linux-stable/fs/9p/vfs_inode.c

1373 lines
32 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* This file contains vfs inode ops for the 9P2000 protocol.
*
* Copyright (C) 2004 by Eric Van Hensbergen <ericvh@gmail.com>
* Copyright (C) 2002 by Ron Minnich <rminnich@lanl.gov>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/namei.h>
#include <linux/sched.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/xattr.h>
#include <linux/posix_acl.h>
#include <net/9p/9p.h>
#include <net/9p/client.h>
#include "v9fs.h"
#include "v9fs_vfs.h"
#include "fid.h"
#include "cache.h"
#include "xattr.h"
#include "acl.h"
static const struct inode_operations v9fs_dir_inode_operations;
static const struct inode_operations v9fs_dir_inode_operations_dotu;
static const struct inode_operations v9fs_file_inode_operations;
static const struct inode_operations v9fs_symlink_inode_operations;
/**
* unixmode2p9mode - convert unix mode bits to plan 9
* @v9ses: v9fs session information
* @mode: mode to convert
*
*/
static u32 unixmode2p9mode(struct v9fs_session_info *v9ses, umode_t mode)
{
int res;
res = mode & 0777;
if (S_ISDIR(mode))
res |= P9_DMDIR;
if (v9fs_proto_dotu(v9ses)) {
if (v9ses->nodev == 0) {
if (S_ISSOCK(mode))
res |= P9_DMSOCKET;
if (S_ISFIFO(mode))
res |= P9_DMNAMEDPIPE;
if (S_ISBLK(mode))
res |= P9_DMDEVICE;
if (S_ISCHR(mode))
res |= P9_DMDEVICE;
}
if ((mode & S_ISUID) == S_ISUID)
res |= P9_DMSETUID;
if ((mode & S_ISGID) == S_ISGID)
res |= P9_DMSETGID;
if ((mode & S_ISVTX) == S_ISVTX)
res |= P9_DMSETVTX;
}
return res;
}
/**
* p9mode2perm- convert plan9 mode bits to unix permission bits
* @v9ses: v9fs session information
* @stat: p9_wstat from which mode need to be derived
*
*/
static int p9mode2perm(struct v9fs_session_info *v9ses,
struct p9_wstat *stat)
{
int res;
int mode = stat->mode;
res = mode & 0777; /* S_IRWXUGO */
if (v9fs_proto_dotu(v9ses)) {
if ((mode & P9_DMSETUID) == P9_DMSETUID)
res |= S_ISUID;
if ((mode & P9_DMSETGID) == P9_DMSETGID)
res |= S_ISGID;
if ((mode & P9_DMSETVTX) == P9_DMSETVTX)
res |= S_ISVTX;
}
return res;
}
/**
* p9mode2unixmode- convert plan9 mode bits to unix mode bits
* @v9ses: v9fs session information
* @stat: p9_wstat from which mode need to be derived
* @rdev: major number, minor number in case of device files.
*
*/
static umode_t p9mode2unixmode(struct v9fs_session_info *v9ses,
struct p9_wstat *stat, dev_t *rdev)
{
int res, r;
u32 mode = stat->mode;
*rdev = 0;
res = p9mode2perm(v9ses, stat);
if ((mode & P9_DMDIR) == P9_DMDIR)
res |= S_IFDIR;
else if ((mode & P9_DMSYMLINK) && (v9fs_proto_dotu(v9ses)))
res |= S_IFLNK;
else if ((mode & P9_DMSOCKET) && (v9fs_proto_dotu(v9ses))
&& (v9ses->nodev == 0))
res |= S_IFSOCK;
else if ((mode & P9_DMNAMEDPIPE) && (v9fs_proto_dotu(v9ses))
&& (v9ses->nodev == 0))
res |= S_IFIFO;
else if ((mode & P9_DMDEVICE) && (v9fs_proto_dotu(v9ses))
&& (v9ses->nodev == 0)) {
char type = 0;
int major = -1, minor = -1;
r = sscanf(stat->extension, "%c %i %i", &type, &major, &minor);
if (r != 3) {
p9_debug(P9_DEBUG_ERROR,
"invalid device string, umode will be bogus: %s\n",
stat->extension);
return res;
}
switch (type) {
case 'c':
res |= S_IFCHR;
break;
case 'b':
res |= S_IFBLK;
break;
default:
p9_debug(P9_DEBUG_ERROR, "Unknown special type %c %s\n",
type, stat->extension);
}
*rdev = MKDEV(major, minor);
} else
res |= S_IFREG;
return res;
}
/**
* v9fs_uflags2omode- convert posix open flags to plan 9 mode bits
* @uflags: flags to convert
* @extended: if .u extensions are active
*/
int v9fs_uflags2omode(int uflags, int extended)
{
int ret;
switch (uflags&3) {
default:
case O_RDONLY:
ret = P9_OREAD;
break;
case O_WRONLY:
ret = P9_OWRITE;
break;
case O_RDWR:
ret = P9_ORDWR;
break;
}
if (uflags & O_TRUNC)
ret |= P9_OTRUNC;
if (extended) {
if (uflags & O_EXCL)
ret |= P9_OEXCL;
if (uflags & O_APPEND)
ret |= P9_OAPPEND;
}
return ret;
}
/**
* v9fs_blank_wstat - helper function to setup a 9P stat structure
* @wstat: structure to initialize
*
*/
void
v9fs_blank_wstat(struct p9_wstat *wstat)
{
wstat->type = ~0;
wstat->dev = ~0;
wstat->qid.type = ~0;
wstat->qid.version = ~0;
*((long long *)&wstat->qid.path) = ~0;
wstat->mode = ~0;
wstat->atime = ~0;
wstat->mtime = ~0;
wstat->length = ~0;
wstat->name = NULL;
wstat->uid = NULL;
wstat->gid = NULL;
wstat->muid = NULL;
wstat->n_uid = INVALID_UID;
wstat->n_gid = INVALID_GID;
wstat->n_muid = INVALID_UID;
wstat->extension = NULL;
}
/**
* v9fs_alloc_inode - helper function to allocate an inode
* @sb: The superblock to allocate the inode from
*/
struct inode *v9fs_alloc_inode(struct super_block *sb)
{
struct v9fs_inode *v9inode;
v9inode = alloc_inode_sb(sb, v9fs_inode_cache, GFP_KERNEL);
if (!v9inode)
return NULL;
v9inode->cache_validity = 0;
mutex_init(&v9inode->v_mutex);
netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context While randstruct was satisfied with using an open-coded "void *" offset cast for the netfs_i_context <-> inode casting, __builtin_object_size() as used by FORTIFY_SOURCE was not as easily fooled. This was causing the following complaint[1] from gcc v12: In file included from include/linux/string.h:253, from include/linux/ceph/ceph_debug.h:7, from fs/ceph/inode.c:2: In function 'fortify_memset_chk', inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2, inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2: include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning] 242 | __write_overflow_field(p_size_field, size); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fix this by embedding a struct inode into struct netfs_i_context (which should perhaps be renamed to struct netfs_inode). The struct inode vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode structs and vfs_inode is then simply changed to "netfs.inode" in those filesystems. Further, rename netfs_i_context to netfs_inode, get rid of the netfs_inode() function that converted a netfs_i_context pointer to an inode pointer (that can now be done with &ctx->inode) and rename the netfs_i_context() function to netfs_inode() (which is now a wrapper around container_of()). Most of the changes were done with: perl -p -i -e 's/vfs_inode/netfs.inode/'g \ `git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]` Kees suggested doing it with a pair structure[2] and a special declarator to insert that into the network filesystem's inode wrapper[3], but I think it's cleaner to embed it - and then it doesn't matter if struct randomisation reorders things. Dave Chinner suggested using a filesystem-specific VFS_I() function in each filesystem to convert that filesystem's own inode wrapper struct into the VFS inode struct[4]. Version #2: - Fix a couple of missed name changes due to a disabled cifs option. - Rename nfs_i_context to nfs_inode - Use "netfs" instead of "nic" as the member name in per-fs inode wrapper structs. [ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily disable '-Wattribute-warning' for now") that is no longer needed ] Fixes: bc899ee1c898 ("netfs: Add a netfs inode context") Reported-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Xiubo Li <xiubli@redhat.com> cc: Jonathan Corbet <corbet@lwn.net> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: Ilya Dryomov <idryomov@gmail.com> cc: Steve French <smfrench@gmail.com> cc: William Kucharski <william.kucharski@oracle.com> cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> cc: Dave Chinner <david@fromorbit.com> cc: linux-doc@vger.kernel.org cc: v9fs-developer@lists.sourceforge.net cc: linux-afs@lists.infradead.org cc: ceph-devel@vger.kernel.org cc: linux-cifs@vger.kernel.org cc: samba-technical@lists.samba.org cc: linux-fsdevel@vger.kernel.org cc: linux-hardening@vger.kernel.org Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2] Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3] Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4] Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-06-09 20:46:04 +00:00
return &v9inode->netfs.inode;
}
/**
* v9fs_free_inode - destroy an inode
* @inode: The inode to be freed
*/
void v9fs_free_inode(struct inode *inode)
{
kmem_cache_free(v9fs_inode_cache, V9FS_I(inode));
}
2011-01-07 06:49:49 +00:00
netfs: Add a netfs inode context Add a netfs_i_context struct that should be included in the network filesystem's own inode struct wrapper, directly after the VFS's inode struct, e.g.: struct my_inode { struct { /* These must be contiguous */ struct inode vfs_inode; struct netfs_i_context netfs_ctx; }; }; The netfs_i_context struct so far contains a single field for the network filesystem to use - the cache cookie: struct netfs_i_context { ... struct fscache_cookie *cache; }; Three functions are provided to help with this: (1) void netfs_i_context_init(struct inode *inode, const struct netfs_request_ops *ops); Initialise the netfs context and set the operations. (2) struct netfs_i_context *netfs_i_context(struct inode *inode); Find the netfs context from the VFS inode. (3) struct inode *netfs_inode(struct netfs_i_context *ctx); Find the VFS inode from the netfs context. Changes ======= ver #4) - Fix netfs_is_cache_enabled() to check cookie->cache_priv to see if a cache is present[3]. - Fix netfs_skip_folio_read() to zero out all of the page, not just some of it[3]. ver #3) - Split out the bit to move ceph cap-getting on readahead into ceph_init_request()[1]. - Stick in a comment to the netfs inode structs indicating the contiguity requirements[2]. ver #2) - Adjust documentation to match. - Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef". - Move the cap check from ceph_readahead() to ceph_init_request() to be called from netfslib. - Remove ceph_readahead() and use netfs_readahead() directly instead. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/8af0d47f17d89c06bbf602496dd845f2b0bf25b3.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/beaf4f6a6c2575ed489adb14b257253c868f9a5c.camel@kernel.org/ [2] Link: https://lore.kernel.org/r/3536452.1647421585@warthog.procyon.org.uk/ [3] Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/164692909854.2099075.9535537286264248057.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/306388.1647595110@warthog.procyon.org.uk/ # v4
2021-06-29 21:37:05 +00:00
/*
* Set parameters for the netfs library
*/
void v9fs_set_netfs_context(struct inode *inode)
netfs: Add a netfs inode context Add a netfs_i_context struct that should be included in the network filesystem's own inode struct wrapper, directly after the VFS's inode struct, e.g.: struct my_inode { struct { /* These must be contiguous */ struct inode vfs_inode; struct netfs_i_context netfs_ctx; }; }; The netfs_i_context struct so far contains a single field for the network filesystem to use - the cache cookie: struct netfs_i_context { ... struct fscache_cookie *cache; }; Three functions are provided to help with this: (1) void netfs_i_context_init(struct inode *inode, const struct netfs_request_ops *ops); Initialise the netfs context and set the operations. (2) struct netfs_i_context *netfs_i_context(struct inode *inode); Find the netfs context from the VFS inode. (3) struct inode *netfs_inode(struct netfs_i_context *ctx); Find the VFS inode from the netfs context. Changes ======= ver #4) - Fix netfs_is_cache_enabled() to check cookie->cache_priv to see if a cache is present[3]. - Fix netfs_skip_folio_read() to zero out all of the page, not just some of it[3]. ver #3) - Split out the bit to move ceph cap-getting on readahead into ceph_init_request()[1]. - Stick in a comment to the netfs inode structs indicating the contiguity requirements[2]. ver #2) - Adjust documentation to match. - Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef". - Move the cap check from ceph_readahead() to ceph_init_request() to be called from netfslib. - Remove ceph_readahead() and use netfs_readahead() directly instead. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/8af0d47f17d89c06bbf602496dd845f2b0bf25b3.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/beaf4f6a6c2575ed489adb14b257253c868f9a5c.camel@kernel.org/ [2] Link: https://lore.kernel.org/r/3536452.1647421585@warthog.procyon.org.uk/ [3] Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/164692909854.2099075.9535537286264248057.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/306388.1647595110@warthog.procyon.org.uk/ # v4
2021-06-29 21:37:05 +00:00
{
struct v9fs_inode *v9inode = V9FS_I(inode);
netfs: Optimise away reads above the point at which there can be no data Track the file position above which the server is not expected to have any data (the "zero point") and preemptively assume that we can satisfy requests by filling them with zeroes locally rather than attempting to download them if they're over that line - even if we've written data back to the server. Assume that any data that was written back above that position is held in the local cache. Note that we have to split requests that straddle the line. Make use of this to optimise away some reads from the server. We need to set the zero point in the following circumstances: (1) When we see an extant remote inode and have no cache for it, we set the zero_point to i_size. (2) On local inode creation, we set zero_point to 0. (3) On local truncation down, we reduce zero_point to the new i_size if the new i_size is lower. (4) On local truncation up, we don't change zero_point. (5) On local modification, we don't change zero_point. (6) On remote invalidation, we set zero_point to the new i_size. (7) If stored data is discarded from the pagecache or culled from fscache, we must set zero_point above that if the data also got written to the server. (8) If dirty data is written back to the server, but not fscache, we must set zero_point above that. (9) If a direct I/O write is made, set zero_point above that. Assuming the above, any read from the server at or above the zero_point position will return all zeroes. The zero_point value can be stored in the cache, provided the above rules are applied to it by any code that culls part of the local cache. Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2023-11-24 13:39:02 +00:00
netfs_inode_init(&v9inode->netfs, &v9fs_req_ops, true);
netfs: Add a netfs inode context Add a netfs_i_context struct that should be included in the network filesystem's own inode struct wrapper, directly after the VFS's inode struct, e.g.: struct my_inode { struct { /* These must be contiguous */ struct inode vfs_inode; struct netfs_i_context netfs_ctx; }; }; The netfs_i_context struct so far contains a single field for the network filesystem to use - the cache cookie: struct netfs_i_context { ... struct fscache_cookie *cache; }; Three functions are provided to help with this: (1) void netfs_i_context_init(struct inode *inode, const struct netfs_request_ops *ops); Initialise the netfs context and set the operations. (2) struct netfs_i_context *netfs_i_context(struct inode *inode); Find the netfs context from the VFS inode. (3) struct inode *netfs_inode(struct netfs_i_context *ctx); Find the VFS inode from the netfs context. Changes ======= ver #4) - Fix netfs_is_cache_enabled() to check cookie->cache_priv to see if a cache is present[3]. - Fix netfs_skip_folio_read() to zero out all of the page, not just some of it[3]. ver #3) - Split out the bit to move ceph cap-getting on readahead into ceph_init_request()[1]. - Stick in a comment to the netfs inode structs indicating the contiguity requirements[2]. ver #2) - Adjust documentation to match. - Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef". - Move the cap check from ceph_readahead() to ceph_init_request() to be called from netfslib. - Remove ceph_readahead() and use netfs_readahead() directly instead. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/8af0d47f17d89c06bbf602496dd845f2b0bf25b3.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/beaf4f6a6c2575ed489adb14b257253c868f9a5c.camel@kernel.org/ [2] Link: https://lore.kernel.org/r/3536452.1647421585@warthog.procyon.org.uk/ [3] Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/164692909854.2099075.9535537286264248057.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/306388.1647595110@warthog.procyon.org.uk/ # v4
2021-06-29 21:37:05 +00:00
}
int v9fs_init_inode(struct v9fs_session_info *v9ses,
struct inode *inode, struct p9_qid *qid, umode_t mode, dev_t rdev)
{
int err = 0;
struct v9fs_inode *v9inode = V9FS_I(inode);
memcpy(&v9inode->qid, qid, sizeof(struct p9_qid));
inode_init_owner(&nop_mnt_idmap, inode, NULL, mode);
inode->i_blocks = 0;
inode->i_rdev = rdev;
simple_inode_init_ts(inode);
inode->i_mapping->a_ops = &v9fs_addr_operations;
inode->i_private = NULL;
switch (mode & S_IFMT) {
case S_IFIFO:
case S_IFBLK:
case S_IFCHR:
case S_IFSOCK:
if (v9fs_proto_dotl(v9ses)) {
inode->i_op = &v9fs_file_inode_operations_dotl;
} else if (v9fs_proto_dotu(v9ses)) {
inode->i_op = &v9fs_file_inode_operations;
} else {
p9_debug(P9_DEBUG_ERROR,
"special files without extended mode\n");
err = -EINVAL;
goto error;
}
init_special_inode(inode, inode->i_mode, inode->i_rdev);
break;
case S_IFREG:
if (v9fs_proto_dotl(v9ses)) {
inode->i_op = &v9fs_file_inode_operations_dotl;
inode->i_fop = &v9fs_file_operations_dotl;
} else {
inode->i_op = &v9fs_file_inode_operations;
inode->i_fop = &v9fs_file_operations;
}
break;
case S_IFLNK:
if (!v9fs_proto_dotu(v9ses) && !v9fs_proto_dotl(v9ses)) {
p9_debug(P9_DEBUG_ERROR,
"extended modes used with legacy protocol\n");
err = -EINVAL;
goto error;
}
if (v9fs_proto_dotl(v9ses))
inode->i_op = &v9fs_symlink_inode_operations_dotl;
else
inode->i_op = &v9fs_symlink_inode_operations;
break;
case S_IFDIR:
inc_nlink(inode);
if (v9fs_proto_dotl(v9ses))
inode->i_op = &v9fs_dir_inode_operations_dotl;
else if (v9fs_proto_dotu(v9ses))
inode->i_op = &v9fs_dir_inode_operations_dotu;
else
inode->i_op = &v9fs_dir_inode_operations;
if (v9fs_proto_dotl(v9ses))
inode->i_fop = &v9fs_dir_operations_dotl;
else
inode->i_fop = &v9fs_dir_operations;
break;
default:
p9_debug(P9_DEBUG_ERROR, "BAD mode 0x%hx S_IFMT 0x%x\n",
mode, mode & S_IFMT);
err = -EINVAL;
goto error;
}
error:
return err;
}
/**
* v9fs_evict_inode - Remove an inode from the inode cache
* @inode: inode to release
*
*/
void v9fs_evict_inode(struct inode *inode)
{
struct v9fs_inode __maybe_unused *v9inode = V9FS_I(inode);
__le32 __maybe_unused version;
if (!is_bad_inode(inode)) {
netfs, 9p: Fix race between umount and async request completion There's a problem in 9p's interaction with netfslib whereby a crash occurs because the 9p_fid structs get forcibly destroyed during client teardown (without paying attention to their refcounts) before netfslib has finished with them. However, it's not a simple case of deferring the clunking that p9_fid_put() does as that requires the p9_client record to still be present. The problem is that netfslib has to unlock pages and clear the IN_PROGRESS flag before destroying the objects involved - including the fid - and, in any case, nothing checks to see if writeback completed barring looking at the page flags. Fix this by keeping a count of outstanding I/O requests (of any type) and waiting for it to quiesce during inode eviction. Reported-by: syzbot+df038d463cca332e8414@syzkaller.appspotmail.com Link: https://lore.kernel.org/all/0000000000005be0aa061846f8d6@google.com/ Reported-by: syzbot+d7c7a495a5e466c031b6@syzkaller.appspotmail.com Link: https://lore.kernel.org/all/000000000000b86c5e06130da9c6@google.com/ Reported-by: syzbot+1527696d41a634cc1819@syzkaller.appspotmail.com Link: https://lore.kernel.org/all/000000000000041f960618206d7e@google.com/ Signed-off-by: David Howells <dhowells@redhat.com> Link: https://lore.kernel.org/r/755891.1716560771@warthog.procyon.org.uk Tested-by: syzbot+d7c7a495a5e466c031b6@syzkaller.appspotmail.com Reviewed-by: Dominique Martinet <asmadeus@codewreck.org> cc: Eric Van Hensbergen <ericvh@kernel.org> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Jeff Layton <jlayton@kernel.org> cc: Steve French <sfrench@samba.org> cc: Hillf Danton <hdanton@sina.com> cc: v9fs@lists.linux.dev cc: linux-afs@lists.infradead.org cc: linux-cifs@vger.kernel.org cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org Reported-and-tested-by: syzbot+d7c7a495a5e466c031b6@syzkaller.appspotmail.com Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-05-24 14:26:11 +00:00
netfs_wait_for_outstanding_io(inode);
truncate_inode_pages_final(&inode->i_data);
version = cpu_to_le32(v9inode->qid.version);
netfs_clear_inode_writeback(inode, &version);
clear_inode(inode);
filemap_fdatawrite(&inode->i_data);
#ifdef CONFIG_9P_FSCACHE
if (v9fs_inode_cookie(v9inode))
fscache_relinquish_cookie(v9fs_inode_cookie(v9inode), false);
#endif
} else
clear_inode(inode);
}
struct inode *
v9fs_fid_iget(struct super_block *sb, struct p9_fid *fid, bool new)
{
dev_t rdev;
int retval;
umode_t umode;
struct inode *inode;
struct p9_wstat *st;
struct v9fs_session_info *v9ses = sb->s_fs_info;
inode = iget_locked(sb, QID2INO(&fid->qid));
if (unlikely(!inode))
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW)) {
if (!new) {
goto done;
} else {
p9_debug(P9_DEBUG_VFS, "WARNING: Inode collision %ld\n",
inode->i_ino);
iput(inode);
remove_inode_hash(inode);
inode = iget_locked(sb, QID2INO(&fid->qid));
WARN_ON(!(inode->i_state & I_NEW));
}
}
/*
* initialize the inode with the stat info
* FIXME!! we may need support for stale inodes
* later.
*/
st = p9_client_stat(fid);
if (IS_ERR(st)) {
retval = PTR_ERR(st);
goto error;
}
umode = p9mode2unixmode(v9ses, st, &rdev);
retval = v9fs_init_inode(v9ses, inode, &fid->qid, umode, rdev);
v9fs_stat2inode(st, inode, sb, 0);
p9stat_free(st);
kfree(st);
if (retval)
goto error;
v9fs_set_netfs_context(inode);
v9fs_cache_inode_get_cookie(inode);
unlock_new_inode(inode);
done:
return inode;
error:
iget_failed(inode);
return ERR_PTR(retval);
}
/**
* v9fs_at_to_dotl_flags- convert Linux specific AT flags to
* plan 9 AT flag.
* @flags: flags to convert
*/
static int v9fs_at_to_dotl_flags(int flags)
{
int rflags = 0;
if (flags & AT_REMOVEDIR)
rflags |= P9_DOTL_AT_REMOVEDIR;
return rflags;
}
9p: don't maintain dir i_nlink if the exported fs doesn't either If the exported filesystem dir on 9p server doesn't maintain accurate i_nlink count, e.g. always reports i_nlink as 1, then 9p should not maintain nlink count either, otherwise drop_link would report warning with i_nlink being zero. For example: - overlayfs sets nlink to 1 for merged dir - ext4 (with dir_nlink feature enabled) sets nlink to 1 if a dir has more than EXT4_LINK_MAX (65000) links. In this case, everytime a stat(2) call (getattr) on such exported dirs on 9p client side, the i_nlink gets reset to 1, then operations like rmdir(2), unlink(2) and rename(2) would cause the dir nlink to go to zero (then negative), which results in warnings in drop_nlink() and/or inc_nlink() calls. This can be reproduced easily as the following steps: - export a merged overlayfs dir via qemu virtfs to guest - mount the exported virtfs in guest - create two sub-directories in the root dir of the mounted 9pfs - stat the root dir of 9pfs, this resets nlink to 1 - remove all subdirs, the second unlink/rmdir would trigger warning ------------[ cut here ]------------ WARNING: CPU: 3 PID: 1284 at fs/inode.c:282 drop_nlink+0x3e/0x50 ... Call Trace: dump_stack+0x63/0x81 __warn+0xcb/0xf0 warn_slowpath_null+0x1d/0x20 drop_nlink+0x3e/0x50 v9fs_remove+0xaa/0x130 [9p] v9fs_vfs_rmdir+0x13/0x20 [9p] vfs_rmdir+0xb7/0x130 do_rmdir+0x1b8/0x230 SyS_unlinkat+0x22/0x30 do_syscall_64+0x67/0x180 ---[ end trace 43758d8ba91e603b ]--- Fix it by leaving i_nlink to be 1 and don't drop nlink if a directory has nlink <= 2, which indicates that the underlying exported fs doesn't maintain nlink count accurately. This follows what ext4 does in ext4_dec_count(). Link: http://lkml.kernel.org/r/20180312053829.4367-1-eguan@linux.alibaba.com Signed-off-by: Eryu Guan <eguan@linux.alibaba.com> Reviewed-by: Yiwen Jiang <jiangyiwen@huawei.com> Tested-by: Roman Kapl <code@rkapl.cz> Cc: Caspar Zhang <caspar@linux.alibaba.com> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Latchesar Ionkov <lucho@ionkov.net> Cc: <v9fs-developer@lists.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 23:19:49 +00:00
/**
* v9fs_dec_count - helper functon to drop i_nlink.
*
* If a directory had nlink <= 2 (including . and ..), then we should not drop
* the link count, which indicates the underlying exported fs doesn't maintain
* nlink accurately. e.g.
* - overlayfs sets nlink to 1 for merged dir
* - ext4 (with dir_nlink feature enabled) sets nlink to 1 if a dir has more
* than EXT4_LINK_MAX (65000) links.
*
* @inode: inode whose nlink is being dropped
*/
static void v9fs_dec_count(struct inode *inode)
{
if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2) {
if (inode->i_nlink) {
drop_nlink(inode);
} else {
p9_debug(P9_DEBUG_VFS,
"WARNING: unexpected i_nlink zero %d inode %ld\n",
inode->i_nlink, inode->i_ino);
}
}
9p: don't maintain dir i_nlink if the exported fs doesn't either If the exported filesystem dir on 9p server doesn't maintain accurate i_nlink count, e.g. always reports i_nlink as 1, then 9p should not maintain nlink count either, otherwise drop_link would report warning with i_nlink being zero. For example: - overlayfs sets nlink to 1 for merged dir - ext4 (with dir_nlink feature enabled) sets nlink to 1 if a dir has more than EXT4_LINK_MAX (65000) links. In this case, everytime a stat(2) call (getattr) on such exported dirs on 9p client side, the i_nlink gets reset to 1, then operations like rmdir(2), unlink(2) and rename(2) would cause the dir nlink to go to zero (then negative), which results in warnings in drop_nlink() and/or inc_nlink() calls. This can be reproduced easily as the following steps: - export a merged overlayfs dir via qemu virtfs to guest - mount the exported virtfs in guest - create two sub-directories in the root dir of the mounted 9pfs - stat the root dir of 9pfs, this resets nlink to 1 - remove all subdirs, the second unlink/rmdir would trigger warning ------------[ cut here ]------------ WARNING: CPU: 3 PID: 1284 at fs/inode.c:282 drop_nlink+0x3e/0x50 ... Call Trace: dump_stack+0x63/0x81 __warn+0xcb/0xf0 warn_slowpath_null+0x1d/0x20 drop_nlink+0x3e/0x50 v9fs_remove+0xaa/0x130 [9p] v9fs_vfs_rmdir+0x13/0x20 [9p] vfs_rmdir+0xb7/0x130 do_rmdir+0x1b8/0x230 SyS_unlinkat+0x22/0x30 do_syscall_64+0x67/0x180 ---[ end trace 43758d8ba91e603b ]--- Fix it by leaving i_nlink to be 1 and don't drop nlink if a directory has nlink <= 2, which indicates that the underlying exported fs doesn't maintain nlink count accurately. This follows what ext4 does in ext4_dec_count(). Link: http://lkml.kernel.org/r/20180312053829.4367-1-eguan@linux.alibaba.com Signed-off-by: Eryu Guan <eguan@linux.alibaba.com> Reviewed-by: Yiwen Jiang <jiangyiwen@huawei.com> Tested-by: Roman Kapl <code@rkapl.cz> Cc: Caspar Zhang <caspar@linux.alibaba.com> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Latchesar Ionkov <lucho@ionkov.net> Cc: <v9fs-developer@lists.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 23:19:49 +00:00
}
/**
* v9fs_remove - helper function to remove files and directories
* @dir: directory inode that is being deleted
* @dentry: dentry that is being deleted
* @flags: removing a directory
*
*/
static int v9fs_remove(struct inode *dir, struct dentry *dentry, int flags)
{
struct inode *inode;
int retval = -EOPNOTSUPP;
struct p9_fid *v9fid, *dfid;
struct v9fs_session_info *v9ses;
p9_debug(P9_DEBUG_VFS, "inode: %p dentry: %p rmdir: %x\n",
dir, dentry, flags);
v9ses = v9fs_inode2v9ses(dir);
inode = d_inode(dentry);
dfid = v9fs_parent_fid(dentry);
if (IS_ERR(dfid)) {
retval = PTR_ERR(dfid);
p9_debug(P9_DEBUG_VFS, "fid lookup failed %d\n", retval);
return retval;
}
if (v9fs_proto_dotl(v9ses))
retval = p9_client_unlinkat(dfid, dentry->d_name.name,
v9fs_at_to_dotl_flags(flags));
p9_fid_put(dfid);
if (retval == -EOPNOTSUPP) {
/* Try the one based on path */
v9fid = v9fs_fid_clone(dentry);
if (IS_ERR(v9fid))
return PTR_ERR(v9fid);
retval = p9_client_remove(v9fid);
}
if (!retval) {
/*
* directories on unlink should have zero
* link count
*/
if (flags & AT_REMOVEDIR) {
clear_nlink(inode);
9p: don't maintain dir i_nlink if the exported fs doesn't either If the exported filesystem dir on 9p server doesn't maintain accurate i_nlink count, e.g. always reports i_nlink as 1, then 9p should not maintain nlink count either, otherwise drop_link would report warning with i_nlink being zero. For example: - overlayfs sets nlink to 1 for merged dir - ext4 (with dir_nlink feature enabled) sets nlink to 1 if a dir has more than EXT4_LINK_MAX (65000) links. In this case, everytime a stat(2) call (getattr) on such exported dirs on 9p client side, the i_nlink gets reset to 1, then operations like rmdir(2), unlink(2) and rename(2) would cause the dir nlink to go to zero (then negative), which results in warnings in drop_nlink() and/or inc_nlink() calls. This can be reproduced easily as the following steps: - export a merged overlayfs dir via qemu virtfs to guest - mount the exported virtfs in guest - create two sub-directories in the root dir of the mounted 9pfs - stat the root dir of 9pfs, this resets nlink to 1 - remove all subdirs, the second unlink/rmdir would trigger warning ------------[ cut here ]------------ WARNING: CPU: 3 PID: 1284 at fs/inode.c:282 drop_nlink+0x3e/0x50 ... Call Trace: dump_stack+0x63/0x81 __warn+0xcb/0xf0 warn_slowpath_null+0x1d/0x20 drop_nlink+0x3e/0x50 v9fs_remove+0xaa/0x130 [9p] v9fs_vfs_rmdir+0x13/0x20 [9p] vfs_rmdir+0xb7/0x130 do_rmdir+0x1b8/0x230 SyS_unlinkat+0x22/0x30 do_syscall_64+0x67/0x180 ---[ end trace 43758d8ba91e603b ]--- Fix it by leaving i_nlink to be 1 and don't drop nlink if a directory has nlink <= 2, which indicates that the underlying exported fs doesn't maintain nlink count accurately. This follows what ext4 does in ext4_dec_count(). Link: http://lkml.kernel.org/r/20180312053829.4367-1-eguan@linux.alibaba.com Signed-off-by: Eryu Guan <eguan@linux.alibaba.com> Reviewed-by: Yiwen Jiang <jiangyiwen@huawei.com> Tested-by: Roman Kapl <code@rkapl.cz> Cc: Caspar Zhang <caspar@linux.alibaba.com> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Latchesar Ionkov <lucho@ionkov.net> Cc: <v9fs-developer@lists.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 23:19:49 +00:00
v9fs_dec_count(dir);
} else
9p: don't maintain dir i_nlink if the exported fs doesn't either If the exported filesystem dir on 9p server doesn't maintain accurate i_nlink count, e.g. always reports i_nlink as 1, then 9p should not maintain nlink count either, otherwise drop_link would report warning with i_nlink being zero. For example: - overlayfs sets nlink to 1 for merged dir - ext4 (with dir_nlink feature enabled) sets nlink to 1 if a dir has more than EXT4_LINK_MAX (65000) links. In this case, everytime a stat(2) call (getattr) on such exported dirs on 9p client side, the i_nlink gets reset to 1, then operations like rmdir(2), unlink(2) and rename(2) would cause the dir nlink to go to zero (then negative), which results in warnings in drop_nlink() and/or inc_nlink() calls. This can be reproduced easily as the following steps: - export a merged overlayfs dir via qemu virtfs to guest - mount the exported virtfs in guest - create two sub-directories in the root dir of the mounted 9pfs - stat the root dir of 9pfs, this resets nlink to 1 - remove all subdirs, the second unlink/rmdir would trigger warning ------------[ cut here ]------------ WARNING: CPU: 3 PID: 1284 at fs/inode.c:282 drop_nlink+0x3e/0x50 ... Call Trace: dump_stack+0x63/0x81 __warn+0xcb/0xf0 warn_slowpath_null+0x1d/0x20 drop_nlink+0x3e/0x50 v9fs_remove+0xaa/0x130 [9p] v9fs_vfs_rmdir+0x13/0x20 [9p] vfs_rmdir+0xb7/0x130 do_rmdir+0x1b8/0x230 SyS_unlinkat+0x22/0x30 do_syscall_64+0x67/0x180 ---[ end trace 43758d8ba91e603b ]--- Fix it by leaving i_nlink to be 1 and don't drop nlink if a directory has nlink <= 2, which indicates that the underlying exported fs doesn't maintain nlink count accurately. This follows what ext4 does in ext4_dec_count(). Link: http://lkml.kernel.org/r/20180312053829.4367-1-eguan@linux.alibaba.com Signed-off-by: Eryu Guan <eguan@linux.alibaba.com> Reviewed-by: Yiwen Jiang <jiangyiwen@huawei.com> Tested-by: Roman Kapl <code@rkapl.cz> Cc: Caspar Zhang <caspar@linux.alibaba.com> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Latchesar Ionkov <lucho@ionkov.net> Cc: <v9fs-developer@lists.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 23:19:49 +00:00
v9fs_dec_count(inode);
if (inode->i_nlink <= 0) /* no more refs unhash it */
remove_inode_hash(inode);
v9fs_invalidate_inode_attr(inode);
v9fs_invalidate_inode_attr(dir);
/* invalidate all fids associated with dentry */
/* NOTE: This will not include open fids */
dentry->d_op->d_release(dentry);
}
return retval;
}
/**
* v9fs_create - Create a file
* @v9ses: session information
* @dir: directory that dentry is being created in
* @dentry: dentry that is being created
* @extension: 9p2000.u extension string to support devices, etc.
* @perm: create permissions
* @mode: open mode
*
*/
static struct p9_fid *
v9fs_create(struct v9fs_session_info *v9ses, struct inode *dir,
struct dentry *dentry, char *extension, u32 perm, u8 mode)
{
int err;
const unsigned char *name;
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
struct p9_fid *dfid, *ofid = NULL, *fid = NULL;
struct inode *inode;
p9_debug(P9_DEBUG_VFS, "name %pd\n", dentry);
name = dentry->d_name.name;
dfid = v9fs_parent_fid(dentry);
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-17 19:31:07 +00:00
if (IS_ERR(dfid)) {
err = PTR_ERR(dfid);
p9_debug(P9_DEBUG_VFS, "fid lookup failed %d\n", err);
return ERR_PTR(err);
}
/* clone a fid to use for creation */
ofid = clone_fid(dfid);
if (IS_ERR(ofid)) {
err = PTR_ERR(ofid);
p9_debug(P9_DEBUG_VFS, "p9_client_walk failed %d\n", err);
goto error;
}
err = p9_client_fcreate(ofid, name, perm, mode, extension);
if (err < 0) {
p9_debug(P9_DEBUG_VFS, "p9_client_fcreate failed %d\n", err);
goto error;
}
if (!(perm & P9_DMLINK)) {
/* now walk from the parent so we can get unopened fid */
fid = p9_client_walk(dfid, 1, &name, 1);
if (IS_ERR(fid)) {
err = PTR_ERR(fid);
p9_debug(P9_DEBUG_VFS,
"p9_client_walk failed %d\n", err);
goto error;
}
/*
* instantiate inode and assign the unopened fid to the dentry
*/
inode = v9fs_get_inode_from_fid(v9ses, fid, dir->i_sb, true);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
p9_debug(P9_DEBUG_VFS,
"inode creation failed %d\n", err);
goto error;
}
v9fs_fid_add(dentry, &fid);
d_instantiate(dentry, inode);
}
p9_fid_put(dfid);
return ofid;
error:
p9_fid_put(dfid);
p9_fid_put(ofid);
p9_fid_put(fid);
return ERR_PTR(err);
}
/**
* v9fs_vfs_create - VFS hook to create a regular file
* @idmap: idmap of the mount
* @dir: The parent directory
* @dentry: The name of file to be created
* @mode: The UNIX file mode to set
* @excl: True if the file must not yet exist
*
* open(.., O_CREAT) is handled in v9fs_vfs_atomic_open(). This is only called
* for mknod(2).
*
*/
static int
v9fs_vfs_create(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode, bool excl)
{
struct v9fs_session_info *v9ses = v9fs_inode2v9ses(dir);
u32 perm = unixmode2p9mode(v9ses, mode);
struct p9_fid *fid;
/* P9_OEXCL? */
fid = v9fs_create(v9ses, dir, dentry, NULL, perm, P9_ORDWR);
if (IS_ERR(fid))
return PTR_ERR(fid);
v9fs_invalidate_inode_attr(dir);
p9_fid_put(fid);
return 0;
}
/**
* v9fs_vfs_mkdir - VFS mkdir hook to create a directory
* @idmap: idmap of the mount
* @dir: inode that is being unlinked
* @dentry: dentry that is being unlinked
* @mode: mode for new directory
*
*/
static int v9fs_vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode)
{
int err;
u32 perm;
struct p9_fid *fid;
struct v9fs_session_info *v9ses;
p9_debug(P9_DEBUG_VFS, "name %pd\n", dentry);
err = 0;
v9ses = v9fs_inode2v9ses(dir);
perm = unixmode2p9mode(v9ses, mode | S_IFDIR);
fid = v9fs_create(v9ses, dir, dentry, NULL, perm, P9_OREAD);
if (IS_ERR(fid)) {
err = PTR_ERR(fid);
fid = NULL;
} else {
inc_nlink(dir);
v9fs_invalidate_inode_attr(dir);
}
if (fid)
p9_fid_put(fid);
return err;
}
/**
* v9fs_vfs_lookup - VFS lookup hook to "walk" to a new inode
* @dir: inode that is being walked from
* @dentry: dentry that is being walked to?
* @flags: lookup flags (unused)
*
*/
struct dentry *v9fs_vfs_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct dentry *res;
struct v9fs_session_info *v9ses;
struct p9_fid *dfid, *fid;
struct inode *inode;
const unsigned char *name;
p9_debug(P9_DEBUG_VFS, "dir: %p dentry: (%pd) %p flags: %x\n",
dir, dentry, dentry, flags);
if (dentry->d_name.len > NAME_MAX)
return ERR_PTR(-ENAMETOOLONG);
v9ses = v9fs_inode2v9ses(dir);
/* We can walk d_parent because we hold the dir->i_mutex */
dfid = v9fs_parent_fid(dentry);
if (IS_ERR(dfid))
return ERR_CAST(dfid);
/*
* Make sure we don't use a wrong inode due to parallel
* unlink. For cached mode create calls request for new
* inode. But with cache disabled, lookup should do this.
*/
name = dentry->d_name.name;
fid = p9_client_walk(dfid, 1, &name, 1);
p9_fid_put(dfid);
if (fid == ERR_PTR(-ENOENT))
inode = NULL;
else if (IS_ERR(fid))
inode = ERR_CAST(fid);
else
inode = v9fs_get_inode_from_fid(v9ses, fid, dir->i_sb, false);
/*
* If we had a rename on the server and a parallel lookup
* for the new name, then make sure we instantiate with
* the new name. ie look up for a/b, while on server somebody
* moved b under k and client parallely did a lookup for
* k/b.
*/
res = d_splice_alias(inode, dentry);
if (!IS_ERR(fid)) {
if (!res)
v9fs_fid_add(dentry, &fid);
else if (!IS_ERR(res))
v9fs_fid_add(res, &fid);
else
p9_fid_put(fid);
}
return res;
}
static int
v9fs_vfs_atomic_open(struct inode *dir, struct dentry *dentry,
struct file *file, unsigned int flags, umode_t mode)
{
int err;
u32 perm;
struct v9fs_inode __maybe_unused *v9inode;
struct v9fs_session_info *v9ses;
struct p9_fid *fid;
struct dentry *res = NULL;
struct inode *inode;
int p9_omode;
if (d_in_lookup(dentry)) {
res = v9fs_vfs_lookup(dir, dentry, 0);
if (IS_ERR(res))
return PTR_ERR(res);
if (res)
dentry = res;
}
/* Only creates */
if (!(flags & O_CREAT) || d_really_is_positive(dentry))
return finish_no_open(file, res);
v9ses = v9fs_inode2v9ses(dir);
perm = unixmode2p9mode(v9ses, mode);
p9_omode = v9fs_uflags2omode(flags, v9fs_proto_dotu(v9ses));
if ((v9ses->cache & CACHE_WRITEBACK) && (p9_omode & P9_OWRITE)) {
p9_omode = (p9_omode & ~P9_OWRITE) | P9_ORDWR;
p9_debug(P9_DEBUG_CACHE,
"write-only file with writeback enabled, creating w/ O_RDWR\n");
}
fid = v9fs_create(v9ses, dir, dentry, NULL, perm, p9_omode);
if (IS_ERR(fid)) {
err = PTR_ERR(fid);
goto error;
}
v9fs_invalidate_inode_attr(dir);
inode = d_inode(dentry);
v9inode = V9FS_I(inode);
err = finish_open(file, dentry, generic_file_open);
if (err)
goto error;
file->private_data = fid;
#ifdef CONFIG_9P_FSCACHE
if (v9ses->cache & CACHE_FSCACHE)
9p: Use fscache indexing rewrite and reenable caching Change the 9p filesystem to take account of the changes to fscache's indexing rewrite and reenable caching in 9p. The following changes have been made: (1) The fscache_netfs struct is no more, and there's no need to register the filesystem as a whole. (2) The session cookie is now an fscache_volume cookie, allocated with fscache_acquire_volume(). That takes three parameters: a string representing the "volume" in the index, a string naming the cache to use (or NULL) and a u64 that conveys coherency metadata for the volume. For 9p, I've made it render the volume name string as: "9p,<devname>,<cachetag>" where the cachetag is replaced by the aname if it wasn't supplied. This probably needs rethinking a bit as the aname can have slashes in it. It might be better to hash the cachetag and use the hash or I could substitute commas for the slashes or something. (3) The fscache_cookie_def is no more and needed information is passed directly to fscache_acquire_cookie(). The cache no longer calls back into the filesystem, but rather metadata changes are indicated at other times. fscache_acquire_cookie() is passed the same keying and coherency information as before. (4) The functions to set/reset/flush cookies are removed and fscache_use_cookie() and fscache_unuse_cookie() are used instead. fscache_use_cookie() is passed a flag to indicate if the cookie is opened for writing. fscache_unuse_cookie() is passed updates for the metadata if we changed it (ie. if the file was opened for writing). These are called when the file is opened or closed. (5) wait_on_page_bit[_killable]() is replaced with the specific wait functions for the bits waited upon. (6) I've got rid of some of the 9p-specific cache helper functions and called things like fscache_relinquish_cookie() directly as they'll optimise away if v9fs_inode_cookie() returns an unconditional NULL (which will be the case if CONFIG_9P_FSCACHE=n). (7) v9fs_vfs_setattr() is made to call fscache_resize() to change the size of the cache object. Notes: (A) We should call fscache_invalidate() if we detect that the server's copy of a file got changed by a third party, but I don't know where to do that. We don't need to do that when allocating the cookie as we get a check-and-invalidate when we initially bind to the cache object. (B) The copy-to-cache-on-writeback side of things will be handled in separate patch. Changes ======= ver #3: - Canonicalise the cookie key and coherency data to make them endianness-independent. ver #2: - Use gfpflags_allow_blocking() rather than using flag directly. - fscache_acquire_volume() now returns errors. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> Tested-by: Dominique Martinet <asmadeus@codewreck.org> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: v9fs-developer@lists.sourceforge.net cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819664645.215744.1555314582005286846.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906975017.143852.3459573173204394039.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967178512.1823006.17377493641569138183.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021573143.640689.3977487095697717967.stgit@warthog.procyon.org.uk/ # v4
2020-11-18 09:06:42 +00:00
fscache_use_cookie(v9fs_inode_cookie(v9inode),
file->f_mode & FMODE_WRITE);
#endif
v9fs_fid_add_modes(fid, v9ses->flags, v9ses->cache, file->f_flags);
v9fs_open_fid_add(inode, &fid);
file->f_mode |= FMODE_CREATED;
out:
dput(res);
return err;
error:
p9_fid_put(fid);
goto out;
}
/**
* v9fs_vfs_unlink - VFS unlink hook to delete an inode
* @i: inode that is being unlinked
* @d: dentry that is being unlinked
*
*/
int v9fs_vfs_unlink(struct inode *i, struct dentry *d)
{
return v9fs_remove(i, d, 0);
}
/**
* v9fs_vfs_rmdir - VFS unlink hook to delete a directory
* @i: inode that is being unlinked
* @d: dentry that is being unlinked
*
*/
int v9fs_vfs_rmdir(struct inode *i, struct dentry *d)
{
return v9fs_remove(i, d, AT_REMOVEDIR);
}
/**
* v9fs_vfs_rename - VFS hook to rename an inode
* @idmap: The idmap of the mount
* @old_dir: old dir inode
* @old_dentry: old dentry
* @new_dir: new dir inode
* @new_dentry: new dentry
* @flags: RENAME_* flags
*
*/
int
v9fs_vfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
struct dentry *old_dentry, struct inode *new_dir,
struct dentry *new_dentry, unsigned int flags)
{
int retval;
struct inode *old_inode;
struct inode *new_inode;
struct v9fs_session_info *v9ses;
struct p9_fid *oldfid = NULL, *dfid = NULL;
struct p9_fid *olddirfid = NULL;
struct p9_fid *newdirfid = NULL;
struct p9_wstat wstat;
if (flags)
return -EINVAL;
p9_debug(P9_DEBUG_VFS, "\n");
old_inode = d_inode(old_dentry);
new_inode = d_inode(new_dentry);
v9ses = v9fs_inode2v9ses(old_inode);
oldfid = v9fs_fid_lookup(old_dentry);
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-17 19:31:07 +00:00
if (IS_ERR(oldfid))
return PTR_ERR(oldfid);
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
dfid = v9fs_parent_fid(old_dentry);
olddirfid = clone_fid(dfid);
p9_fid_put(dfid);
dfid = NULL;
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-17 19:31:07 +00:00
if (IS_ERR(olddirfid)) {
retval = PTR_ERR(olddirfid);
goto error;
}
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
dfid = v9fs_parent_fid(new_dentry);
newdirfid = clone_fid(dfid);
p9_fid_put(dfid);
dfid = NULL;
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-17 19:31:07 +00:00
if (IS_ERR(newdirfid)) {
retval = PTR_ERR(newdirfid);
goto error;
}
down_write(&v9ses->rename_sem);
if (v9fs_proto_dotl(v9ses)) {
retval = p9_client_renameat(olddirfid, old_dentry->d_name.name,
newdirfid, new_dentry->d_name.name);
if (retval == -EOPNOTSUPP)
retval = p9_client_rename(oldfid, newdirfid,
new_dentry->d_name.name);
if (retval != -EOPNOTSUPP)
goto error_locked;
}
if (old_dentry->d_parent != new_dentry->d_parent) {
/*
* 9P .u can only handle file rename in the same directory
*/
p9_debug(P9_DEBUG_ERROR, "old dir and new dir are different\n");
retval = -EXDEV;
goto error_locked;
}
v9fs_blank_wstat(&wstat);
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-17 19:31:07 +00:00
wstat.muid = v9ses->uname;
wstat.name = new_dentry->d_name.name;
retval = p9_client_wstat(oldfid, &wstat);
error_locked:
if (!retval) {
if (new_inode) {
if (S_ISDIR(new_inode->i_mode))
clear_nlink(new_inode);
else
9p: don't maintain dir i_nlink if the exported fs doesn't either If the exported filesystem dir on 9p server doesn't maintain accurate i_nlink count, e.g. always reports i_nlink as 1, then 9p should not maintain nlink count either, otherwise drop_link would report warning with i_nlink being zero. For example: - overlayfs sets nlink to 1 for merged dir - ext4 (with dir_nlink feature enabled) sets nlink to 1 if a dir has more than EXT4_LINK_MAX (65000) links. In this case, everytime a stat(2) call (getattr) on such exported dirs on 9p client side, the i_nlink gets reset to 1, then operations like rmdir(2), unlink(2) and rename(2) would cause the dir nlink to go to zero (then negative), which results in warnings in drop_nlink() and/or inc_nlink() calls. This can be reproduced easily as the following steps: - export a merged overlayfs dir via qemu virtfs to guest - mount the exported virtfs in guest - create two sub-directories in the root dir of the mounted 9pfs - stat the root dir of 9pfs, this resets nlink to 1 - remove all subdirs, the second unlink/rmdir would trigger warning ------------[ cut here ]------------ WARNING: CPU: 3 PID: 1284 at fs/inode.c:282 drop_nlink+0x3e/0x50 ... Call Trace: dump_stack+0x63/0x81 __warn+0xcb/0xf0 warn_slowpath_null+0x1d/0x20 drop_nlink+0x3e/0x50 v9fs_remove+0xaa/0x130 [9p] v9fs_vfs_rmdir+0x13/0x20 [9p] vfs_rmdir+0xb7/0x130 do_rmdir+0x1b8/0x230 SyS_unlinkat+0x22/0x30 do_syscall_64+0x67/0x180 ---[ end trace 43758d8ba91e603b ]--- Fix it by leaving i_nlink to be 1 and don't drop nlink if a directory has nlink <= 2, which indicates that the underlying exported fs doesn't maintain nlink count accurately. This follows what ext4 does in ext4_dec_count(). Link: http://lkml.kernel.org/r/20180312053829.4367-1-eguan@linux.alibaba.com Signed-off-by: Eryu Guan <eguan@linux.alibaba.com> Reviewed-by: Yiwen Jiang <jiangyiwen@huawei.com> Tested-by: Roman Kapl <code@rkapl.cz> Cc: Caspar Zhang <caspar@linux.alibaba.com> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Latchesar Ionkov <lucho@ionkov.net> Cc: <v9fs-developer@lists.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 23:19:49 +00:00
v9fs_dec_count(new_inode);
}
if (S_ISDIR(old_inode->i_mode)) {
if (!new_inode)
inc_nlink(new_dir);
9p: don't maintain dir i_nlink if the exported fs doesn't either If the exported filesystem dir on 9p server doesn't maintain accurate i_nlink count, e.g. always reports i_nlink as 1, then 9p should not maintain nlink count either, otherwise drop_link would report warning with i_nlink being zero. For example: - overlayfs sets nlink to 1 for merged dir - ext4 (with dir_nlink feature enabled) sets nlink to 1 if a dir has more than EXT4_LINK_MAX (65000) links. In this case, everytime a stat(2) call (getattr) on such exported dirs on 9p client side, the i_nlink gets reset to 1, then operations like rmdir(2), unlink(2) and rename(2) would cause the dir nlink to go to zero (then negative), which results in warnings in drop_nlink() and/or inc_nlink() calls. This can be reproduced easily as the following steps: - export a merged overlayfs dir via qemu virtfs to guest - mount the exported virtfs in guest - create two sub-directories in the root dir of the mounted 9pfs - stat the root dir of 9pfs, this resets nlink to 1 - remove all subdirs, the second unlink/rmdir would trigger warning ------------[ cut here ]------------ WARNING: CPU: 3 PID: 1284 at fs/inode.c:282 drop_nlink+0x3e/0x50 ... Call Trace: dump_stack+0x63/0x81 __warn+0xcb/0xf0 warn_slowpath_null+0x1d/0x20 drop_nlink+0x3e/0x50 v9fs_remove+0xaa/0x130 [9p] v9fs_vfs_rmdir+0x13/0x20 [9p] vfs_rmdir+0xb7/0x130 do_rmdir+0x1b8/0x230 SyS_unlinkat+0x22/0x30 do_syscall_64+0x67/0x180 ---[ end trace 43758d8ba91e603b ]--- Fix it by leaving i_nlink to be 1 and don't drop nlink if a directory has nlink <= 2, which indicates that the underlying exported fs doesn't maintain nlink count accurately. This follows what ext4 does in ext4_dec_count(). Link: http://lkml.kernel.org/r/20180312053829.4367-1-eguan@linux.alibaba.com Signed-off-by: Eryu Guan <eguan@linux.alibaba.com> Reviewed-by: Yiwen Jiang <jiangyiwen@huawei.com> Tested-by: Roman Kapl <code@rkapl.cz> Cc: Caspar Zhang <caspar@linux.alibaba.com> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Latchesar Ionkov <lucho@ionkov.net> Cc: <v9fs-developer@lists.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 23:19:49 +00:00
v9fs_dec_count(old_dir);
}
v9fs_invalidate_inode_attr(old_inode);
v9fs_invalidate_inode_attr(old_dir);
v9fs_invalidate_inode_attr(new_dir);
/* successful rename */
d_move(old_dentry, new_dentry);
}
up_write(&v9ses->rename_sem);
error:
p9_fid_put(newdirfid);
p9_fid_put(olddirfid);
p9_fid_put(oldfid);
return retval;
}
/**
* v9fs_vfs_getattr - retrieve file metadata
* @idmap: idmap of the mount
statx: Add a system call to make enhanced file info available Add a system call to make extended file information available, including file creation and some attribute flags where available through the underlying filesystem. The getattr inode operation is altered to take two additional arguments: a u32 request_mask and an unsigned int flags that indicate the synchronisation mode. This change is propagated to the vfs_getattr*() function. Functions like vfs_stat() are now inline wrappers around new functions vfs_statx() and vfs_statx_fd() to reduce stack usage. ======== OVERVIEW ======== The idea was initially proposed as a set of xattrs that could be retrieved with getxattr(), but the general preference proved to be for a new syscall with an extended stat structure. A number of requests were gathered for features to be included. The following have been included: (1) Make the fields a consistent size on all arches and make them large. (2) Spare space, request flags and information flags are provided for future expansion. (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an __s64). (4) Creation time: The SMB protocol carries the creation time, which could be exported by Samba, which will in turn help CIFS make use of FS-Cache as that can be used for coherency data (stx_btime). This is also specified in NFSv4 as a recommended attribute and could be exported by NFSD [Steve French]. (5) Lightweight stat: Ask for just those details of interest, and allow a netfs (such as NFS) to approximate anything not of interest, possibly without going to the server [Trond Myklebust, Ulrich Drepper, Andreas Dilger] (AT_STATX_DONT_SYNC). (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks its cached attributes are up to date [Trond Myklebust] (AT_STATX_FORCE_SYNC). And the following have been left out for future extension: (7) Data version number: Could be used by userspace NFS servers [Aneesh Kumar]. Can also be used to modify fill_post_wcc() in NFSD which retrieves i_version directly, but has just called vfs_getattr(). It could get it from the kstat struct if it used vfs_xgetattr() instead. (There's disagreement on the exact semantics of a single field, since not all filesystems do this the same way). (8) BSD stat compatibility: Including more fields from the BSD stat such as creation time (st_btime) and inode generation number (st_gen) [Jeremy Allison, Bernd Schubert]. (9) Inode generation number: Useful for FUSE and userspace NFS servers [Bernd Schubert]. (This was asked for but later deemed unnecessary with the open-by-handle capability available and caused disagreement as to whether it's a security hole or not). (10) Extra coherency data may be useful in making backups [Andreas Dilger]. (No particular data were offered, but things like last backup timestamp, the data version number and the DOS archive bit would come into this category). (11) Allow the filesystem to indicate what it can/cannot provide: A filesystem can now say it doesn't support a standard stat feature if that isn't available, so if, for instance, inode numbers or UIDs don't exist or are fabricated locally... (This requires a separate system call - I have an fsinfo() call idea for this). (12) Store a 16-byte volume ID in the superblock that can be returned in struct xstat [Steve French]. (Deferred to fsinfo). (13) Include granularity fields in the time data to indicate the granularity of each of the times (NFSv4 time_delta) [Steve French]. (Deferred to fsinfo). (14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags. Note that the Linux IOC flags are a mess and filesystems such as Ext4 define flags that aren't in linux/fs.h, so translation in the kernel may be a necessity (or, possibly, we provide the filesystem type too). (Some attributes are made available in stx_attributes, but the general feeling was that the IOC flags were to ext[234]-specific and shouldn't be exposed through statx this way). (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer, Michael Kerrisk]. (Deferred, probably to fsinfo. Finding out if there's an ACL or seclabal might require extra filesystem operations). (16) Femtosecond-resolution timestamps [Dave Chinner]. (A __reserved field has been left in the statx_timestamp struct for this - if there proves to be a need). (17) A set multiple attributes syscall to go with this. =============== NEW SYSTEM CALL =============== The new system call is: int ret = statx(int dfd, const char *filename, unsigned int flags, unsigned int mask, struct statx *buffer); The dfd, filename and flags parameters indicate the file to query, in a similar way to fstatat(). There is no equivalent of lstat() as that can be emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is also no equivalent of fstat() as that can be emulated by passing a NULL filename to statx() with the fd of interest in dfd. Whether or not statx() synchronises the attributes with the backing store can be controlled by OR'ing a value into the flags argument (this typically only affects network filesystems): (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this respect. (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise its attributes with the server - which might require data writeback to occur to get the timestamps correct. (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a network filesystem. The resulting values should be considered approximate. mask is a bitmask indicating the fields in struct statx that are of interest to the caller. The user should set this to STATX_BASIC_STATS to get the basic set returned by stat(). It should be noted that asking for more information may entail extra I/O operations. buffer points to the destination for the data. This must be 256 bytes in size. ====================== MAIN ATTRIBUTES RECORD ====================== The following structures are defined in which to return the main attribute set: struct statx_timestamp { __s64 tv_sec; __s32 tv_nsec; __s32 __reserved; }; struct statx { __u32 stx_mask; __u32 stx_blksize; __u64 stx_attributes; __u32 stx_nlink; __u32 stx_uid; __u32 stx_gid; __u16 stx_mode; __u16 __spare0[1]; __u64 stx_ino; __u64 stx_size; __u64 stx_blocks; __u64 __spare1[1]; struct statx_timestamp stx_atime; struct statx_timestamp stx_btime; struct statx_timestamp stx_ctime; struct statx_timestamp stx_mtime; __u32 stx_rdev_major; __u32 stx_rdev_minor; __u32 stx_dev_major; __u32 stx_dev_minor; __u64 __spare2[14]; }; The defined bits in request_mask and stx_mask are: STATX_TYPE Want/got stx_mode & S_IFMT STATX_MODE Want/got stx_mode & ~S_IFMT STATX_NLINK Want/got stx_nlink STATX_UID Want/got stx_uid STATX_GID Want/got stx_gid STATX_ATIME Want/got stx_atime{,_ns} STATX_MTIME Want/got stx_mtime{,_ns} STATX_CTIME Want/got stx_ctime{,_ns} STATX_INO Want/got stx_ino STATX_SIZE Want/got stx_size STATX_BLOCKS Want/got stx_blocks STATX_BASIC_STATS [The stuff in the normal stat struct] STATX_BTIME Want/got stx_btime{,_ns} STATX_ALL [All currently available stuff] stx_btime is the file creation time, stx_mask is a bitmask indicating the data provided and __spares*[] are where as-yet undefined fields can be placed. Time fields are structures with separate seconds and nanoseconds fields plus a reserved field in case we want to add even finer resolution. Note that times will be negative if before 1970; in such a case, the nanosecond fields will also be negative if not zero. The bits defined in the stx_attributes field convey information about a file, how it is accessed, where it is and what it does. The following attributes map to FS_*_FL flags and are the same numerical value: STATX_ATTR_COMPRESSED File is compressed by the fs STATX_ATTR_IMMUTABLE File is marked immutable STATX_ATTR_APPEND File is append-only STATX_ATTR_NODUMP File is not to be dumped STATX_ATTR_ENCRYPTED File requires key to decrypt in fs Within the kernel, the supported flags are listed by: KSTAT_ATTR_FS_IOC_FLAGS [Are any other IOC flags of sufficient general interest to be exposed through this interface?] New flags include: STATX_ATTR_AUTOMOUNT Object is an automount trigger These are for the use of GUI tools that might want to mark files specially, depending on what they are. Fields in struct statx come in a number of classes: (0) stx_dev_*, stx_blksize. These are local system information and are always available. (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino, stx_size, stx_blocks. These will be returned whether the caller asks for them or not. The corresponding bits in stx_mask will be set to indicate whether they actually have valid values. If the caller didn't ask for them, then they may be approximated. For example, NFS won't waste any time updating them from the server, unless as a byproduct of updating something requested. If the values don't actually exist for the underlying object (such as UID or GID on a DOS file), then the bit won't be set in the stx_mask, even if the caller asked for the value. In such a case, the returned value will be a fabrication. Note that there are instances where the type might not be valid, for instance Windows reparse points. (2) stx_rdev_*. This will be set only if stx_mode indicates we're looking at a blockdev or a chardev, otherwise will be 0. (3) stx_btime. Similar to (1), except this will be set to 0 if it doesn't exist. ======= TESTING ======= The following test program can be used to test the statx system call: samples/statx/test-statx.c Just compile and run, passing it paths to the files you want to examine. The file is built automatically if CONFIG_SAMPLES is enabled. Here's some example output. Firstly, an NFS directory that crosses to another FSID. Note that the AUTOMOUNT attribute is set because transiting this directory will cause d_automount to be invoked by the VFS. [root@andromeda ~]# /tmp/test-statx -A /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:26 Inode: 1703937 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------) Secondly, the result of automounting on that directory. [root@andromeda ~]# /tmp/test-statx /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:27 Inode: 2 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-01-31 16:46:22 +00:00
* @path: Object to query
* @stat: metadata structure to populate
statx: Add a system call to make enhanced file info available Add a system call to make extended file information available, including file creation and some attribute flags where available through the underlying filesystem. The getattr inode operation is altered to take two additional arguments: a u32 request_mask and an unsigned int flags that indicate the synchronisation mode. This change is propagated to the vfs_getattr*() function. Functions like vfs_stat() are now inline wrappers around new functions vfs_statx() and vfs_statx_fd() to reduce stack usage. ======== OVERVIEW ======== The idea was initially proposed as a set of xattrs that could be retrieved with getxattr(), but the general preference proved to be for a new syscall with an extended stat structure. A number of requests were gathered for features to be included. The following have been included: (1) Make the fields a consistent size on all arches and make them large. (2) Spare space, request flags and information flags are provided for future expansion. (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an __s64). (4) Creation time: The SMB protocol carries the creation time, which could be exported by Samba, which will in turn help CIFS make use of FS-Cache as that can be used for coherency data (stx_btime). This is also specified in NFSv4 as a recommended attribute and could be exported by NFSD [Steve French]. (5) Lightweight stat: Ask for just those details of interest, and allow a netfs (such as NFS) to approximate anything not of interest, possibly without going to the server [Trond Myklebust, Ulrich Drepper, Andreas Dilger] (AT_STATX_DONT_SYNC). (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks its cached attributes are up to date [Trond Myklebust] (AT_STATX_FORCE_SYNC). And the following have been left out for future extension: (7) Data version number: Could be used by userspace NFS servers [Aneesh Kumar]. Can also be used to modify fill_post_wcc() in NFSD which retrieves i_version directly, but has just called vfs_getattr(). It could get it from the kstat struct if it used vfs_xgetattr() instead. (There's disagreement on the exact semantics of a single field, since not all filesystems do this the same way). (8) BSD stat compatibility: Including more fields from the BSD stat such as creation time (st_btime) and inode generation number (st_gen) [Jeremy Allison, Bernd Schubert]. (9) Inode generation number: Useful for FUSE and userspace NFS servers [Bernd Schubert]. (This was asked for but later deemed unnecessary with the open-by-handle capability available and caused disagreement as to whether it's a security hole or not). (10) Extra coherency data may be useful in making backups [Andreas Dilger]. (No particular data were offered, but things like last backup timestamp, the data version number and the DOS archive bit would come into this category). (11) Allow the filesystem to indicate what it can/cannot provide: A filesystem can now say it doesn't support a standard stat feature if that isn't available, so if, for instance, inode numbers or UIDs don't exist or are fabricated locally... (This requires a separate system call - I have an fsinfo() call idea for this). (12) Store a 16-byte volume ID in the superblock that can be returned in struct xstat [Steve French]. (Deferred to fsinfo). (13) Include granularity fields in the time data to indicate the granularity of each of the times (NFSv4 time_delta) [Steve French]. (Deferred to fsinfo). (14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags. Note that the Linux IOC flags are a mess and filesystems such as Ext4 define flags that aren't in linux/fs.h, so translation in the kernel may be a necessity (or, possibly, we provide the filesystem type too). (Some attributes are made available in stx_attributes, but the general feeling was that the IOC flags were to ext[234]-specific and shouldn't be exposed through statx this way). (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer, Michael Kerrisk]. (Deferred, probably to fsinfo. Finding out if there's an ACL or seclabal might require extra filesystem operations). (16) Femtosecond-resolution timestamps [Dave Chinner]. (A __reserved field has been left in the statx_timestamp struct for this - if there proves to be a need). (17) A set multiple attributes syscall to go with this. =============== NEW SYSTEM CALL =============== The new system call is: int ret = statx(int dfd, const char *filename, unsigned int flags, unsigned int mask, struct statx *buffer); The dfd, filename and flags parameters indicate the file to query, in a similar way to fstatat(). There is no equivalent of lstat() as that can be emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is also no equivalent of fstat() as that can be emulated by passing a NULL filename to statx() with the fd of interest in dfd. Whether or not statx() synchronises the attributes with the backing store can be controlled by OR'ing a value into the flags argument (this typically only affects network filesystems): (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this respect. (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise its attributes with the server - which might require data writeback to occur to get the timestamps correct. (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a network filesystem. The resulting values should be considered approximate. mask is a bitmask indicating the fields in struct statx that are of interest to the caller. The user should set this to STATX_BASIC_STATS to get the basic set returned by stat(). It should be noted that asking for more information may entail extra I/O operations. buffer points to the destination for the data. This must be 256 bytes in size. ====================== MAIN ATTRIBUTES RECORD ====================== The following structures are defined in which to return the main attribute set: struct statx_timestamp { __s64 tv_sec; __s32 tv_nsec; __s32 __reserved; }; struct statx { __u32 stx_mask; __u32 stx_blksize; __u64 stx_attributes; __u32 stx_nlink; __u32 stx_uid; __u32 stx_gid; __u16 stx_mode; __u16 __spare0[1]; __u64 stx_ino; __u64 stx_size; __u64 stx_blocks; __u64 __spare1[1]; struct statx_timestamp stx_atime; struct statx_timestamp stx_btime; struct statx_timestamp stx_ctime; struct statx_timestamp stx_mtime; __u32 stx_rdev_major; __u32 stx_rdev_minor; __u32 stx_dev_major; __u32 stx_dev_minor; __u64 __spare2[14]; }; The defined bits in request_mask and stx_mask are: STATX_TYPE Want/got stx_mode & S_IFMT STATX_MODE Want/got stx_mode & ~S_IFMT STATX_NLINK Want/got stx_nlink STATX_UID Want/got stx_uid STATX_GID Want/got stx_gid STATX_ATIME Want/got stx_atime{,_ns} STATX_MTIME Want/got stx_mtime{,_ns} STATX_CTIME Want/got stx_ctime{,_ns} STATX_INO Want/got stx_ino STATX_SIZE Want/got stx_size STATX_BLOCKS Want/got stx_blocks STATX_BASIC_STATS [The stuff in the normal stat struct] STATX_BTIME Want/got stx_btime{,_ns} STATX_ALL [All currently available stuff] stx_btime is the file creation time, stx_mask is a bitmask indicating the data provided and __spares*[] are where as-yet undefined fields can be placed. Time fields are structures with separate seconds and nanoseconds fields plus a reserved field in case we want to add even finer resolution. Note that times will be negative if before 1970; in such a case, the nanosecond fields will also be negative if not zero. The bits defined in the stx_attributes field convey information about a file, how it is accessed, where it is and what it does. The following attributes map to FS_*_FL flags and are the same numerical value: STATX_ATTR_COMPRESSED File is compressed by the fs STATX_ATTR_IMMUTABLE File is marked immutable STATX_ATTR_APPEND File is append-only STATX_ATTR_NODUMP File is not to be dumped STATX_ATTR_ENCRYPTED File requires key to decrypt in fs Within the kernel, the supported flags are listed by: KSTAT_ATTR_FS_IOC_FLAGS [Are any other IOC flags of sufficient general interest to be exposed through this interface?] New flags include: STATX_ATTR_AUTOMOUNT Object is an automount trigger These are for the use of GUI tools that might want to mark files specially, depending on what they are. Fields in struct statx come in a number of classes: (0) stx_dev_*, stx_blksize. These are local system information and are always available. (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino, stx_size, stx_blocks. These will be returned whether the caller asks for them or not. The corresponding bits in stx_mask will be set to indicate whether they actually have valid values. If the caller didn't ask for them, then they may be approximated. For example, NFS won't waste any time updating them from the server, unless as a byproduct of updating something requested. If the values don't actually exist for the underlying object (such as UID or GID on a DOS file), then the bit won't be set in the stx_mask, even if the caller asked for the value. In such a case, the returned value will be a fabrication. Note that there are instances where the type might not be valid, for instance Windows reparse points. (2) stx_rdev_*. This will be set only if stx_mode indicates we're looking at a blockdev or a chardev, otherwise will be 0. (3) stx_btime. Similar to (1), except this will be set to 0 if it doesn't exist. ======= TESTING ======= The following test program can be used to test the statx system call: samples/statx/test-statx.c Just compile and run, passing it paths to the files you want to examine. The file is built automatically if CONFIG_SAMPLES is enabled. Here's some example output. Firstly, an NFS directory that crosses to another FSID. Note that the AUTOMOUNT attribute is set because transiting this directory will cause d_automount to be invoked by the VFS. [root@andromeda ~]# /tmp/test-statx -A /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:26 Inode: 1703937 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------) Secondly, the result of automounting on that directory. [root@andromeda ~]# /tmp/test-statx /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:27 Inode: 2 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-01-31 16:46:22 +00:00
* @request_mask: Mask of STATX_xxx flags indicating the caller's interests
* @flags: AT_STATX_xxx setting
*
*/
static int
v9fs_vfs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask, unsigned int flags)
{
statx: Add a system call to make enhanced file info available Add a system call to make extended file information available, including file creation and some attribute flags where available through the underlying filesystem. The getattr inode operation is altered to take two additional arguments: a u32 request_mask and an unsigned int flags that indicate the synchronisation mode. This change is propagated to the vfs_getattr*() function. Functions like vfs_stat() are now inline wrappers around new functions vfs_statx() and vfs_statx_fd() to reduce stack usage. ======== OVERVIEW ======== The idea was initially proposed as a set of xattrs that could be retrieved with getxattr(), but the general preference proved to be for a new syscall with an extended stat structure. A number of requests were gathered for features to be included. The following have been included: (1) Make the fields a consistent size on all arches and make them large. (2) Spare space, request flags and information flags are provided for future expansion. (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an __s64). (4) Creation time: The SMB protocol carries the creation time, which could be exported by Samba, which will in turn help CIFS make use of FS-Cache as that can be used for coherency data (stx_btime). This is also specified in NFSv4 as a recommended attribute and could be exported by NFSD [Steve French]. (5) Lightweight stat: Ask for just those details of interest, and allow a netfs (such as NFS) to approximate anything not of interest, possibly without going to the server [Trond Myklebust, Ulrich Drepper, Andreas Dilger] (AT_STATX_DONT_SYNC). (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks its cached attributes are up to date [Trond Myklebust] (AT_STATX_FORCE_SYNC). And the following have been left out for future extension: (7) Data version number: Could be used by userspace NFS servers [Aneesh Kumar]. Can also be used to modify fill_post_wcc() in NFSD which retrieves i_version directly, but has just called vfs_getattr(). It could get it from the kstat struct if it used vfs_xgetattr() instead. (There's disagreement on the exact semantics of a single field, since not all filesystems do this the same way). (8) BSD stat compatibility: Including more fields from the BSD stat such as creation time (st_btime) and inode generation number (st_gen) [Jeremy Allison, Bernd Schubert]. (9) Inode generation number: Useful for FUSE and userspace NFS servers [Bernd Schubert]. (This was asked for but later deemed unnecessary with the open-by-handle capability available and caused disagreement as to whether it's a security hole or not). (10) Extra coherency data may be useful in making backups [Andreas Dilger]. (No particular data were offered, but things like last backup timestamp, the data version number and the DOS archive bit would come into this category). (11) Allow the filesystem to indicate what it can/cannot provide: A filesystem can now say it doesn't support a standard stat feature if that isn't available, so if, for instance, inode numbers or UIDs don't exist or are fabricated locally... (This requires a separate system call - I have an fsinfo() call idea for this). (12) Store a 16-byte volume ID in the superblock that can be returned in struct xstat [Steve French]. (Deferred to fsinfo). (13) Include granularity fields in the time data to indicate the granularity of each of the times (NFSv4 time_delta) [Steve French]. (Deferred to fsinfo). (14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags. Note that the Linux IOC flags are a mess and filesystems such as Ext4 define flags that aren't in linux/fs.h, so translation in the kernel may be a necessity (or, possibly, we provide the filesystem type too). (Some attributes are made available in stx_attributes, but the general feeling was that the IOC flags were to ext[234]-specific and shouldn't be exposed through statx this way). (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer, Michael Kerrisk]. (Deferred, probably to fsinfo. Finding out if there's an ACL or seclabal might require extra filesystem operations). (16) Femtosecond-resolution timestamps [Dave Chinner]. (A __reserved field has been left in the statx_timestamp struct for this - if there proves to be a need). (17) A set multiple attributes syscall to go with this. =============== NEW SYSTEM CALL =============== The new system call is: int ret = statx(int dfd, const char *filename, unsigned int flags, unsigned int mask, struct statx *buffer); The dfd, filename and flags parameters indicate the file to query, in a similar way to fstatat(). There is no equivalent of lstat() as that can be emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is also no equivalent of fstat() as that can be emulated by passing a NULL filename to statx() with the fd of interest in dfd. Whether or not statx() synchronises the attributes with the backing store can be controlled by OR'ing a value into the flags argument (this typically only affects network filesystems): (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this respect. (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise its attributes with the server - which might require data writeback to occur to get the timestamps correct. (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a network filesystem. The resulting values should be considered approximate. mask is a bitmask indicating the fields in struct statx that are of interest to the caller. The user should set this to STATX_BASIC_STATS to get the basic set returned by stat(). It should be noted that asking for more information may entail extra I/O operations. buffer points to the destination for the data. This must be 256 bytes in size. ====================== MAIN ATTRIBUTES RECORD ====================== The following structures are defined in which to return the main attribute set: struct statx_timestamp { __s64 tv_sec; __s32 tv_nsec; __s32 __reserved; }; struct statx { __u32 stx_mask; __u32 stx_blksize; __u64 stx_attributes; __u32 stx_nlink; __u32 stx_uid; __u32 stx_gid; __u16 stx_mode; __u16 __spare0[1]; __u64 stx_ino; __u64 stx_size; __u64 stx_blocks; __u64 __spare1[1]; struct statx_timestamp stx_atime; struct statx_timestamp stx_btime; struct statx_timestamp stx_ctime; struct statx_timestamp stx_mtime; __u32 stx_rdev_major; __u32 stx_rdev_minor; __u32 stx_dev_major; __u32 stx_dev_minor; __u64 __spare2[14]; }; The defined bits in request_mask and stx_mask are: STATX_TYPE Want/got stx_mode & S_IFMT STATX_MODE Want/got stx_mode & ~S_IFMT STATX_NLINK Want/got stx_nlink STATX_UID Want/got stx_uid STATX_GID Want/got stx_gid STATX_ATIME Want/got stx_atime{,_ns} STATX_MTIME Want/got stx_mtime{,_ns} STATX_CTIME Want/got stx_ctime{,_ns} STATX_INO Want/got stx_ino STATX_SIZE Want/got stx_size STATX_BLOCKS Want/got stx_blocks STATX_BASIC_STATS [The stuff in the normal stat struct] STATX_BTIME Want/got stx_btime{,_ns} STATX_ALL [All currently available stuff] stx_btime is the file creation time, stx_mask is a bitmask indicating the data provided and __spares*[] are where as-yet undefined fields can be placed. Time fields are structures with separate seconds and nanoseconds fields plus a reserved field in case we want to add even finer resolution. Note that times will be negative if before 1970; in such a case, the nanosecond fields will also be negative if not zero. The bits defined in the stx_attributes field convey information about a file, how it is accessed, where it is and what it does. The following attributes map to FS_*_FL flags and are the same numerical value: STATX_ATTR_COMPRESSED File is compressed by the fs STATX_ATTR_IMMUTABLE File is marked immutable STATX_ATTR_APPEND File is append-only STATX_ATTR_NODUMP File is not to be dumped STATX_ATTR_ENCRYPTED File requires key to decrypt in fs Within the kernel, the supported flags are listed by: KSTAT_ATTR_FS_IOC_FLAGS [Are any other IOC flags of sufficient general interest to be exposed through this interface?] New flags include: STATX_ATTR_AUTOMOUNT Object is an automount trigger These are for the use of GUI tools that might want to mark files specially, depending on what they are. Fields in struct statx come in a number of classes: (0) stx_dev_*, stx_blksize. These are local system information and are always available. (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino, stx_size, stx_blocks. These will be returned whether the caller asks for them or not. The corresponding bits in stx_mask will be set to indicate whether they actually have valid values. If the caller didn't ask for them, then they may be approximated. For example, NFS won't waste any time updating them from the server, unless as a byproduct of updating something requested. If the values don't actually exist for the underlying object (such as UID or GID on a DOS file), then the bit won't be set in the stx_mask, even if the caller asked for the value. In such a case, the returned value will be a fabrication. Note that there are instances where the type might not be valid, for instance Windows reparse points. (2) stx_rdev_*. This will be set only if stx_mode indicates we're looking at a blockdev or a chardev, otherwise will be 0. (3) stx_btime. Similar to (1), except this will be set to 0 if it doesn't exist. ======= TESTING ======= The following test program can be used to test the statx system call: samples/statx/test-statx.c Just compile and run, passing it paths to the files you want to examine. The file is built automatically if CONFIG_SAMPLES is enabled. Here's some example output. Firstly, an NFS directory that crosses to another FSID. Note that the AUTOMOUNT attribute is set because transiting this directory will cause d_automount to be invoked by the VFS. [root@andromeda ~]# /tmp/test-statx -A /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:26 Inode: 1703937 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------) Secondly, the result of automounting on that directory. [root@andromeda ~]# /tmp/test-statx /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:27 Inode: 2 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-01-31 16:46:22 +00:00
struct dentry *dentry = path->dentry;
struct inode *inode = d_inode(dentry);
struct v9fs_session_info *v9ses;
struct p9_fid *fid;
struct p9_wstat *st;
p9_debug(P9_DEBUG_VFS, "dentry: %p\n", dentry);
v9ses = v9fs_dentry2v9ses(dentry);
if (v9ses->cache & (CACHE_META|CACHE_LOOSE)) {
generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
return 0;
} else if (v9ses->cache & CACHE_WRITEBACK) {
if (S_ISREG(inode->i_mode)) {
int retval = filemap_fdatawrite(inode->i_mapping);
if (retval)
p9_debug(P9_DEBUG_ERROR,
"flushing writeback during getattr returned %d\n", retval);
}
}
fid = v9fs_fid_lookup(dentry);
if (IS_ERR(fid))
return PTR_ERR(fid);
st = p9_client_stat(fid);
p9_fid_put(fid);
if (IS_ERR(st))
return PTR_ERR(st);
9p: use inode->i_lock to protect i_size_write() under 32-bit Use inode->i_lock to protect i_size_write(), else i_size_read() in generic_fillattr() may loop infinitely in read_seqcount_begin() when multiple processes invoke v9fs_vfs_getattr() or v9fs_vfs_getattr_dotl() simultaneously under 32-bit SMP environment, and a soft lockup will be triggered as show below: watchdog: BUG: soft lockup - CPU#5 stuck for 22s! [stat:2217] Modules linked in: CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system PC is at generic_fillattr+0x104/0x108 LR is at 0xec497f00 pc : [<802b8898>] lr : [<ec497f00>] psr: 200c0013 sp : ec497e20 ip : ed608030 fp : ec497e3c r10: 00000000 r9 : ec497f00 r8 : ed608030 r7 : ec497ebc r6 : ec497f00 r5 : ee5c1550 r4 : ee005780 r3 : 0000052d r2 : 00000000 r1 : ec497f00 r0 : ed608030 Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 10c5387d Table: ac48006a DAC: 00000051 CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system Backtrace: [<8010d974>] (dump_backtrace) from [<8010dc88>] (show_stack+0x20/0x24) [<8010dc68>] (show_stack) from [<80a1d194>] (dump_stack+0xb0/0xdc) [<80a1d0e4>] (dump_stack) from [<80109f34>] (show_regs+0x1c/0x20) [<80109f18>] (show_regs) from [<801d0a80>] (watchdog_timer_fn+0x280/0x2f8) [<801d0800>] (watchdog_timer_fn) from [<80198658>] (__hrtimer_run_queues+0x18c/0x380) [<801984cc>] (__hrtimer_run_queues) from [<80198e60>] (hrtimer_run_queues+0xb8/0xf0) [<80198da8>] (hrtimer_run_queues) from [<801973e8>] (run_local_timers+0x28/0x64) [<801973c0>] (run_local_timers) from [<80197460>] (update_process_times+0x3c/0x6c) [<80197424>] (update_process_times) from [<801ab2b8>] (tick_nohz_handler+0xe0/0x1bc) [<801ab1d8>] (tick_nohz_handler) from [<80843050>] (arch_timer_handler_virt+0x38/0x48) [<80843018>] (arch_timer_handler_virt) from [<80180a64>] (handle_percpu_devid_irq+0x8c/0x240) [<801809d8>] (handle_percpu_devid_irq) from [<8017ac20>] (generic_handle_irq+0x34/0x44) [<8017abec>] (generic_handle_irq) from [<8017b344>] (__handle_domain_irq+0x6c/0xc4) [<8017b2d8>] (__handle_domain_irq) from [<801022e0>] (gic_handle_irq+0x4c/0x88) [<80102294>] (gic_handle_irq) from [<80101a30>] (__irq_svc+0x70/0x98) [<802b8794>] (generic_fillattr) from [<8056b284>] (v9fs_vfs_getattr_dotl+0x74/0xa4) [<8056b210>] (v9fs_vfs_getattr_dotl) from [<802b8904>] (vfs_getattr_nosec+0x68/0x7c) [<802b889c>] (vfs_getattr_nosec) from [<802b895c>] (vfs_getattr+0x44/0x48) [<802b8918>] (vfs_getattr) from [<802b8a74>] (vfs_statx+0x9c/0xec) [<802b89d8>] (vfs_statx) from [<802b9428>] (sys_lstat64+0x48/0x78) [<802b93e0>] (sys_lstat64) from [<80101000>] (ret_fast_syscall+0x0/0x28) [dominique.martinet@cea.fr: updated comment to not refer to a function in another subsystem] Link: http://lkml.kernel.org/r/20190124063514.8571-2-houtao1@huawei.com Cc: stable@vger.kernel.org Fixes: 7549ae3e81cc ("9p: Use the i_size_[read, write]() macros instead of using inode->i_size directly.") Reported-by: Xing Gaopeng <xingaopeng@huawei.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
2019-01-24 06:35:13 +00:00
v9fs_stat2inode(st, d_inode(dentry), dentry->d_sb, 0);
generic_fillattr(&nop_mnt_idmap, request_mask, d_inode(dentry), stat);
p9stat_free(st);
kfree(st);
return 0;
}
/**
* v9fs_vfs_setattr - set file metadata
* @idmap: idmap of the mount
* @dentry: file whose metadata to set
* @iattr: metadata assignment structure
*
*/
static int v9fs_vfs_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *iattr)
{
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
int retval, use_dentry = 0;
9p: Use fscache indexing rewrite and reenable caching Change the 9p filesystem to take account of the changes to fscache's indexing rewrite and reenable caching in 9p. The following changes have been made: (1) The fscache_netfs struct is no more, and there's no need to register the filesystem as a whole. (2) The session cookie is now an fscache_volume cookie, allocated with fscache_acquire_volume(). That takes three parameters: a string representing the "volume" in the index, a string naming the cache to use (or NULL) and a u64 that conveys coherency metadata for the volume. For 9p, I've made it render the volume name string as: "9p,<devname>,<cachetag>" where the cachetag is replaced by the aname if it wasn't supplied. This probably needs rethinking a bit as the aname can have slashes in it. It might be better to hash the cachetag and use the hash or I could substitute commas for the slashes or something. (3) The fscache_cookie_def is no more and needed information is passed directly to fscache_acquire_cookie(). The cache no longer calls back into the filesystem, but rather metadata changes are indicated at other times. fscache_acquire_cookie() is passed the same keying and coherency information as before. (4) The functions to set/reset/flush cookies are removed and fscache_use_cookie() and fscache_unuse_cookie() are used instead. fscache_use_cookie() is passed a flag to indicate if the cookie is opened for writing. fscache_unuse_cookie() is passed updates for the metadata if we changed it (ie. if the file was opened for writing). These are called when the file is opened or closed. (5) wait_on_page_bit[_killable]() is replaced with the specific wait functions for the bits waited upon. (6) I've got rid of some of the 9p-specific cache helper functions and called things like fscache_relinquish_cookie() directly as they'll optimise away if v9fs_inode_cookie() returns an unconditional NULL (which will be the case if CONFIG_9P_FSCACHE=n). (7) v9fs_vfs_setattr() is made to call fscache_resize() to change the size of the cache object. Notes: (A) We should call fscache_invalidate() if we detect that the server's copy of a file got changed by a third party, but I don't know where to do that. We don't need to do that when allocating the cookie as we get a check-and-invalidate when we initially bind to the cache object. (B) The copy-to-cache-on-writeback side of things will be handled in separate patch. Changes ======= ver #3: - Canonicalise the cookie key and coherency data to make them endianness-independent. ver #2: - Use gfpflags_allow_blocking() rather than using flag directly. - fscache_acquire_volume() now returns errors. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> Tested-by: Dominique Martinet <asmadeus@codewreck.org> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: v9fs-developer@lists.sourceforge.net cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819664645.215744.1555314582005286846.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906975017.143852.3459573173204394039.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967178512.1823006.17377493641569138183.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021573143.640689.3977487095697717967.stgit@warthog.procyon.org.uk/ # v4
2020-11-18 09:06:42 +00:00
struct inode *inode = d_inode(dentry);
struct v9fs_session_info *v9ses;
struct p9_fid *fid = NULL;
struct p9_wstat wstat;
p9_debug(P9_DEBUG_VFS, "\n");
retval = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
if (retval)
return retval;
v9ses = v9fs_dentry2v9ses(dentry);
if (iattr->ia_valid & ATTR_FILE) {
fid = iattr->ia_file->private_data;
WARN_ON(!fid);
}
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
if (!fid) {
fid = v9fs_fid_lookup(dentry);
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
use_dentry = 1;
}
if (IS_ERR(fid))
return PTR_ERR(fid);
v9fs_blank_wstat(&wstat);
if (iattr->ia_valid & ATTR_MODE)
wstat.mode = unixmode2p9mode(v9ses, iattr->ia_mode);
if (iattr->ia_valid & ATTR_MTIME)
wstat.mtime = iattr->ia_mtime.tv_sec;
if (iattr->ia_valid & ATTR_ATIME)
wstat.atime = iattr->ia_atime.tv_sec;
if (iattr->ia_valid & ATTR_SIZE)
wstat.length = iattr->ia_size;
if (v9fs_proto_dotu(v9ses)) {
if (iattr->ia_valid & ATTR_UID)
wstat.n_uid = iattr->ia_uid;
if (iattr->ia_valid & ATTR_GID)
wstat.n_gid = iattr->ia_gid;
}
/* Write all dirty data */
if (d_is_reg(dentry)) {
retval = filemap_fdatawrite(inode->i_mapping);
if (retval)
p9_debug(P9_DEBUG_ERROR,
"flushing writeback during setattr returned %d\n", retval);
}
retval = p9_client_wstat(fid, &wstat);
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
if (use_dentry)
p9_fid_put(fid);
9p: add refcount to p9_fid struct Fix race issue in fid contention. Eric's and Greg's patch offer a mechanism to fix open-unlink-f*syscall bug in 9p. But there is race issue in fid parallel accesses. As Greg's patch stores all of fids from opened files into according inode, so all the lookup fid ops can retrieve fid from inode preferentially. But there is no mechanism to handle the fid contention issue. For example, there are two threads get the same fid in the same time and one of them clunk the fid before the other thread ready to discard the fid. In this scenario, it will lead to some fatal problems, even kernel core dump. I introduce a mechanism to fix this race issue. A counter field introduced into p9_fid struct to store the reference counter to the fid. When a fid is allocated from the inode or dentry, the counter will increase, and will decrease at the end of its occupation. It is guaranteed that the fid won't be clunked before the reference counter go down to 0, then we can avoid the clunked fid to be used. tests: race issue test from the old test case: for file in {01..50}; do touch f.${file}; done seq 1 1000 | xargs -n 1 -P 50 -I{} cat f.* > /dev/null open-unlink-f*syscall test: I have tested for f*syscall include: ftruncate fstat fchown fchmod faccessat. Link: http://lkml.kernel.org/r/20200923141146.90046-5-jianyong.wu@arm.com Fixes: 478ba09edc1f ("fs/9p: search open fids first") Signed-off-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-09-23 14:11:46 +00:00
if (retval < 0)
return retval;
if ((iattr->ia_valid & ATTR_SIZE) &&
iattr->ia_size != i_size_read(inode)) {
9p: Use fscache indexing rewrite and reenable caching Change the 9p filesystem to take account of the changes to fscache's indexing rewrite and reenable caching in 9p. The following changes have been made: (1) The fscache_netfs struct is no more, and there's no need to register the filesystem as a whole. (2) The session cookie is now an fscache_volume cookie, allocated with fscache_acquire_volume(). That takes three parameters: a string representing the "volume" in the index, a string naming the cache to use (or NULL) and a u64 that conveys coherency metadata for the volume. For 9p, I've made it render the volume name string as: "9p,<devname>,<cachetag>" where the cachetag is replaced by the aname if it wasn't supplied. This probably needs rethinking a bit as the aname can have slashes in it. It might be better to hash the cachetag and use the hash or I could substitute commas for the slashes or something. (3) The fscache_cookie_def is no more and needed information is passed directly to fscache_acquire_cookie(). The cache no longer calls back into the filesystem, but rather metadata changes are indicated at other times. fscache_acquire_cookie() is passed the same keying and coherency information as before. (4) The functions to set/reset/flush cookies are removed and fscache_use_cookie() and fscache_unuse_cookie() are used instead. fscache_use_cookie() is passed a flag to indicate if the cookie is opened for writing. fscache_unuse_cookie() is passed updates for the metadata if we changed it (ie. if the file was opened for writing). These are called when the file is opened or closed. (5) wait_on_page_bit[_killable]() is replaced with the specific wait functions for the bits waited upon. (6) I've got rid of some of the 9p-specific cache helper functions and called things like fscache_relinquish_cookie() directly as they'll optimise away if v9fs_inode_cookie() returns an unconditional NULL (which will be the case if CONFIG_9P_FSCACHE=n). (7) v9fs_vfs_setattr() is made to call fscache_resize() to change the size of the cache object. Notes: (A) We should call fscache_invalidate() if we detect that the server's copy of a file got changed by a third party, but I don't know where to do that. We don't need to do that when allocating the cookie as we get a check-and-invalidate when we initially bind to the cache object. (B) The copy-to-cache-on-writeback side of things will be handled in separate patch. Changes ======= ver #3: - Canonicalise the cookie key and coherency data to make them endianness-independent. ver #2: - Use gfpflags_allow_blocking() rather than using flag directly. - fscache_acquire_volume() now returns errors. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> Tested-by: Dominique Martinet <asmadeus@codewreck.org> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: v9fs-developer@lists.sourceforge.net cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819664645.215744.1555314582005286846.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906975017.143852.3459573173204394039.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967178512.1823006.17377493641569138183.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021573143.640689.3977487095697717967.stgit@warthog.procyon.org.uk/ # v4
2020-11-18 09:06:42 +00:00
truncate_setsize(inode, iattr->ia_size);
netfs_resize_file(netfs_inode(inode), iattr->ia_size, true);
#ifdef CONFIG_9P_FSCACHE
if (v9ses->cache & CACHE_FSCACHE) {
struct v9fs_inode *v9inode = V9FS_I(inode);
fscache_resize_cookie(v9fs_inode_cookie(v9inode), iattr->ia_size);
}
#endif
9p: Use fscache indexing rewrite and reenable caching Change the 9p filesystem to take account of the changes to fscache's indexing rewrite and reenable caching in 9p. The following changes have been made: (1) The fscache_netfs struct is no more, and there's no need to register the filesystem as a whole. (2) The session cookie is now an fscache_volume cookie, allocated with fscache_acquire_volume(). That takes three parameters: a string representing the "volume" in the index, a string naming the cache to use (or NULL) and a u64 that conveys coherency metadata for the volume. For 9p, I've made it render the volume name string as: "9p,<devname>,<cachetag>" where the cachetag is replaced by the aname if it wasn't supplied. This probably needs rethinking a bit as the aname can have slashes in it. It might be better to hash the cachetag and use the hash or I could substitute commas for the slashes or something. (3) The fscache_cookie_def is no more and needed information is passed directly to fscache_acquire_cookie(). The cache no longer calls back into the filesystem, but rather metadata changes are indicated at other times. fscache_acquire_cookie() is passed the same keying and coherency information as before. (4) The functions to set/reset/flush cookies are removed and fscache_use_cookie() and fscache_unuse_cookie() are used instead. fscache_use_cookie() is passed a flag to indicate if the cookie is opened for writing. fscache_unuse_cookie() is passed updates for the metadata if we changed it (ie. if the file was opened for writing). These are called when the file is opened or closed. (5) wait_on_page_bit[_killable]() is replaced with the specific wait functions for the bits waited upon. (6) I've got rid of some of the 9p-specific cache helper functions and called things like fscache_relinquish_cookie() directly as they'll optimise away if v9fs_inode_cookie() returns an unconditional NULL (which will be the case if CONFIG_9P_FSCACHE=n). (7) v9fs_vfs_setattr() is made to call fscache_resize() to change the size of the cache object. Notes: (A) We should call fscache_invalidate() if we detect that the server's copy of a file got changed by a third party, but I don't know where to do that. We don't need to do that when allocating the cookie as we get a check-and-invalidate when we initially bind to the cache object. (B) The copy-to-cache-on-writeback side of things will be handled in separate patch. Changes ======= ver #3: - Canonicalise the cookie key and coherency data to make them endianness-independent. ver #2: - Use gfpflags_allow_blocking() rather than using flag directly. - fscache_acquire_volume() now returns errors. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> Tested-by: Dominique Martinet <asmadeus@codewreck.org> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: v9fs-developer@lists.sourceforge.net cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819664645.215744.1555314582005286846.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906975017.143852.3459573173204394039.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967178512.1823006.17377493641569138183.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021573143.640689.3977487095697717967.stgit@warthog.procyon.org.uk/ # v4
2020-11-18 09:06:42 +00:00
}
9p: Use fscache indexing rewrite and reenable caching Change the 9p filesystem to take account of the changes to fscache's indexing rewrite and reenable caching in 9p. The following changes have been made: (1) The fscache_netfs struct is no more, and there's no need to register the filesystem as a whole. (2) The session cookie is now an fscache_volume cookie, allocated with fscache_acquire_volume(). That takes three parameters: a string representing the "volume" in the index, a string naming the cache to use (or NULL) and a u64 that conveys coherency metadata for the volume. For 9p, I've made it render the volume name string as: "9p,<devname>,<cachetag>" where the cachetag is replaced by the aname if it wasn't supplied. This probably needs rethinking a bit as the aname can have slashes in it. It might be better to hash the cachetag and use the hash or I could substitute commas for the slashes or something. (3) The fscache_cookie_def is no more and needed information is passed directly to fscache_acquire_cookie(). The cache no longer calls back into the filesystem, but rather metadata changes are indicated at other times. fscache_acquire_cookie() is passed the same keying and coherency information as before. (4) The functions to set/reset/flush cookies are removed and fscache_use_cookie() and fscache_unuse_cookie() are used instead. fscache_use_cookie() is passed a flag to indicate if the cookie is opened for writing. fscache_unuse_cookie() is passed updates for the metadata if we changed it (ie. if the file was opened for writing). These are called when the file is opened or closed. (5) wait_on_page_bit[_killable]() is replaced with the specific wait functions for the bits waited upon. (6) I've got rid of some of the 9p-specific cache helper functions and called things like fscache_relinquish_cookie() directly as they'll optimise away if v9fs_inode_cookie() returns an unconditional NULL (which will be the case if CONFIG_9P_FSCACHE=n). (7) v9fs_vfs_setattr() is made to call fscache_resize() to change the size of the cache object. Notes: (A) We should call fscache_invalidate() if we detect that the server's copy of a file got changed by a third party, but I don't know where to do that. We don't need to do that when allocating the cookie as we get a check-and-invalidate when we initially bind to the cache object. (B) The copy-to-cache-on-writeback side of things will be handled in separate patch. Changes ======= ver #3: - Canonicalise the cookie key and coherency data to make them endianness-independent. ver #2: - Use gfpflags_allow_blocking() rather than using flag directly. - fscache_acquire_volume() now returns errors. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> Tested-by: Dominique Martinet <asmadeus@codewreck.org> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: v9fs-developer@lists.sourceforge.net cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819664645.215744.1555314582005286846.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906975017.143852.3459573173204394039.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967178512.1823006.17377493641569138183.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021573143.640689.3977487095697717967.stgit@warthog.procyon.org.uk/ # v4
2020-11-18 09:06:42 +00:00
v9fs_invalidate_inode_attr(inode);
setattr_copy(&nop_mnt_idmap, inode, iattr);
9p: Use fscache indexing rewrite and reenable caching Change the 9p filesystem to take account of the changes to fscache's indexing rewrite and reenable caching in 9p. The following changes have been made: (1) The fscache_netfs struct is no more, and there's no need to register the filesystem as a whole. (2) The session cookie is now an fscache_volume cookie, allocated with fscache_acquire_volume(). That takes three parameters: a string representing the "volume" in the index, a string naming the cache to use (or NULL) and a u64 that conveys coherency metadata for the volume. For 9p, I've made it render the volume name string as: "9p,<devname>,<cachetag>" where the cachetag is replaced by the aname if it wasn't supplied. This probably needs rethinking a bit as the aname can have slashes in it. It might be better to hash the cachetag and use the hash or I could substitute commas for the slashes or something. (3) The fscache_cookie_def is no more and needed information is passed directly to fscache_acquire_cookie(). The cache no longer calls back into the filesystem, but rather metadata changes are indicated at other times. fscache_acquire_cookie() is passed the same keying and coherency information as before. (4) The functions to set/reset/flush cookies are removed and fscache_use_cookie() and fscache_unuse_cookie() are used instead. fscache_use_cookie() is passed a flag to indicate if the cookie is opened for writing. fscache_unuse_cookie() is passed updates for the metadata if we changed it (ie. if the file was opened for writing). These are called when the file is opened or closed. (5) wait_on_page_bit[_killable]() is replaced with the specific wait functions for the bits waited upon. (6) I've got rid of some of the 9p-specific cache helper functions and called things like fscache_relinquish_cookie() directly as they'll optimise away if v9fs_inode_cookie() returns an unconditional NULL (which will be the case if CONFIG_9P_FSCACHE=n). (7) v9fs_vfs_setattr() is made to call fscache_resize() to change the size of the cache object. Notes: (A) We should call fscache_invalidate() if we detect that the server's copy of a file got changed by a third party, but I don't know where to do that. We don't need to do that when allocating the cookie as we get a check-and-invalidate when we initially bind to the cache object. (B) The copy-to-cache-on-writeback side of things will be handled in separate patch. Changes ======= ver #3: - Canonicalise the cookie key and coherency data to make them endianness-independent. ver #2: - Use gfpflags_allow_blocking() rather than using flag directly. - fscache_acquire_volume() now returns errors. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> Tested-by: Dominique Martinet <asmadeus@codewreck.org> cc: Eric Van Hensbergen <ericvh@gmail.com> cc: Latchesar Ionkov <lucho@ionkov.net> cc: v9fs-developer@lists.sourceforge.net cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819664645.215744.1555314582005286846.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906975017.143852.3459573173204394039.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967178512.1823006.17377493641569138183.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021573143.640689.3977487095697717967.stgit@warthog.procyon.org.uk/ # v4
2020-11-18 09:06:42 +00:00
mark_inode_dirty(inode);
return 0;
}
/**
* v9fs_stat2inode - populate an inode structure with mistat info
* @stat: Plan 9 metadata (mistat) structure
* @inode: inode to populate
* @sb: superblock of filesystem
9p: use inode->i_lock to protect i_size_write() under 32-bit Use inode->i_lock to protect i_size_write(), else i_size_read() in generic_fillattr() may loop infinitely in read_seqcount_begin() when multiple processes invoke v9fs_vfs_getattr() or v9fs_vfs_getattr_dotl() simultaneously under 32-bit SMP environment, and a soft lockup will be triggered as show below: watchdog: BUG: soft lockup - CPU#5 stuck for 22s! [stat:2217] Modules linked in: CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system PC is at generic_fillattr+0x104/0x108 LR is at 0xec497f00 pc : [<802b8898>] lr : [<ec497f00>] psr: 200c0013 sp : ec497e20 ip : ed608030 fp : ec497e3c r10: 00000000 r9 : ec497f00 r8 : ed608030 r7 : ec497ebc r6 : ec497f00 r5 : ee5c1550 r4 : ee005780 r3 : 0000052d r2 : 00000000 r1 : ec497f00 r0 : ed608030 Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 10c5387d Table: ac48006a DAC: 00000051 CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system Backtrace: [<8010d974>] (dump_backtrace) from [<8010dc88>] (show_stack+0x20/0x24) [<8010dc68>] (show_stack) from [<80a1d194>] (dump_stack+0xb0/0xdc) [<80a1d0e4>] (dump_stack) from [<80109f34>] (show_regs+0x1c/0x20) [<80109f18>] (show_regs) from [<801d0a80>] (watchdog_timer_fn+0x280/0x2f8) [<801d0800>] (watchdog_timer_fn) from [<80198658>] (__hrtimer_run_queues+0x18c/0x380) [<801984cc>] (__hrtimer_run_queues) from [<80198e60>] (hrtimer_run_queues+0xb8/0xf0) [<80198da8>] (hrtimer_run_queues) from [<801973e8>] (run_local_timers+0x28/0x64) [<801973c0>] (run_local_timers) from [<80197460>] (update_process_times+0x3c/0x6c) [<80197424>] (update_process_times) from [<801ab2b8>] (tick_nohz_handler+0xe0/0x1bc) [<801ab1d8>] (tick_nohz_handler) from [<80843050>] (arch_timer_handler_virt+0x38/0x48) [<80843018>] (arch_timer_handler_virt) from [<80180a64>] (handle_percpu_devid_irq+0x8c/0x240) [<801809d8>] (handle_percpu_devid_irq) from [<8017ac20>] (generic_handle_irq+0x34/0x44) [<8017abec>] (generic_handle_irq) from [<8017b344>] (__handle_domain_irq+0x6c/0xc4) [<8017b2d8>] (__handle_domain_irq) from [<801022e0>] (gic_handle_irq+0x4c/0x88) [<80102294>] (gic_handle_irq) from [<80101a30>] (__irq_svc+0x70/0x98) [<802b8794>] (generic_fillattr) from [<8056b284>] (v9fs_vfs_getattr_dotl+0x74/0xa4) [<8056b210>] (v9fs_vfs_getattr_dotl) from [<802b8904>] (vfs_getattr_nosec+0x68/0x7c) [<802b889c>] (vfs_getattr_nosec) from [<802b895c>] (vfs_getattr+0x44/0x48) [<802b8918>] (vfs_getattr) from [<802b8a74>] (vfs_statx+0x9c/0xec) [<802b89d8>] (vfs_statx) from [<802b9428>] (sys_lstat64+0x48/0x78) [<802b93e0>] (sys_lstat64) from [<80101000>] (ret_fast_syscall+0x0/0x28) [dominique.martinet@cea.fr: updated comment to not refer to a function in another subsystem] Link: http://lkml.kernel.org/r/20190124063514.8571-2-houtao1@huawei.com Cc: stable@vger.kernel.org Fixes: 7549ae3e81cc ("9p: Use the i_size_[read, write]() macros instead of using inode->i_size directly.") Reported-by: Xing Gaopeng <xingaopeng@huawei.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
2019-01-24 06:35:13 +00:00
* @flags: control flags (e.g. V9FS_STAT2INODE_KEEP_ISIZE)
*
*/
void
v9fs_stat2inode(struct p9_wstat *stat, struct inode *inode,
9p: use inode->i_lock to protect i_size_write() under 32-bit Use inode->i_lock to protect i_size_write(), else i_size_read() in generic_fillattr() may loop infinitely in read_seqcount_begin() when multiple processes invoke v9fs_vfs_getattr() or v9fs_vfs_getattr_dotl() simultaneously under 32-bit SMP environment, and a soft lockup will be triggered as show below: watchdog: BUG: soft lockup - CPU#5 stuck for 22s! [stat:2217] Modules linked in: CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system PC is at generic_fillattr+0x104/0x108 LR is at 0xec497f00 pc : [<802b8898>] lr : [<ec497f00>] psr: 200c0013 sp : ec497e20 ip : ed608030 fp : ec497e3c r10: 00000000 r9 : ec497f00 r8 : ed608030 r7 : ec497ebc r6 : ec497f00 r5 : ee5c1550 r4 : ee005780 r3 : 0000052d r2 : 00000000 r1 : ec497f00 r0 : ed608030 Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 10c5387d Table: ac48006a DAC: 00000051 CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system Backtrace: [<8010d974>] (dump_backtrace) from [<8010dc88>] (show_stack+0x20/0x24) [<8010dc68>] (show_stack) from [<80a1d194>] (dump_stack+0xb0/0xdc) [<80a1d0e4>] (dump_stack) from [<80109f34>] (show_regs+0x1c/0x20) [<80109f18>] (show_regs) from [<801d0a80>] (watchdog_timer_fn+0x280/0x2f8) [<801d0800>] (watchdog_timer_fn) from [<80198658>] (__hrtimer_run_queues+0x18c/0x380) [<801984cc>] (__hrtimer_run_queues) from [<80198e60>] (hrtimer_run_queues+0xb8/0xf0) [<80198da8>] (hrtimer_run_queues) from [<801973e8>] (run_local_timers+0x28/0x64) [<801973c0>] (run_local_timers) from [<80197460>] (update_process_times+0x3c/0x6c) [<80197424>] (update_process_times) from [<801ab2b8>] (tick_nohz_handler+0xe0/0x1bc) [<801ab1d8>] (tick_nohz_handler) from [<80843050>] (arch_timer_handler_virt+0x38/0x48) [<80843018>] (arch_timer_handler_virt) from [<80180a64>] (handle_percpu_devid_irq+0x8c/0x240) [<801809d8>] (handle_percpu_devid_irq) from [<8017ac20>] (generic_handle_irq+0x34/0x44) [<8017abec>] (generic_handle_irq) from [<8017b344>] (__handle_domain_irq+0x6c/0xc4) [<8017b2d8>] (__handle_domain_irq) from [<801022e0>] (gic_handle_irq+0x4c/0x88) [<80102294>] (gic_handle_irq) from [<80101a30>] (__irq_svc+0x70/0x98) [<802b8794>] (generic_fillattr) from [<8056b284>] (v9fs_vfs_getattr_dotl+0x74/0xa4) [<8056b210>] (v9fs_vfs_getattr_dotl) from [<802b8904>] (vfs_getattr_nosec+0x68/0x7c) [<802b889c>] (vfs_getattr_nosec) from [<802b895c>] (vfs_getattr+0x44/0x48) [<802b8918>] (vfs_getattr) from [<802b8a74>] (vfs_statx+0x9c/0xec) [<802b89d8>] (vfs_statx) from [<802b9428>] (sys_lstat64+0x48/0x78) [<802b93e0>] (sys_lstat64) from [<80101000>] (ret_fast_syscall+0x0/0x28) [dominique.martinet@cea.fr: updated comment to not refer to a function in another subsystem] Link: http://lkml.kernel.org/r/20190124063514.8571-2-houtao1@huawei.com Cc: stable@vger.kernel.org Fixes: 7549ae3e81cc ("9p: Use the i_size_[read, write]() macros instead of using inode->i_size directly.") Reported-by: Xing Gaopeng <xingaopeng@huawei.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
2019-01-24 06:35:13 +00:00
struct super_block *sb, unsigned int flags)
{
umode_t mode;
struct v9fs_session_info *v9ses = sb->s_fs_info;
struct v9fs_inode *v9inode = V9FS_I(inode);
inode_set_atime(inode, stat->atime, 0);
inode_set_mtime(inode, stat->mtime, 0);
inode_set_ctime(inode, stat->mtime, 0);
inode->i_uid = v9ses->dfltuid;
inode->i_gid = v9ses->dfltgid;
if (v9fs_proto_dotu(v9ses)) {
inode->i_uid = stat->n_uid;
inode->i_gid = stat->n_gid;
}
if ((S_ISREG(inode->i_mode)) || (S_ISDIR(inode->i_mode))) {
if (v9fs_proto_dotu(v9ses)) {
unsigned int i_nlink;
/*
* Hadlink support got added later to the .u extension.
* So there can be a server out there that doesn't
* support this even with .u extension. That would
* just leave us with stat->extension being an empty
* string, though.
*/
/* HARDLINKCOUNT %u */
if (sscanf(stat->extension,
" HARDLINKCOUNT %u", &i_nlink) == 1)
set_nlink(inode, i_nlink);
}
}
mode = p9mode2perm(v9ses, stat);
mode |= inode->i_mode & ~S_IALLUGO;
inode->i_mode = mode;
v9inode->netfs.remote_i_size = stat->length;
9p: use inode->i_lock to protect i_size_write() under 32-bit Use inode->i_lock to protect i_size_write(), else i_size_read() in generic_fillattr() may loop infinitely in read_seqcount_begin() when multiple processes invoke v9fs_vfs_getattr() or v9fs_vfs_getattr_dotl() simultaneously under 32-bit SMP environment, and a soft lockup will be triggered as show below: watchdog: BUG: soft lockup - CPU#5 stuck for 22s! [stat:2217] Modules linked in: CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system PC is at generic_fillattr+0x104/0x108 LR is at 0xec497f00 pc : [<802b8898>] lr : [<ec497f00>] psr: 200c0013 sp : ec497e20 ip : ed608030 fp : ec497e3c r10: 00000000 r9 : ec497f00 r8 : ed608030 r7 : ec497ebc r6 : ec497f00 r5 : ee5c1550 r4 : ee005780 r3 : 0000052d r2 : 00000000 r1 : ec497f00 r0 : ed608030 Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 10c5387d Table: ac48006a DAC: 00000051 CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system Backtrace: [<8010d974>] (dump_backtrace) from [<8010dc88>] (show_stack+0x20/0x24) [<8010dc68>] (show_stack) from [<80a1d194>] (dump_stack+0xb0/0xdc) [<80a1d0e4>] (dump_stack) from [<80109f34>] (show_regs+0x1c/0x20) [<80109f18>] (show_regs) from [<801d0a80>] (watchdog_timer_fn+0x280/0x2f8) [<801d0800>] (watchdog_timer_fn) from [<80198658>] (__hrtimer_run_queues+0x18c/0x380) [<801984cc>] (__hrtimer_run_queues) from [<80198e60>] (hrtimer_run_queues+0xb8/0xf0) [<80198da8>] (hrtimer_run_queues) from [<801973e8>] (run_local_timers+0x28/0x64) [<801973c0>] (run_local_timers) from [<80197460>] (update_process_times+0x3c/0x6c) [<80197424>] (update_process_times) from [<801ab2b8>] (tick_nohz_handler+0xe0/0x1bc) [<801ab1d8>] (tick_nohz_handler) from [<80843050>] (arch_timer_handler_virt+0x38/0x48) [<80843018>] (arch_timer_handler_virt) from [<80180a64>] (handle_percpu_devid_irq+0x8c/0x240) [<801809d8>] (handle_percpu_devid_irq) from [<8017ac20>] (generic_handle_irq+0x34/0x44) [<8017abec>] (generic_handle_irq) from [<8017b344>] (__handle_domain_irq+0x6c/0xc4) [<8017b2d8>] (__handle_domain_irq) from [<801022e0>] (gic_handle_irq+0x4c/0x88) [<80102294>] (gic_handle_irq) from [<80101a30>] (__irq_svc+0x70/0x98) [<802b8794>] (generic_fillattr) from [<8056b284>] (v9fs_vfs_getattr_dotl+0x74/0xa4) [<8056b210>] (v9fs_vfs_getattr_dotl) from [<802b8904>] (vfs_getattr_nosec+0x68/0x7c) [<802b889c>] (vfs_getattr_nosec) from [<802b895c>] (vfs_getattr+0x44/0x48) [<802b8918>] (vfs_getattr) from [<802b8a74>] (vfs_statx+0x9c/0xec) [<802b89d8>] (vfs_statx) from [<802b9428>] (sys_lstat64+0x48/0x78) [<802b93e0>] (sys_lstat64) from [<80101000>] (ret_fast_syscall+0x0/0x28) [dominique.martinet@cea.fr: updated comment to not refer to a function in another subsystem] Link: http://lkml.kernel.org/r/20190124063514.8571-2-houtao1@huawei.com Cc: stable@vger.kernel.org Fixes: 7549ae3e81cc ("9p: Use the i_size_[read, write]() macros instead of using inode->i_size directly.") Reported-by: Xing Gaopeng <xingaopeng@huawei.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
2019-01-24 06:35:13 +00:00
if (!(flags & V9FS_STAT2INODE_KEEP_ISIZE))
v9fs_i_size_write(inode, stat->length);
/* not real number of blocks, but 512 byte ones ... */
9p: use inode->i_lock to protect i_size_write() under 32-bit Use inode->i_lock to protect i_size_write(), else i_size_read() in generic_fillattr() may loop infinitely in read_seqcount_begin() when multiple processes invoke v9fs_vfs_getattr() or v9fs_vfs_getattr_dotl() simultaneously under 32-bit SMP environment, and a soft lockup will be triggered as show below: watchdog: BUG: soft lockup - CPU#5 stuck for 22s! [stat:2217] Modules linked in: CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system PC is at generic_fillattr+0x104/0x108 LR is at 0xec497f00 pc : [<802b8898>] lr : [<ec497f00>] psr: 200c0013 sp : ec497e20 ip : ed608030 fp : ec497e3c r10: 00000000 r9 : ec497f00 r8 : ed608030 r7 : ec497ebc r6 : ec497f00 r5 : ee5c1550 r4 : ee005780 r3 : 0000052d r2 : 00000000 r1 : ec497f00 r0 : ed608030 Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 10c5387d Table: ac48006a DAC: 00000051 CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system Backtrace: [<8010d974>] (dump_backtrace) from [<8010dc88>] (show_stack+0x20/0x24) [<8010dc68>] (show_stack) from [<80a1d194>] (dump_stack+0xb0/0xdc) [<80a1d0e4>] (dump_stack) from [<80109f34>] (show_regs+0x1c/0x20) [<80109f18>] (show_regs) from [<801d0a80>] (watchdog_timer_fn+0x280/0x2f8) [<801d0800>] (watchdog_timer_fn) from [<80198658>] (__hrtimer_run_queues+0x18c/0x380) [<801984cc>] (__hrtimer_run_queues) from [<80198e60>] (hrtimer_run_queues+0xb8/0xf0) [<80198da8>] (hrtimer_run_queues) from [<801973e8>] (run_local_timers+0x28/0x64) [<801973c0>] (run_local_timers) from [<80197460>] (update_process_times+0x3c/0x6c) [<80197424>] (update_process_times) from [<801ab2b8>] (tick_nohz_handler+0xe0/0x1bc) [<801ab1d8>] (tick_nohz_handler) from [<80843050>] (arch_timer_handler_virt+0x38/0x48) [<80843018>] (arch_timer_handler_virt) from [<80180a64>] (handle_percpu_devid_irq+0x8c/0x240) [<801809d8>] (handle_percpu_devid_irq) from [<8017ac20>] (generic_handle_irq+0x34/0x44) [<8017abec>] (generic_handle_irq) from [<8017b344>] (__handle_domain_irq+0x6c/0xc4) [<8017b2d8>] (__handle_domain_irq) from [<801022e0>] (gic_handle_irq+0x4c/0x88) [<80102294>] (gic_handle_irq) from [<80101a30>] (__irq_svc+0x70/0x98) [<802b8794>] (generic_fillattr) from [<8056b284>] (v9fs_vfs_getattr_dotl+0x74/0xa4) [<8056b210>] (v9fs_vfs_getattr_dotl) from [<802b8904>] (vfs_getattr_nosec+0x68/0x7c) [<802b889c>] (vfs_getattr_nosec) from [<802b895c>] (vfs_getattr+0x44/0x48) [<802b8918>] (vfs_getattr) from [<802b8a74>] (vfs_statx+0x9c/0xec) [<802b89d8>] (vfs_statx) from [<802b9428>] (sys_lstat64+0x48/0x78) [<802b93e0>] (sys_lstat64) from [<80101000>] (ret_fast_syscall+0x0/0x28) [dominique.martinet@cea.fr: updated comment to not refer to a function in another subsystem] Link: http://lkml.kernel.org/r/20190124063514.8571-2-houtao1@huawei.com Cc: stable@vger.kernel.org Fixes: 7549ae3e81cc ("9p: Use the i_size_[read, write]() macros instead of using inode->i_size directly.") Reported-by: Xing Gaopeng <xingaopeng@huawei.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
2019-01-24 06:35:13 +00:00
inode->i_blocks = (stat->length + 512 - 1) >> 9;
v9inode->cache_validity &= ~V9FS_INO_INVALID_ATTR;
}
/**
* v9fs_vfs_get_link - follow a symlink path
* @dentry: dentry for symlink
* @inode: inode for symlink
* @done: delayed call for when we are done with the return value
*/
static const char *v9fs_vfs_get_link(struct dentry *dentry,
struct inode *inode,
struct delayed_call *done)
{
struct v9fs_session_info *v9ses;
struct p9_fid *fid;
struct p9_wstat *st;
char *res;
if (!dentry)
return ERR_PTR(-ECHILD);
v9ses = v9fs_dentry2v9ses(dentry);
if (!v9fs_proto_dotu(v9ses))
return ERR_PTR(-EBADF);
p9_debug(P9_DEBUG_VFS, "%pd\n", dentry);
fid = v9fs_fid_lookup(dentry);
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-17 19:31:07 +00:00
if (IS_ERR(fid))
return ERR_CAST(fid);
st = p9_client_stat(fid);
p9_fid_put(fid);
if (IS_ERR(st))
return ERR_CAST(st);
if (!(st->mode & P9_DMSYMLINK)) {
p9stat_free(st);
kfree(st);
return ERR_PTR(-EINVAL);
}
res = st->extension;
st->extension = NULL;
if (strlen(res) >= PATH_MAX)
res[PATH_MAX - 1] = '\0';
p9stat_free(st);
kfree(st);
set_delayed_call(done, kfree_link, res);
return res;
}
/**
* v9fs_vfs_mkspecial - create a special file
* @dir: inode to create special file in
* @dentry: dentry to create
* @perm: mode to create special file
* @extension: 9p2000.u format extension string representing special file
*
*/
static int v9fs_vfs_mkspecial(struct inode *dir, struct dentry *dentry,
u32 perm, const char *extension)
{
struct p9_fid *fid;
struct v9fs_session_info *v9ses;
v9ses = v9fs_inode2v9ses(dir);
if (!v9fs_proto_dotu(v9ses)) {
p9_debug(P9_DEBUG_ERROR, "not extended\n");
return -EPERM;
}
fid = v9fs_create(v9ses, dir, dentry, (char *) extension, perm,
P9_OREAD);
if (IS_ERR(fid))
return PTR_ERR(fid);
v9fs_invalidate_inode_attr(dir);
p9_fid_put(fid);
return 0;
}
/**
* v9fs_vfs_symlink - helper function to create symlinks
* @idmap: idmap of the mount
* @dir: directory inode containing symlink
* @dentry: dentry for symlink
* @symname: symlink data
*
* See Also: 9P2000.u RFC for more information
*
*/
static int
v9fs_vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, const char *symname)
{
p9_debug(P9_DEBUG_VFS, " %lu,%pd,%s\n",
dir->i_ino, dentry, symname);
return v9fs_vfs_mkspecial(dir, dentry, P9_DMSYMLINK, symname);
}
#define U32_MAX_DIGITS 10
/**
* v9fs_vfs_link - create a hardlink
* @old_dentry: dentry for file to link to
* @dir: inode destination for new link
* @dentry: dentry for link
*
*/
static int
v9fs_vfs_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *dentry)
{
int retval;
char name[1 + U32_MAX_DIGITS + 2]; /* sign + number + \n + \0 */
struct p9_fid *oldfid;
p9_debug(P9_DEBUG_VFS, " %lu,%pd,%pd\n",
dir->i_ino, dentry, old_dentry);
oldfid = v9fs_fid_clone(old_dentry);
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-17 19:31:07 +00:00
if (IS_ERR(oldfid))
return PTR_ERR(oldfid);
sprintf(name, "%d\n", oldfid->fid);
retval = v9fs_vfs_mkspecial(dir, dentry, P9_DMLINK, name);
if (!retval) {
v9fs_refresh_inode(oldfid, d_inode(old_dentry));
v9fs_invalidate_inode_attr(dir);
}
p9_fid_put(oldfid);
return retval;
}
/**
* v9fs_vfs_mknod - create a special file
* @idmap: idmap of the mount
* @dir: inode destination for new link
* @dentry: dentry for file
* @mode: mode for creation
* @rdev: device associated with special file
*
*/
static int
v9fs_vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode, dev_t rdev)
{
struct v9fs_session_info *v9ses = v9fs_inode2v9ses(dir);
int retval;
char name[2 + U32_MAX_DIGITS + 1 + U32_MAX_DIGITS + 1];
u32 perm;
p9_debug(P9_DEBUG_VFS, " %lu,%pd mode: %x MAJOR: %u MINOR: %u\n",
dir->i_ino, dentry, mode,
MAJOR(rdev), MINOR(rdev));
/* build extension */
if (S_ISBLK(mode))
sprintf(name, "b %u %u", MAJOR(rdev), MINOR(rdev));
else if (S_ISCHR(mode))
sprintf(name, "c %u %u", MAJOR(rdev), MINOR(rdev));
else
*name = 0;
perm = unixmode2p9mode(v9ses, mode);
retval = v9fs_vfs_mkspecial(dir, dentry, perm, name);
return retval;
}
int v9fs_refresh_inode(struct p9_fid *fid, struct inode *inode)
{
int umode;
dev_t rdev;
struct p9_wstat *st;
struct v9fs_session_info *v9ses;
9p: use inode->i_lock to protect i_size_write() under 32-bit Use inode->i_lock to protect i_size_write(), else i_size_read() in generic_fillattr() may loop infinitely in read_seqcount_begin() when multiple processes invoke v9fs_vfs_getattr() or v9fs_vfs_getattr_dotl() simultaneously under 32-bit SMP environment, and a soft lockup will be triggered as show below: watchdog: BUG: soft lockup - CPU#5 stuck for 22s! [stat:2217] Modules linked in: CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system PC is at generic_fillattr+0x104/0x108 LR is at 0xec497f00 pc : [<802b8898>] lr : [<ec497f00>] psr: 200c0013 sp : ec497e20 ip : ed608030 fp : ec497e3c r10: 00000000 r9 : ec497f00 r8 : ed608030 r7 : ec497ebc r6 : ec497f00 r5 : ee5c1550 r4 : ee005780 r3 : 0000052d r2 : 00000000 r1 : ec497f00 r0 : ed608030 Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 10c5387d Table: ac48006a DAC: 00000051 CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system Backtrace: [<8010d974>] (dump_backtrace) from [<8010dc88>] (show_stack+0x20/0x24) [<8010dc68>] (show_stack) from [<80a1d194>] (dump_stack+0xb0/0xdc) [<80a1d0e4>] (dump_stack) from [<80109f34>] (show_regs+0x1c/0x20) [<80109f18>] (show_regs) from [<801d0a80>] (watchdog_timer_fn+0x280/0x2f8) [<801d0800>] (watchdog_timer_fn) from [<80198658>] (__hrtimer_run_queues+0x18c/0x380) [<801984cc>] (__hrtimer_run_queues) from [<80198e60>] (hrtimer_run_queues+0xb8/0xf0) [<80198da8>] (hrtimer_run_queues) from [<801973e8>] (run_local_timers+0x28/0x64) [<801973c0>] (run_local_timers) from [<80197460>] (update_process_times+0x3c/0x6c) [<80197424>] (update_process_times) from [<801ab2b8>] (tick_nohz_handler+0xe0/0x1bc) [<801ab1d8>] (tick_nohz_handler) from [<80843050>] (arch_timer_handler_virt+0x38/0x48) [<80843018>] (arch_timer_handler_virt) from [<80180a64>] (handle_percpu_devid_irq+0x8c/0x240) [<801809d8>] (handle_percpu_devid_irq) from [<8017ac20>] (generic_handle_irq+0x34/0x44) [<8017abec>] (generic_handle_irq) from [<8017b344>] (__handle_domain_irq+0x6c/0xc4) [<8017b2d8>] (__handle_domain_irq) from [<801022e0>] (gic_handle_irq+0x4c/0x88) [<80102294>] (gic_handle_irq) from [<80101a30>] (__irq_svc+0x70/0x98) [<802b8794>] (generic_fillattr) from [<8056b284>] (v9fs_vfs_getattr_dotl+0x74/0xa4) [<8056b210>] (v9fs_vfs_getattr_dotl) from [<802b8904>] (vfs_getattr_nosec+0x68/0x7c) [<802b889c>] (vfs_getattr_nosec) from [<802b895c>] (vfs_getattr+0x44/0x48) [<802b8918>] (vfs_getattr) from [<802b8a74>] (vfs_statx+0x9c/0xec) [<802b89d8>] (vfs_statx) from [<802b9428>] (sys_lstat64+0x48/0x78) [<802b93e0>] (sys_lstat64) from [<80101000>] (ret_fast_syscall+0x0/0x28) [dominique.martinet@cea.fr: updated comment to not refer to a function in another subsystem] Link: http://lkml.kernel.org/r/20190124063514.8571-2-houtao1@huawei.com Cc: stable@vger.kernel.org Fixes: 7549ae3e81cc ("9p: Use the i_size_[read, write]() macros instead of using inode->i_size directly.") Reported-by: Xing Gaopeng <xingaopeng@huawei.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
2019-01-24 06:35:13 +00:00
unsigned int flags;
v9ses = v9fs_inode2v9ses(inode);
st = p9_client_stat(fid);
if (IS_ERR(st))
return PTR_ERR(st);
/*
* Don't update inode if the file type is different
*/
umode = p9mode2unixmode(v9ses, st, &rdev);
if (inode_wrong_type(inode, umode))
goto out;
/*
* We don't want to refresh inode->i_size,
* because we may have cached data
*/
flags = (v9ses->cache & CACHE_LOOSE) ?
9p: use inode->i_lock to protect i_size_write() under 32-bit Use inode->i_lock to protect i_size_write(), else i_size_read() in generic_fillattr() may loop infinitely in read_seqcount_begin() when multiple processes invoke v9fs_vfs_getattr() or v9fs_vfs_getattr_dotl() simultaneously under 32-bit SMP environment, and a soft lockup will be triggered as show below: watchdog: BUG: soft lockup - CPU#5 stuck for 22s! [stat:2217] Modules linked in: CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system PC is at generic_fillattr+0x104/0x108 LR is at 0xec497f00 pc : [<802b8898>] lr : [<ec497f00>] psr: 200c0013 sp : ec497e20 ip : ed608030 fp : ec497e3c r10: 00000000 r9 : ec497f00 r8 : ed608030 r7 : ec497ebc r6 : ec497f00 r5 : ee5c1550 r4 : ee005780 r3 : 0000052d r2 : 00000000 r1 : ec497f00 r0 : ed608030 Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 10c5387d Table: ac48006a DAC: 00000051 CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e #4 Hardware name: Generic DT based system Backtrace: [<8010d974>] (dump_backtrace) from [<8010dc88>] (show_stack+0x20/0x24) [<8010dc68>] (show_stack) from [<80a1d194>] (dump_stack+0xb0/0xdc) [<80a1d0e4>] (dump_stack) from [<80109f34>] (show_regs+0x1c/0x20) [<80109f18>] (show_regs) from [<801d0a80>] (watchdog_timer_fn+0x280/0x2f8) [<801d0800>] (watchdog_timer_fn) from [<80198658>] (__hrtimer_run_queues+0x18c/0x380) [<801984cc>] (__hrtimer_run_queues) from [<80198e60>] (hrtimer_run_queues+0xb8/0xf0) [<80198da8>] (hrtimer_run_queues) from [<801973e8>] (run_local_timers+0x28/0x64) [<801973c0>] (run_local_timers) from [<80197460>] (update_process_times+0x3c/0x6c) [<80197424>] (update_process_times) from [<801ab2b8>] (tick_nohz_handler+0xe0/0x1bc) [<801ab1d8>] (tick_nohz_handler) from [<80843050>] (arch_timer_handler_virt+0x38/0x48) [<80843018>] (arch_timer_handler_virt) from [<80180a64>] (handle_percpu_devid_irq+0x8c/0x240) [<801809d8>] (handle_percpu_devid_irq) from [<8017ac20>] (generic_handle_irq+0x34/0x44) [<8017abec>] (generic_handle_irq) from [<8017b344>] (__handle_domain_irq+0x6c/0xc4) [<8017b2d8>] (__handle_domain_irq) from [<801022e0>] (gic_handle_irq+0x4c/0x88) [<80102294>] (gic_handle_irq) from [<80101a30>] (__irq_svc+0x70/0x98) [<802b8794>] (generic_fillattr) from [<8056b284>] (v9fs_vfs_getattr_dotl+0x74/0xa4) [<8056b210>] (v9fs_vfs_getattr_dotl) from [<802b8904>] (vfs_getattr_nosec+0x68/0x7c) [<802b889c>] (vfs_getattr_nosec) from [<802b895c>] (vfs_getattr+0x44/0x48) [<802b8918>] (vfs_getattr) from [<802b8a74>] (vfs_statx+0x9c/0xec) [<802b89d8>] (vfs_statx) from [<802b9428>] (sys_lstat64+0x48/0x78) [<802b93e0>] (sys_lstat64) from [<80101000>] (ret_fast_syscall+0x0/0x28) [dominique.martinet@cea.fr: updated comment to not refer to a function in another subsystem] Link: http://lkml.kernel.org/r/20190124063514.8571-2-houtao1@huawei.com Cc: stable@vger.kernel.org Fixes: 7549ae3e81cc ("9p: Use the i_size_[read, write]() macros instead of using inode->i_size directly.") Reported-by: Xing Gaopeng <xingaopeng@huawei.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
2019-01-24 06:35:13 +00:00
V9FS_STAT2INODE_KEEP_ISIZE : 0;
v9fs_stat2inode(st, inode, inode->i_sb, flags);
out:
p9stat_free(st);
kfree(st);
return 0;
}
static const struct inode_operations v9fs_dir_inode_operations_dotu = {
.create = v9fs_vfs_create,
.lookup = v9fs_vfs_lookup,
.atomic_open = v9fs_vfs_atomic_open,
.symlink = v9fs_vfs_symlink,
.link = v9fs_vfs_link,
.unlink = v9fs_vfs_unlink,
.mkdir = v9fs_vfs_mkdir,
.rmdir = v9fs_vfs_rmdir,
.mknod = v9fs_vfs_mknod,
.rename = v9fs_vfs_rename,
.getattr = v9fs_vfs_getattr,
.setattr = v9fs_vfs_setattr,
};
static const struct inode_operations v9fs_dir_inode_operations = {
.create = v9fs_vfs_create,
.lookup = v9fs_vfs_lookup,
.atomic_open = v9fs_vfs_atomic_open,
.unlink = v9fs_vfs_unlink,
.mkdir = v9fs_vfs_mkdir,
.rmdir = v9fs_vfs_rmdir,
.mknod = v9fs_vfs_mknod,
.rename = v9fs_vfs_rename,
.getattr = v9fs_vfs_getattr,
.setattr = v9fs_vfs_setattr,
};
static const struct inode_operations v9fs_file_inode_operations = {
.getattr = v9fs_vfs_getattr,
.setattr = v9fs_vfs_setattr,
};
static const struct inode_operations v9fs_symlink_inode_operations = {
.get_link = v9fs_vfs_get_link,
.getattr = v9fs_vfs_getattr,
.setattr = v9fs_vfs_setattr,
};