linux-stable/include/linux/minmax.h

170 lines
4.9 KiB
C
Raw Permalink Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MINMAX_H
#define _LINUX_MINMAX_H
#include <linux/const.h>
/*
* min()/max()/clamp() macros must accomplish three things:
*
* - avoid multiple evaluations of the arguments (so side-effects like
* "x++" happen only once) when non-constant.
* - perform strict type-checking (to generate warnings instead of
* nasty runtime surprises). See the "unnecessary" pointer comparison
* in __typecheck().
* - retain result as a constant expressions when called with only
* constant expressions (to avoid tripping VLA warnings in stack
* allocation usage).
*/
#define __typecheck(x, y) \
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
#define __no_side_effects(x, y) \
(__is_constexpr(x) && __is_constexpr(y))
#define __safe_cmp(x, y) \
(__typecheck(x, y) && __no_side_effects(x, y))
#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
#define __cmp_once(x, y, unique_x, unique_y, op) ({ \
typeof(x) unique_x = (x); \
typeof(y) unique_y = (y); \
__cmp(unique_x, unique_y, op); })
#define __careful_cmp(x, y, op) \
__builtin_choose_expr(__safe_cmp(x, y), \
__cmp(x, y, op), \
__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
#define __clamp(val, lo, hi) \
minmax: clamp more efficiently by avoiding extra comparison Currently the clamp algorithm does: if (val > hi) val = hi; if (val < lo) val = lo; But since hi > lo by definition, this can be made more efficient with: if (val > hi) val = hi; else if (val < lo) val = lo; So fix up the clamp and clamp_t functions to do this, adding the same argument checking as for min and min_t. For simple cases, code generation on x86_64 and aarch64 stay about the same: before: cmp edi, edx mov eax, esi cmova edi, edx cmp edi, esi cmovnb eax, edi ret after: cmp edi, esi mov eax, edx cmovnb esi, edi cmp edi, edx cmovb eax, esi ret before: cmp w0, w2 csel w8, w0, w2, lo cmp w8, w1 csel w0, w8, w1, hi ret after: cmp w0, w1 csel w8, w0, w1, hi cmp w0, w2 csel w0, w8, w2, lo ret On MIPS64, however, code generation improves, by removing arithmetic in the second branch: before: sltu $3,$6,$4 bne $3,$0,.L2 move $2,$6 move $2,$4 .L2: sltu $3,$2,$5 bnel $3,$0,.L7 move $2,$5 .L7: jr $31 nop after: sltu $3,$4,$6 beq $3,$0,.L13 move $2,$6 sltu $3,$4,$5 bne $3,$0,.L12 move $2,$4 .L13: jr $31 nop .L12: jr $31 move $2,$5 For more complex cases with surrounding code, the effects are a bit more complicated. For example, consider this simplified version of timestamp_truncate() from fs/inode.c on x86_64: struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) { struct super_block *sb = inode->i_sb; unsigned int gran = sb->s_time_gran; t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); if (t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min) t.tv_nsec = 0; return t; } before: mov r8, rdx mov rdx, rsi mov rcx, QWORD PTR [r8] mov rax, QWORD PTR [rcx+8] mov rcx, QWORD PTR [rcx+16] cmp rax, rdi mov r8, rcx cmovge rdi, rax cmp rdi, rcx cmovle r8, rdi cmp rax, r8 je .L4 cmp rdi, rcx jge .L4 mov rax, r8 ret .L4: xor edx, edx mov rax, r8 ret after: mov rax, QWORD PTR [rdx] mov rdx, QWORD PTR [rax+8] mov rax, QWORD PTR [rax+16] cmp rax, rdi jg .L6 mov r8, rax xor edx, edx .L2: mov rax, r8 ret .L6: cmp rdx, rdi mov r8, rdi cmovge r8, rdx cmp rax, r8 je .L4 xor eax, eax cmp rdx, rdi cmovl rax, rsi mov rdx, rax mov rax, r8 ret .L4: xor edx, edx jmp .L2 In this case, we actually gain a branch, unfortunately, because the compiler's replacement axioms no longer as cleanly apply. So all and all, this change is a bit of a mixed bag. Link: https://lkml.kernel.org/r/20220926133435.1333846-2-Jason@zx2c4.com Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 13:34:35 +00:00
((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val)))
#define __clamp_once(val, lo, hi, unique_val, unique_lo, unique_hi) ({ \
typeof(val) unique_val = (val); \
typeof(lo) unique_lo = (lo); \
typeof(hi) unique_hi = (hi); \
__clamp(unique_val, unique_lo, unique_hi); })
#define __clamp_input_check(lo, hi) \
(BUILD_BUG_ON_ZERO(__builtin_choose_expr( \
__is_constexpr((lo) > (hi)), (lo) > (hi), false)))
#define __careful_clamp(val, lo, hi) ({ \
__clamp_input_check(lo, hi) + \
__builtin_choose_expr(__typecheck(val, lo) && __typecheck(val, hi) && \
__typecheck(hi, lo) && __is_constexpr(val) && \
__is_constexpr(lo) && __is_constexpr(hi), \
__clamp(val, lo, hi), \
__clamp_once(val, lo, hi, __UNIQUE_ID(__val), \
__UNIQUE_ID(__lo), __UNIQUE_ID(__hi))); })
/**
* min - return minimum of two values of the same or compatible types
* @x: first value
* @y: second value
*/
#define min(x, y) __careful_cmp(x, y, <)
/**
* max - return maximum of two values of the same or compatible types
* @x: first value
* @y: second value
*/
#define max(x, y) __careful_cmp(x, y, >)
/**
* min3 - return minimum of three values
* @x: first value
* @y: second value
* @z: third value
*/
#define min3(x, y, z) min((typeof(x))min(x, y), z)
/**
* max3 - return maximum of three values
* @x: first value
* @y: second value
* @z: third value
*/
#define max3(x, y, z) max((typeof(x))max(x, y), z)
/**
* min_not_zero - return the minimum that is _not_ zero, unless both are zero
* @x: value1
* @y: value2
*/
#define min_not_zero(x, y) ({ \
typeof(x) __x = (x); \
typeof(y) __y = (y); \
__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
/**
* clamp - return a value clamped to a given range with strict typechecking
* @val: current value
* @lo: lowest allowable value
* @hi: highest allowable value
*
* This macro does strict typechecking of @lo/@hi to make sure they are of the
* same type as @val. See the unnecessary pointer comparisons.
*/
#define clamp(val, lo, hi) __careful_clamp(val, lo, hi)
/*
* ..and if you can't take the strict
* types, you can specify one yourself.
*
* Or not use min/max/clamp at all, of course.
*/
/**
* min_t - return minimum of two values, using the specified type
* @type: data type to use
* @x: first value
* @y: second value
*/
#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
/**
* max_t - return maximum of two values, using the specified type
* @type: data type to use
* @x: first value
* @y: second value
*/
#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >)
/**
* clamp_t - return a value clamped to a given range using a given type
* @type: the type of variable to use
* @val: current value
* @lo: minimum allowable value
* @hi: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of type
* @type to make all the comparisons.
*/
#define clamp_t(type, val, lo, hi) __careful_clamp((type)(val), (type)(lo), (type)(hi))
/**
* clamp_val - return a value clamped to a given range using val's type
* @val: current value
* @lo: minimum allowable value
* @hi: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of whatever
* type the input argument @val is. This is useful when @val is an unsigned
* type and @lo and @hi are literals that will otherwise be assigned a signed
* integer type.
*/
#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
/**
* swap - swap values of @a and @b
* @a: first value
* @b: second value
*/
#define swap(a, b) \
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
#endif /* _LINUX_MINMAX_H */