cosmopolitan/third_party/radpajama/scripts/convert_gptneox_to_ggml.py
2023-05-11 07:12:08 -07:00

144 lines
4.6 KiB
Python

# Convert Hugging Face fine-tuned gpt-neox-like models to ggml format
import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 3:
print("Usage: python convert-hf-to-ggml.py model_name dir-output [use-f32]")
print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
print(" dir-output: directory where the output file will be written")
print(" use-f32: if present, use float32 instead of float16")
sys.exit(1)
model_name = sys.argv[1]
dir_out = sys.argv[2]
model_cache_dir = dir_out + "-cache"
# make sure the output directory exists
os.makedirs(dir_out, exist_ok=True)
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 3:
ftype = 0
tokenizer = AutoTokenizer.from_pretrained(model_name)
print("Loading model: ", model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if ftype == 1 else torch.float32,
cache_dir=model_cache_dir)
model.eval()
for p in model.parameters():
p.requires_grad = False
hparams = model.config.to_dict()
print("Model loaded: ", model_name)
fn_bin = f"/ggml-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin"
fn_out = dir_out + fn_bin
fout = open(fn_out, "wb")
ggml_file_magic = 0x67676d66 # 0x67676d6c is unversioned
ggml_file_version = 0x00000001 # v1
hparams["multiple_of"] = 1
fout.write(struct.pack("i", ggml_file_magic)) # magic: ggmf in hex
fout.write(struct.pack("i", ggml_file_version))
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["max_position_embeddings"]))
fout.write(struct.pack("i", hparams["hidden_size"]))
fout.write(struct.pack("i", hparams["num_attention_heads"]))
fout.write(struct.pack("i", hparams["num_hidden_layers"]))
fout.write(struct.pack("i", int((hparams["hidden_size"] / hparams["num_attention_heads"]
) * hparams["rotary_pct"]))) # rotary_dim
fout.write(struct.pack("i", int(hparams["use_parallel_residual"])))
fout.write(struct.pack("i", ftype))
# Is this correct??
dot_token = tokenizer.encode(".")[0]
for i in range(hparams["vocab_size"]):
text = tokenizer.decode([i]).encode('utf-8')
fout.write(struct.pack("i", len(text)))
fout.write(text)
list_vars = model.state_dict()
print(hparams)
for name in list_vars.keys():
if name.startswith('gpt_neox.layers.'):
if 'attention.masked_bias' in name or \
'attention.rotary_emb.inv_freq' in name or \
'attention.bias' in name:
continue
# No gradients for these
list_vars[name].requires_grad = False
src = name
nn = name
print(src, ' -> ', name)
data = list_vars[src].squeeze().numpy()
data = data.astype(np.float32)
n_dims = len(data.shape)
print(name, n_dims, data.shape)
# default type is fp32
ftype_cur = 0
if ftype == 1 and n_dims > 1:
print(" Converting to float16", data.shape, data[:3, :3].tolist())
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32", data.shape,
data[:3, :3].tolist() if n_dims > 1 else data[:3].tolist())
data = data.astype(np.float32)
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
print(str)
fout.write(str)
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fn_out)
print("")