cosmopolitan/net/http/parsehttpmessage.c
Justine Tunney 9f9b240f3d
Make HTTP message parsing a little faster
ParseHttpMessage() now does a better job avoiding malloc() calls and
headers commonly sent by CloudFlare can now be consulted in constant
time using our hard-coded perfect hash table.  This increases /claim
performance from 321k to 337k qps which is 5% faster.
2022-10-04 06:37:46 -07:00

277 lines
9.9 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/assert.h"
#include "libc/intrin/bits.h"
#include "libc/limits.h"
#include "libc/macros.internal.h"
#include "libc/mem/alg.h"
#include "libc/mem/arraylist.internal.h"
#include "libc/mem/mem.h"
#include "libc/stdio/stdio.h"
#include "libc/str/str.h"
#include "libc/sysv/errfuns.h"
#include "libc/x/x.h"
#include "net/http/http.h"
#define LIMIT (SHRT_MAX - 2)
/**
* Initializes HTTP message parser.
*/
void InitHttpMessage(struct HttpMessage *r, int type) {
assert(type == kHttpRequest || type == kHttpResponse);
bzero(r, sizeof(*r));
r->type = type;
}
/**
* Destroys HTTP message parser.
*/
void DestroyHttpMessage(struct HttpMessage *r) {
if (r->xheaders.p) {
free(r->xheaders.p);
r->xheaders.p = NULL;
r->xheaders.n = 0;
}
}
/**
* Parses HTTP request or response.
*
* This parser is responsible for determining the length of a message
* and slicing the strings inside it. Performance is attained using
* perfect hash tables. No memory allocation is performed for normal
* messages. Line folding is forbidden. State persists across calls so
* that fragmented messages can be handled efficiently. A limitation on
* message size is imposed to make the header data structures smaller.
*
* This parser assumes ISO-8859-1 and guarantees no C0 or C1 control
* codes are present in message fields, with the exception of tab.
* Please note that fields like kHttpStateUri may use UTF-8 percent encoding.
* This parser doesn't care if you choose ASA X3.4-1963 or MULTICS newlines.
*
* kHttpRepeatable defines which standard header fields are O(1) and
* which ones may have comma entries spilled over into xheaders. For
* most headers it's sufficient to simply check the static slice. If
* r->headers[kHttpFoo].a is zero then the header is totally absent.
*
* This parser has linear complexity. Each character only needs to be
* considered a single time. That's the case even if messages are
* fragmented. If a message is valid but incomplete, this function will
* return zero so that it can be resumed as soon as more data arrives.
*
* This parser takes about 400 nanoseconds to parse a 403 byte Chrome
* HTTP request under MODE=rel on a Core i9 which is about three cycles
* per byte or a gigabyte per second of throughput per core.
*
* @note we assume p points to a buffer that has >=SHRT_MAX bytes
* @see HTTP/1.1 RFC2616 RFC2068
* @see HTTP/1.0 RFC1945
*/
int ParseHttpMessage(struct HttpMessage *r, const char *p, size_t n) {
int c, h, i;
for (n = MIN(n, LIMIT); r->i < n; ++r->i) {
c = p[r->i] & 0xff;
switch (r->t) {
case kHttpStateStart:
if (c == '\r' || c == '\n') break; /* RFC7230 § 3.5 */
if (!kHttpToken[c]) return ebadmsg();
r->t = r->type == kHttpRequest ? kHttpStateMethod : kHttpStateVersion;
r->a = r->i;
break;
case kHttpStateMethod:
for (;;) {
if (c == ' ') {
r->method = GetHttpMethod(p + r->a, r->i - r->a);
r->xmethod.a = r->a;
r->xmethod.b = r->i;
r->a = r->i + 1;
r->t = kHttpStateUri;
break;
} else if (!kHttpToken[c]) {
return ebadmsg();
}
if (++r->i == n) break;
c = p[r->i] & 0xff;
}
break;
case kHttpStateUri:
for (;;) {
if (c == ' ' || c == '\r' || c == '\n') {
if (r->i == r->a) return ebadmsg();
r->uri.a = r->a;
r->uri.b = r->i;
if (c == ' ') {
r->a = r->i + 1;
r->t = kHttpStateVersion;
} else {
r->version = 9;
r->t = c == '\r' ? kHttpStateCr : kHttpStateLf1;
}
break;
} else if (c < 0x20 || (0x7F <= c && c < 0xA0)) {
return ebadmsg();
}
if (++r->i == n) break;
c = p[r->i] & 0xff;
}
break;
case kHttpStateVersion:
if (c == ' ' || c == '\r' || c == '\n') {
if (r->i - r->a == 8 &&
(READ64BE(p + r->a) & 0xFFFFFFFFFF00FF00) == 0x485454502F002E00 &&
isdigit(p[r->a + 5]) && isdigit(p[r->a + 7])) {
r->version = (p[r->a + 5] - '0') * 10 + (p[r->a + 7] - '0');
if (r->type == kHttpRequest) {
r->t = c == '\r' ? kHttpStateCr : kHttpStateLf1;
} else {
r->t = kHttpStateStatus;
}
} else {
return ebadmsg();
}
}
break;
case kHttpStateStatus:
for (;;) {
if (c == ' ' || c == '\r' || c == '\n') {
if (r->status < 100) return ebadmsg();
if (c == ' ') {
r->a = r->i + 1;
r->t = kHttpStateMessage;
} else {
r->t = c == '\r' ? kHttpStateCr : kHttpStateLf1;
}
break;
} else if ('0' <= c && c <= '9') {
r->status *= 10;
r->status += c - '0';
if (r->status > 999) return ebadmsg();
} else {
return ebadmsg();
}
if (++r->i == n) break;
c = p[r->i] & 0xff;
}
break;
case kHttpStateMessage:
for (;;) {
if (c == '\r' || c == '\n') {
r->message.a = r->a;
r->message.b = r->i;
r->t = c == '\r' ? kHttpStateCr : kHttpStateLf1;
break;
} else if (c < 0x20 || (0x7F <= c && c < 0xA0)) {
return ebadmsg();
}
if (++r->i == n) break;
c = p[r->i] & 0xff;
}
break;
case kHttpStateCr:
if (c != '\n') return ebadmsg();
r->t = kHttpStateLf1;
break;
case kHttpStateLf1:
if (c == '\r') {
r->t = kHttpStateLf2;
break;
} else if (c == '\n') {
return ++r->i;
} else if (!kHttpToken[c]) {
/*
* 1. Forbid empty header name (RFC2616 §2.2)
* 2. Forbid line folding (RFC7230 §3.2.4)
*/
return ebadmsg();
}
r->k.a = r->i;
r->t = kHttpStateName;
break;
case kHttpStateName:
for (;;) {
if (c == ':') {
r->k.b = r->i;
r->t = kHttpStateColon;
break;
} else if (!kHttpToken[c]) {
return ebadmsg();
}
if (++r->i == n) break;
c = p[r->i] & 0xff;
}
break;
case kHttpStateColon:
if (c == ' ' || c == '\t') break;
r->a = r->i;
r->t = kHttpStateValue;
/* fallthrough */
case kHttpStateValue:
for (;;) {
if (c == '\r' || c == '\n') {
i = r->i;
while (i > r->a && (p[i - 1] == ' ' || p[i - 1] == '\t')) --i;
if ((h = GetHttpHeader(p + r->k.a, r->k.b - r->k.a)) != -1 &&
(!r->headers[h].a || !kHttpRepeatable[h])) {
r->headers[h].a = r->a;
r->headers[h].b = i;
} else {
if (r->xheaders.n == r->xheaders.c) {
unsigned c2;
struct HttpHeader *p1, *p2;
p1 = r->xheaders.p;
c2 = r->xheaders.c + 2;
c2 = c2 >> 1;
if ((p2 = realloc(p1, c2 * sizeof(*p1)))) {
r->xheaders.p = p2;
r->xheaders.c = c2;
}
}
if (r->xheaders.n < r->xheaders.c) {
r->xheaders.p[r->xheaders.n].k = r->k;
r->xheaders.p[r->xheaders.n].v.a = r->a;
r->xheaders.p[r->xheaders.n].v.b = i;
r->xheaders.p = r->xheaders.p;
++r->xheaders.n;
}
}
r->t = c == '\r' ? kHttpStateCr : kHttpStateLf1;
break;
} else if ((c < 0x20 && c != '\t') || (0x7F <= c && c < 0xA0)) {
return ebadmsg();
}
if (++r->i == n) break;
c = p[r->i] & 0xff;
}
break;
case kHttpStateLf2:
if (c == '\n') {
return ++r->i;
}
return ebadmsg();
default:
unreachable;
}
}
if (r->i < LIMIT) {
return 0;
} else {
return ebadmsg();
}
}