mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-02-07 15:03:34 +00:00
This is the relevant commit: bfa6466199
Model download links:
https://huggingface.co/ceonlabs/radpajama/tree/main
144 lines
4.6 KiB
Python
144 lines
4.6 KiB
Python
# Convert Hugging Face fine-tuned gpt-neox-like models to ggml format
|
|
|
|
import io
|
|
import os
|
|
import sys
|
|
import struct
|
|
import json
|
|
import code
|
|
import torch
|
|
import numpy as np
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8+n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
if len(sys.argv) < 3:
|
|
print("Usage: python convert-hf-to-ggml.py model_name dir-output [use-f32]")
|
|
print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
|
|
print(" dir-output: directory where the output file will be written")
|
|
print(" use-f32: if present, use float32 instead of float16")
|
|
sys.exit(1)
|
|
|
|
model_name = sys.argv[1]
|
|
dir_out = sys.argv[2]
|
|
model_cache_dir = dir_out + "-cache"
|
|
|
|
# make sure the output directory exists
|
|
os.makedirs(dir_out, exist_ok=True)
|
|
|
|
# possible data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
ftype = 1
|
|
if len(sys.argv) > 3:
|
|
ftype = 0
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
print("Loading model: ", model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if ftype == 1 else torch.float32,
|
|
cache_dir=model_cache_dir)
|
|
model.eval()
|
|
for p in model.parameters():
|
|
p.requires_grad = False
|
|
hparams = model.config.to_dict()
|
|
print("Model loaded: ", model_name)
|
|
|
|
fn_bin = f"/ggml-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin"
|
|
fn_out = dir_out + fn_bin
|
|
fout = open(fn_out, "wb")
|
|
|
|
ggml_file_magic = 0x67676d66 # 0x67676d6c is unversioned
|
|
ggml_file_version = 0x00000001 # v1
|
|
|
|
hparams["multiple_of"] = 1
|
|
fout.write(struct.pack("i", ggml_file_magic)) # magic: ggmf in hex
|
|
fout.write(struct.pack("i", ggml_file_version))
|
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
|
fout.write(struct.pack("i", hparams["max_position_embeddings"]))
|
|
fout.write(struct.pack("i", hparams["hidden_size"]))
|
|
fout.write(struct.pack("i", hparams["num_attention_heads"]))
|
|
fout.write(struct.pack("i", hparams["num_hidden_layers"]))
|
|
fout.write(struct.pack("i", int((hparams["hidden_size"] / hparams["num_attention_heads"]
|
|
) * hparams["rotary_pct"]))) # rotary_dim
|
|
fout.write(struct.pack("i", int(hparams["use_parallel_residual"])))
|
|
fout.write(struct.pack("i", ftype))
|
|
|
|
# Is this correct??
|
|
dot_token = tokenizer.encode(".")[0]
|
|
for i in range(hparams["vocab_size"]):
|
|
text = tokenizer.decode([i]).encode('utf-8')
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
list_vars = model.state_dict()
|
|
|
|
print(hparams)
|
|
|
|
for name in list_vars.keys():
|
|
if name.startswith('gpt_neox.layers.'):
|
|
if 'attention.masked_bias' in name or \
|
|
'attention.rotary_emb.inv_freq' in name or \
|
|
'attention.bias' in name:
|
|
continue
|
|
# No gradients for these
|
|
list_vars[name].requires_grad = False
|
|
src = name
|
|
nn = name
|
|
|
|
print(src, ' -> ', name)
|
|
data = list_vars[src].squeeze().numpy()
|
|
data = data.astype(np.float32)
|
|
|
|
n_dims = len(data.shape)
|
|
print(name, n_dims, data.shape)
|
|
|
|
# default type is fp32
|
|
ftype_cur = 0
|
|
if ftype == 1 and n_dims > 1:
|
|
print(" Converting to float16", data.shape, data[:3, :3].tolist())
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
else:
|
|
print(" Converting to float32", data.shape,
|
|
data[:3, :3].tolist() if n_dims > 1 else data[:3].tolist())
|
|
data = data.astype(np.float32)
|
|
|
|
# header
|
|
str = name.encode('utf-8')
|
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
|
print(str)
|
|
fout.write(str)
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
fout.close()
|
|
|
|
print("Done. Output file: " + fn_out)
|
|
print("")
|