cosmopolitan/third_party/python/Modules/_decimal/libmpdec/transpose.c
Justine Tunney 23e235b7a5
Fix bugs in cosmocc toolchain
This change integrates e58abc1110b335a3341e8ad5821ad8e3880d9bb2 from
https://github.com/ahgamut/musl-cross-make/ which fixes the issues we
were having with our C language extension for symbolic constants. This
change also performs some code cleanup and bug fixes to getaddrinfo().
It's now possible to compile projects like ncurses, readline and python
without needing to patch anything upstream, except maybe a line or two.
Pretty soon it should be possible to build a Linux distro on Cosmo.
2023-06-08 23:44:03 -07:00

243 lines
9.1 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright (c) 2008-2016 Stefan Krah. All rights reserved. │
│ │
│ Redistribution and use in source and binary forms, with or without │
│ modification, are permitted provided that the following conditions │
│ are met: │
│ │
│ 1. Redistributions of source code must retain the above copyright │
│ notice, this list of conditions and the following disclaimer. │
│ │
│ 2. Redistributions in binary form must reproduce the above copyright │
│ notice, this list of conditions and the following disclaimer in │
│ the documentation and/or other materials provided with the │
│ distribution. │
│ │
│ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND │
│ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE │
│ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR │
│ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS │
│ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, │
│ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT │
│ OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR │
│ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, │
│ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE │
│ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, │
│ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/python/Modules/_decimal/libmpdec/transpose.h"
#include "libc/mem/gc.internal.h"
#include "libc/mem/mem.h"
#include "third_party/python/Modules/_decimal/libmpdec/bits.h"
#include "third_party/python/Modules/_decimal/libmpdec/constants.h"
#include "third_party/python/Modules/_decimal/libmpdec/mpdecimal.h"
#include "third_party/python/Modules/_decimal/libmpdec/typearith.h"
/* clang-format off */
asm(".ident\t\"\\n\\n\
libmpdec (BSD-2)\\n\
Copyright 2008-2016 Stefan Krah\"");
asm(".include \"libc/disclaimer.inc\"");
#define BUFSIZE 4096
#define SIDE 128
/* Bignum: The transpose functions are used for very large transforms
in sixstep.c and fourstep.c. */
/* Definition of the matrix transpose */
void
std_trans(mpd_uint_t dest[], mpd_uint_t src[], mpd_size_t rows, mpd_size_t cols)
{
mpd_size_t idest, isrc;
mpd_size_t r, c;
for (r = 0; r < rows; r++) {
isrc = r * cols;
idest = r;
for (c = 0; c < cols; c++) {
dest[idest] = src[isrc];
isrc += 1;
idest += rows;
}
}
}
/*
* Swap half-rows of 2^n * (2*2^n) matrix.
* FORWARD_CYCLE: even/odd permutation of the halfrows.
* BACKWARD_CYCLE: reverse the even/odd permutation.
*/
static int
swap_halfrows_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols, int dir)
{
mpd_uint_t *buf1 = gc(malloc(BUFSIZE*sizeof(mpd_uint_t)));
mpd_uint_t *buf2 = gc(malloc(BUFSIZE*sizeof(mpd_uint_t)));
mpd_uint_t *readbuf, *writebuf, *hp;
mpd_size_t *done, dbits;
mpd_size_t b = BUFSIZE, stride;
mpd_size_t hn, hmax; /* halfrow number */
mpd_size_t m, r=0;
mpd_size_t offset;
mpd_size_t next;
assert(cols == mul_size_t(2, rows));
if (dir == FORWARD_CYCLE) {
r = rows;
}
else if (dir == BACKWARD_CYCLE) {
r = 2;
}
else {
abort(); /* GCOV_NOT_REACHED */
}
m = cols - 1;
hmax = rows; /* cycles start at odd halfrows */
dbits = 8 * sizeof *done;
if ((done = mpd_calloc(hmax/(sizeof *done) + 1, sizeof *done)) == NULL) {
return 0;
}
for (hn = 1; hn <= hmax; hn += 2) {
if (done[hn/dbits] & mpd_bits[hn%dbits]) {
continue;
}
readbuf = buf1; writebuf = buf2;
for (offset = 0; offset < cols/2; offset += b) {
stride = (offset + b < cols/2) ? b : cols/2-offset;
hp = matrix + hn*cols/2;
memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
pointerswap(&readbuf, &writebuf);
next = mulmod_size_t(hn, r, m);
hp = matrix + next*cols/2;
while (next != hn) {
memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
pointerswap(&readbuf, &writebuf);
done[next/dbits] |= mpd_bits[next%dbits];
next = mulmod_size_t(next, r, m);
hp = matrix + next*cols/2;
}
memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
done[hn/dbits] |= mpd_bits[hn%dbits];
}
}
mpd_free(done);
return 1;
}
/* In-place transpose of a square matrix */
static inline void
squaretrans(mpd_uint_t *buf, mpd_size_t cols)
{
mpd_uint_t tmp;
mpd_size_t idest, isrc;
mpd_size_t r, c;
for (r = 0; r < cols; r++) {
c = r+1;
isrc = r*cols + c;
idest = c*cols + r;
for (c = r+1; c < cols; c++) {
tmp = buf[isrc];
buf[isrc] = buf[idest];
buf[idest] = tmp;
isrc += 1;
idest += cols;
}
}
}
/*
* Transpose 2^n * 2^n matrix. For cache efficiency, the matrix is split into
* square blocks with side length 'SIDE'. First, the blocks are transposed,
* then a square transposition is done on each individual block.
*/
static void
squaretrans_pow2(mpd_uint_t *matrix, mpd_size_t size)
{
mpd_uint_t *buf1 = gc(malloc(SIDE*SIDE*sizeof(mpd_uint_t)));
mpd_uint_t *buf2 = gc(malloc(SIDE*SIDE*sizeof(mpd_uint_t)));
mpd_uint_t *to, *from;
mpd_size_t b = size;
mpd_size_t r, c;
mpd_size_t i;
while (b > SIDE) b >>= 1;
for (r = 0; r < size; r += b) {
for (c = r; c < size; c += b) {
from = matrix + r*size + c;
to = buf1;
for (i = 0; i < b; i++) {
memcpy(to, from, b*(sizeof *to));
from += size;
to += b;
}
squaretrans(buf1, b);
if (r == c) {
to = matrix + r*size + c;
from = buf1;
for (i = 0; i < b; i++) {
memcpy(to, from, b*(sizeof *to));
from += b;
to += size;
}
continue;
}
else {
from = matrix + c*size + r;
to = buf2;
for (i = 0; i < b; i++) {
memcpy(to, from, b*(sizeof *to));
from += size;
to += b;
}
squaretrans(buf2, b);
to = matrix + c*size + r;
from = buf1;
for (i = 0; i < b; i++) {
memcpy(to, from, b*(sizeof *to));
from += b;
to += size;
}
to = matrix + r*size + c;
from = buf2;
for (i = 0; i < b; i++) {
memcpy(to, from, b*(sizeof *to));
from += b;
to += size;
}
}
}
}
}
/*
* In-place transposition of a 2^n x 2^n or a 2^n x (2*2^n)
* or a (2*2^n) x 2^n matrix.
*/
int
transpose_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols)
{
mpd_size_t size = mul_size_t(rows, cols);
assert(ispower2(rows));
assert(ispower2(cols));
if (cols == rows) {
squaretrans_pow2(matrix, rows);
}
else if (cols == mul_size_t(2, rows)) {
if (!swap_halfrows_pow2(matrix, rows, cols, FORWARD_CYCLE)) {
return 0;
}
squaretrans_pow2(matrix, rows);
squaretrans_pow2(matrix+(size/2), rows);
}
else if (rows == mul_size_t(2, cols)) {
squaretrans_pow2(matrix, cols);
squaretrans_pow2(matrix+(size/2), cols);
if (!swap_halfrows_pow2(matrix, cols, rows, BACKWARD_CYCLE)) {
return 0;
}
}
else {
__builtin_unreachable();
}
return 1;
}