mirror of
https://github.com/vbatts/go-mtree.git
synced 2024-12-04 22:05:39 +00:00
c9762c4d0e
This would help us build go-mtree on RHEL/CentOS and distros where golang.org/x/crypto isn't provided or supported. Signed-off-by: Lokesh Mandvekar <lsm5@fedoraproject.org>
44 lines
2.4 KiB
Go
44 lines
2.4 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package bn256
|
|
|
|
import (
|
|
"math/big"
|
|
)
|
|
|
|
func bigFromBase10(s string) *big.Int {
|
|
n, _ := new(big.Int).SetString(s, 10)
|
|
return n
|
|
}
|
|
|
|
// u is the BN parameter that determines the prime: 1868033³.
|
|
var u = bigFromBase10("6518589491078791937")
|
|
|
|
// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
|
|
var p = bigFromBase10("65000549695646603732796438742359905742825358107623003571877145026864184071783")
|
|
|
|
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
|
|
var Order = bigFromBase10("65000549695646603732796438742359905742570406053903786389881062969044166799969")
|
|
|
|
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+3.
|
|
var xiToPMinus1Over6 = &gfP2{bigFromBase10("8669379979083712429711189836753509758585994370025260553045152614783263110636"), bigFromBase10("19998038925833620163537568958541907098007303196759855091367510456613536016040")}
|
|
|
|
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+3.
|
|
var xiToPMinus1Over3 = &gfP2{bigFromBase10("26098034838977895781559542626833399156321265654106457577426020397262786167059"), bigFromBase10("15931493369629630809226283458085260090334794394361662678240713231519278691715")}
|
|
|
|
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+3.
|
|
var xiToPMinus1Over2 = &gfP2{bigFromBase10("50997318142241922852281555961173165965672272825141804376761836765206060036244"), bigFromBase10("38665955945962842195025998234511023902832543644254935982879660597356748036009")}
|
|
|
|
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+3.
|
|
var xiToPSquaredMinus1Over3 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437752")
|
|
|
|
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+3 (a cubic root of unity, mod p).
|
|
var xiTo2PSquaredMinus2Over3 = bigFromBase10("4985783334309134261147736404674766913742361673560802634030")
|
|
|
|
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+3 (a cubic root of -1, mod p).
|
|
var xiToPSquaredMinus1Over6 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437753")
|
|
|
|
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+3.
|
|
var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19885131339612776214803633203834694332692106372356013117629940868870585019582"), bigFromBase10("21645619881471562101905880913352894726728173167203616652430647841922248593627")}
|