a[i*C+k] = x0;
a[i*C+k+1] = x1;
}
}
/* Length C transform on the rows. */
if (C != R) {
mpd_free(tparams);
if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
return 0;
}
}
for (x = a; x < a+n; x += C) {
fnt_dif2(x, C, tparams);
}
mpd_free(tparams);
#if 0
/* An unordered transform is sufficient for convolution. */
/* Transpose the matrix. */
if (!transpose_pow2(a, R, C)) {
return 0;
}
#endif
return 1;
}
/* reverse transform, sign = 1 */
int
inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
struct fnt_params *tparams;
mpd_size_t log2n, C, R;
mpd_uint_t kernel;
mpd_uint_t umod;
mpd_uint_t *x, w0, w1, wstep;
mpd_size_t i, k;
assert(ispower2(n));
assert(n >= 16);
assert(n <= MPD_MAXTRANSFORM_2N);
log2n = mpd_bsr(n);
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
#if 0
/* An unordered transform is sufficient for convolution. */
/* Transpose the matrix, producing an R*C matrix. */
if (!transpose_pow2(a, C, R)) {
return 0;
}
#endif
/* Length C transform on the rows. */
if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
return 0;
}
for (x = a; x < a+n; x += C) {
fnt_dif2(x, C, tparams);
}
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
SETMODULUS(modnum);
kernel = _mpd_getkernel(n, 1, modnum);
for (i = 1; i < R; i++) {
w0 = 1;
w1 = POWMOD(kernel, i);
wstep = MULMOD(w1, w1);
for (k = 0; k < C; k += 2) {
mpd_uint_t x0 = a[i*C+k];
mpd_uint_t x1 = a[i*C+k+1];
MULMOD2(&x0, w0, &x1, w1);
MULMOD2C(&w0, &w1, wstep);
a[i*C+k] = x0;
a[i*C+k+1] = x1;
}
}
/* Transpose the matrix. */
if (!transpose_pow2(a, R, C)) {
mpd_free(tparams);
return 0;
}
/* Length R transform on the rows. */
if (R != C) {
mpd_free(tparams);
if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
return 0;
}
}
for (x = a; x < a+n; x += R) {
fnt_dif2(x, R, tparams);
}
mpd_free(tparams);
/* Transpose the matrix. */
if (!transpose_pow2(a, C, R)) {
return 0;
}
return 1;
}