1
0
Fork 0
mirror of https://github.com/vbatts/go-mtree.git synced 2025-10-05 04:41:02 +00:00

vendor: explicitly vendor golang.org/x/sys

Vendor golang.org/x/sys to get the UtimesNanoAt function defined for all
unix-like OSes. The function will be used in a successive commit.

This also re-vendors the other dependencies from glide.yaml.

Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
This commit is contained in:
Tobias Klauser 2017-10-20 11:38:03 +02:00
parent 8bcd48e401
commit 7742183cd4
398 changed files with 23547 additions and 37694 deletions

View file

@ -7,7 +7,6 @@ package ssh
import (
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/rc4"
"crypto/subtle"
"encoding/binary"
@ -15,7 +14,6 @@ import (
"fmt"
"hash"
"io"
"io/ioutil"
)
const (
@ -115,16 +113,6 @@ var cipherModes = map[string]*streamCipherMode{
// special case. If we add any more non-stream ciphers, we
// should invest a cleaner way to do this.
gcmCipherID: {16, 12, 0, nil},
// CBC mode is insecure and so is not included in the default config.
// (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely
// needed, it's possible to specify a custom Config to enable it.
// You should expect that an active attacker can recover plaintext if
// you do.
aes128cbcID: {16, aes.BlockSize, 0, nil},
// 3des-cbc is insecure and is disabled by default.
tripledescbcID: {24, des.BlockSize, 0, nil},
}
// prefixLen is the length of the packet prefix that contains the packet length
@ -135,7 +123,6 @@ const prefixLen = 5
type streamPacketCipher struct {
mac hash.Hash
cipher cipher.Stream
etm bool
// The following members are to avoid per-packet allocations.
prefix [prefixLen]byte
@ -151,14 +138,7 @@ func (s *streamPacketCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, err
return nil, err
}
var encryptedPaddingLength [1]byte
if s.mac != nil && s.etm {
copy(encryptedPaddingLength[:], s.prefix[4:5])
s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
} else {
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
}
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
length := binary.BigEndian.Uint32(s.prefix[0:4])
paddingLength := uint32(s.prefix[4])
@ -167,12 +147,7 @@ func (s *streamPacketCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, err
s.mac.Reset()
binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
s.mac.Write(s.seqNumBytes[:])
if s.etm {
s.mac.Write(s.prefix[:4])
s.mac.Write(encryptedPaddingLength[:])
} else {
s.mac.Write(s.prefix[:])
}
s.mac.Write(s.prefix[:])
macSize = uint32(s.mac.Size())
}
@ -197,17 +172,10 @@ func (s *streamPacketCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, err
}
mac := s.packetData[length-1:]
data := s.packetData[:length-1]
if s.mac != nil && s.etm {
s.mac.Write(data)
}
s.cipher.XORKeyStream(data, data)
if s.mac != nil {
if !s.etm {
s.mac.Write(data)
}
s.mac.Write(data)
s.macResult = s.mac.Sum(s.macResult[:0])
if subtle.ConstantTimeCompare(s.macResult, mac) != 1 {
return nil, errors.New("ssh: MAC failure")
@ -223,13 +191,7 @@ func (s *streamPacketCipher) writePacket(seqNum uint32, w io.Writer, rand io.Rea
return errors.New("ssh: packet too large")
}
aadlen := 0
if s.mac != nil && s.etm {
// packet length is not encrypted for EtM modes
aadlen = 4
}
paddingLength := packetSizeMultiple - (prefixLen+len(packet)-aadlen)%packetSizeMultiple
paddingLength := packetSizeMultiple - (prefixLen+len(packet))%packetSizeMultiple
if paddingLength < 4 {
paddingLength += packetSizeMultiple
}
@ -246,37 +208,15 @@ func (s *streamPacketCipher) writePacket(seqNum uint32, w io.Writer, rand io.Rea
s.mac.Reset()
binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
s.mac.Write(s.seqNumBytes[:])
if s.etm {
// For EtM algorithms, the packet length must stay unencrypted,
// but the following data (padding length) must be encrypted
s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
}
s.mac.Write(s.prefix[:])
if !s.etm {
// For non-EtM algorithms, the algorithm is applied on unencrypted data
s.mac.Write(packet)
s.mac.Write(padding)
}
}
if !(s.mac != nil && s.etm) {
// For EtM algorithms, the padding length has already been encrypted
// and the packet length must remain unencrypted
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
}
s.cipher.XORKeyStream(packet, packet)
s.cipher.XORKeyStream(padding, padding)
if s.mac != nil && s.etm {
// For EtM algorithms, packet and padding must be encrypted
s.mac.Write(packet)
s.mac.Write(padding)
}
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
s.cipher.XORKeyStream(packet, packet)
s.cipher.XORKeyStream(padding, padding)
if _, err := w.Write(s.prefix[:]); err != nil {
return err
}
@ -402,226 +342,3 @@ func (c *gcmCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, error) {
plain = plain[1 : length-uint32(padding)]
return plain, nil
}
// cbcCipher implements aes128-cbc cipher defined in RFC 4253 section 6.1
type cbcCipher struct {
mac hash.Hash
macSize uint32
decrypter cipher.BlockMode
encrypter cipher.BlockMode
// The following members are to avoid per-packet allocations.
seqNumBytes [4]byte
packetData []byte
macResult []byte
// Amount of data we should still read to hide which
// verification error triggered.
oracleCamouflage uint32
}
func newCBCCipher(c cipher.Block, iv, key, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
cbc := &cbcCipher{
mac: macModes[algs.MAC].new(macKey),
decrypter: cipher.NewCBCDecrypter(c, iv),
encrypter: cipher.NewCBCEncrypter(c, iv),
packetData: make([]byte, 1024),
}
if cbc.mac != nil {
cbc.macSize = uint32(cbc.mac.Size())
}
return cbc, nil
}
func newAESCBCCipher(iv, key, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
cbc, err := newCBCCipher(c, iv, key, macKey, algs)
if err != nil {
return nil, err
}
return cbc, nil
}
func newTripleDESCBCCipher(iv, key, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
c, err := des.NewTripleDESCipher(key)
if err != nil {
return nil, err
}
cbc, err := newCBCCipher(c, iv, key, macKey, algs)
if err != nil {
return nil, err
}
return cbc, nil
}
func maxUInt32(a, b int) uint32 {
if a > b {
return uint32(a)
}
return uint32(b)
}
const (
cbcMinPacketSizeMultiple = 8
cbcMinPacketSize = 16
cbcMinPaddingSize = 4
)
// cbcError represents a verification error that may leak information.
type cbcError string
func (e cbcError) Error() string { return string(e) }
func (c *cbcCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, error) {
p, err := c.readPacketLeaky(seqNum, r)
if err != nil {
if _, ok := err.(cbcError); ok {
// Verification error: read a fixed amount of
// data, to make distinguishing between
// failing MAC and failing length check more
// difficult.
io.CopyN(ioutil.Discard, r, int64(c.oracleCamouflage))
}
}
return p, err
}
func (c *cbcCipher) readPacketLeaky(seqNum uint32, r io.Reader) ([]byte, error) {
blockSize := c.decrypter.BlockSize()
// Read the header, which will include some of the subsequent data in the
// case of block ciphers - this is copied back to the payload later.
// How many bytes of payload/padding will be read with this first read.
firstBlockLength := uint32((prefixLen + blockSize - 1) / blockSize * blockSize)
firstBlock := c.packetData[:firstBlockLength]
if _, err := io.ReadFull(r, firstBlock); err != nil {
return nil, err
}
c.oracleCamouflage = maxPacket + 4 + c.macSize - firstBlockLength
c.decrypter.CryptBlocks(firstBlock, firstBlock)
length := binary.BigEndian.Uint32(firstBlock[:4])
if length > maxPacket {
return nil, cbcError("ssh: packet too large")
}
if length+4 < maxUInt32(cbcMinPacketSize, blockSize) {
// The minimum size of a packet is 16 (or the cipher block size, whichever
// is larger) bytes.
return nil, cbcError("ssh: packet too small")
}
// The length of the packet (including the length field but not the MAC) must
// be a multiple of the block size or 8, whichever is larger.
if (length+4)%maxUInt32(cbcMinPacketSizeMultiple, blockSize) != 0 {
return nil, cbcError("ssh: invalid packet length multiple")
}
paddingLength := uint32(firstBlock[4])
if paddingLength < cbcMinPaddingSize || length <= paddingLength+1 {
return nil, cbcError("ssh: invalid packet length")
}
// Positions within the c.packetData buffer:
macStart := 4 + length
paddingStart := macStart - paddingLength
// Entire packet size, starting before length, ending at end of mac.
entirePacketSize := macStart + c.macSize
// Ensure c.packetData is large enough for the entire packet data.
if uint32(cap(c.packetData)) < entirePacketSize {
// Still need to upsize and copy, but this should be rare at runtime, only
// on upsizing the packetData buffer.
c.packetData = make([]byte, entirePacketSize)
copy(c.packetData, firstBlock)
} else {
c.packetData = c.packetData[:entirePacketSize]
}
if n, err := io.ReadFull(r, c.packetData[firstBlockLength:]); err != nil {
return nil, err
} else {
c.oracleCamouflage -= uint32(n)
}
remainingCrypted := c.packetData[firstBlockLength:macStart]
c.decrypter.CryptBlocks(remainingCrypted, remainingCrypted)
mac := c.packetData[macStart:]
if c.mac != nil {
c.mac.Reset()
binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
c.mac.Write(c.seqNumBytes[:])
c.mac.Write(c.packetData[:macStart])
c.macResult = c.mac.Sum(c.macResult[:0])
if subtle.ConstantTimeCompare(c.macResult, mac) != 1 {
return nil, cbcError("ssh: MAC failure")
}
}
return c.packetData[prefixLen:paddingStart], nil
}
func (c *cbcCipher) writePacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
effectiveBlockSize := maxUInt32(cbcMinPacketSizeMultiple, c.encrypter.BlockSize())
// Length of encrypted portion of the packet (header, payload, padding).
// Enforce minimum padding and packet size.
encLength := maxUInt32(prefixLen+len(packet)+cbcMinPaddingSize, cbcMinPaddingSize)
// Enforce block size.
encLength = (encLength + effectiveBlockSize - 1) / effectiveBlockSize * effectiveBlockSize
length := encLength - 4
paddingLength := int(length) - (1 + len(packet))
// Overall buffer contains: header, payload, padding, mac.
// Space for the MAC is reserved in the capacity but not the slice length.
bufferSize := encLength + c.macSize
if uint32(cap(c.packetData)) < bufferSize {
c.packetData = make([]byte, encLength, bufferSize)
} else {
c.packetData = c.packetData[:encLength]
}
p := c.packetData
// Packet header.
binary.BigEndian.PutUint32(p, length)
p = p[4:]
p[0] = byte(paddingLength)
// Payload.
p = p[1:]
copy(p, packet)
// Padding.
p = p[len(packet):]
if _, err := io.ReadFull(rand, p); err != nil {
return err
}
if c.mac != nil {
c.mac.Reset()
binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
c.mac.Write(c.seqNumBytes[:])
c.mac.Write(c.packetData)
// The MAC is now appended into the capacity reserved for it earlier.
c.packetData = c.mac.Sum(c.packetData)
}
c.encrypter.CryptBlocks(c.packetData[:encLength], c.packetData[:encLength])
if _, err := w.Write(c.packetData); err != nil {
return err
}
return nil
}