linux-stable/mm/page_owner.c

980 lines
24 KiB
C
Raw Permalink Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
#include <linux/debugfs.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-30 22:09:49 +00:00
#include <linux/memblock.h>
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
#include <linux/stacktrace.h>
#include <linux/page_owner.h>
#include <linux/jump_label.h>
mm, page_owner: track and print last migrate reason During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:18 +00:00
#include <linux/migrate.h>
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
#include <linux/stackdepot.h>
#include <linux/seq_file.h>
mm/page_owner: print memcg information It was found that a number of offline memcgs were not freed because they were pinned by some charged pages that were present. Even "echo 1 > /proc/sys/vm/drop_caches" wasn't able to free those pages. These offline but not freed memcgs tend to increase in number over time with the side effect that percpu memory consumption as shown in /proc/meminfo also increases over time. In order to find out more information about those pages that pin offline memcgs, the page_owner feature is extended to print memory cgroup information especially whether the cgroup is offline or not. RCU read lock is taken when memcg is being accessed to make sure that it won't be freed. Link: https://lkml.kernel.org/r/20220202203036.744010-4-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Rafael Aquini <aquini@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:09:08 +00:00
#include <linux/memcontrol.h>
#include <linux/sched/clock.h>
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
#include "internal.h"
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
/*
* TODO: teach PAGE_OWNER_STACK_DEPTH (__dump_page_owner and save_stack)
* to use off stack temporal storage
*/
#define PAGE_OWNER_STACK_DEPTH (16)
struct page_owner {
unsigned short order;
short last_migrate_reason;
gfp_t gfp_mask;
depot_stack_handle_t handle;
mm, page_owner, debug_pagealloc: save and dump freeing stack trace The debug_pagealloc functionality is useful to catch buggy page allocator users that cause e.g. use after free or double free. When page inconsistency is detected, debugging is often simpler by knowing the call stack of process that last allocated and freed the page. When page_owner is also enabled, we record the allocation stack trace, but not freeing. This patch therefore adds recording of freeing process stack trace to page owner info, if both page_owner and debug_pagealloc are configured and enabled. With only page_owner enabled, this info is not useful for the memory leak debugging use case. dump_page() is adjusted to print the info. An example result of calling __free_pages() twice may look like this (note the page last free stack trace): BUG: Bad page state in process bash pfn:13d8f8 page:ffffc31984f63e00 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x0 flags: 0x1affff800000000() raw: 01affff800000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 ffffffffffffffff 0000000000000000 page dumped because: nonzero _refcount page_owner tracks the page as freed page last allocated via order 0, migratetype Unmovable, gfp_mask 0xcc0(GFP_KERNEL) prep_new_page+0x143/0x150 get_page_from_freelist+0x289/0x380 __alloc_pages_nodemask+0x13c/0x2d0 khugepaged+0x6e/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 page last free stack trace: free_pcp_prepare+0x134/0x1e0 free_unref_page+0x18/0x90 khugepaged+0x7b/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 Modules linked in: CPU: 3 PID: 271 Comm: bash Not tainted 5.3.0-rc4-2.g07a1a73-default+ #57 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x85/0xc0 bad_page.cold+0xba/0xbf rmqueue_pcplist.isra.0+0x6c5/0x6d0 rmqueue+0x2d/0x810 get_page_from_freelist+0x191/0x380 __alloc_pages_nodemask+0x13c/0x2d0 __get_free_pages+0xd/0x30 __pud_alloc+0x2c/0x110 copy_page_range+0x4f9/0x630 dup_mmap+0x362/0x480 dup_mm+0x68/0x110 copy_process+0x19e1/0x1b40 _do_fork+0x73/0x310 __x64_sys_clone+0x75/0x80 do_syscall_64+0x6e/0x1e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f10af854a10 ... Link: http://lkml.kernel.org/r/20190820131828.22684-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:42 +00:00
depot_stack_handle_t free_handle;
u64 ts_nsec;
u64 free_ts_nsec;
char comm[TASK_COMM_LEN];
pid_t pid;
pid_t tgid;
pid_t free_pid;
pid_t free_tgid;
};
struct stack {
struct stack_record *stack_record;
struct stack *next;
};
static struct stack dummy_stack;
static struct stack failure_stack;
static struct stack *stack_list;
static DEFINE_SPINLOCK(stack_list_lock);
static bool page_owner_enabled __initdata;
DEFINE_STATIC_KEY_FALSE(page_owner_inited);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
static depot_stack_handle_t dummy_handle;
static depot_stack_handle_t failure_handle;
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
static depot_stack_handle_t early_handle;
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
static void init_early_allocated_pages(void);
static inline void set_current_in_page_owner(void)
{
/*
* Avoid recursion.
*
* We might need to allocate more memory from page_owner code, so make
* sure to signal it in order to avoid recursion.
*/
current->in_page_owner = 1;
}
static inline void unset_current_in_page_owner(void)
{
current->in_page_owner = 0;
}
static int __init early_page_owner_param(char *buf)
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
{
lib/stackdepot: allow requesting early initialization dynamically In a later patch we want to add stackdepot support for object owner tracking in slub caches, which is enabled by slub_debug boot parameter. This creates a bootstrap problem as some caches are created early in boot when slab_is_available() is false and thus stack_depot_init() tries to use memblock. But, as reported by Hyeonggon Yoo [1] we are already beyond memblock_free_all(). Ideally memblock allocation should fail, yet it succeeds, but later the system crashes, which is a separately handled issue. To resolve this boostrap issue in a robust way, this patch adds another way to request stack_depot_early_init(), which happens at a well-defined point of time. In addition to build-time CONFIG_STACKDEPOT_ALWAYS_INIT, code that's e.g. processing boot parameters (which happens early enough) can call a new function stack_depot_want_early_init(), which sets a flag that stack_depot_early_init() will check. In this patch we also convert page_owner to this approach. While it doesn't have the bootstrap issue as slub, it's also a functionality enabled by a boot param and can thus request stack_depot_early_init() with memblock allocation instead of later initialization with kvmalloc(). As suggested by Mike, make stack_depot_early_init() only attempt memblock allocation and stack_depot_init() only attempt kvmalloc(). Also change the latter to kvcalloc(). In both cases we can lose the explicit array zeroing, which the allocations do already. As suggested by Marco, provide empty implementations of the init functions for !CONFIG_STACKDEPOT builds to simplify the callers. [1] https://lore.kernel.org/all/YhnUcqyeMgCrWZbd@ip-172-31-19-208.ap-northeast-1.compute.internal/ Reported-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Suggested-by: Mike Rapoport <rppt@linux.ibm.com> Suggested-by: Marco Elver <elver@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Marco Elver <elver@google.com> Reviewed-and-tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: David Rientjes <rientjes@google.com>
2022-03-02 11:02:22 +00:00
int ret = kstrtobool(buf, &page_owner_enabled);
if (page_owner_enabled)
stack_depot_request_early_init();
lib/stackdepot: allow requesting early initialization dynamically In a later patch we want to add stackdepot support for object owner tracking in slub caches, which is enabled by slub_debug boot parameter. This creates a bootstrap problem as some caches are created early in boot when slab_is_available() is false and thus stack_depot_init() tries to use memblock. But, as reported by Hyeonggon Yoo [1] we are already beyond memblock_free_all(). Ideally memblock allocation should fail, yet it succeeds, but later the system crashes, which is a separately handled issue. To resolve this boostrap issue in a robust way, this patch adds another way to request stack_depot_early_init(), which happens at a well-defined point of time. In addition to build-time CONFIG_STACKDEPOT_ALWAYS_INIT, code that's e.g. processing boot parameters (which happens early enough) can call a new function stack_depot_want_early_init(), which sets a flag that stack_depot_early_init() will check. In this patch we also convert page_owner to this approach. While it doesn't have the bootstrap issue as slub, it's also a functionality enabled by a boot param and can thus request stack_depot_early_init() with memblock allocation instead of later initialization with kvmalloc(). As suggested by Mike, make stack_depot_early_init() only attempt memblock allocation and stack_depot_init() only attempt kvmalloc(). Also change the latter to kvcalloc(). In both cases we can lose the explicit array zeroing, which the allocations do already. As suggested by Marco, provide empty implementations of the init functions for !CONFIG_STACKDEPOT builds to simplify the callers. [1] https://lore.kernel.org/all/YhnUcqyeMgCrWZbd@ip-172-31-19-208.ap-northeast-1.compute.internal/ Reported-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Suggested-by: Mike Rapoport <rppt@linux.ibm.com> Suggested-by: Marco Elver <elver@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Marco Elver <elver@google.com> Reviewed-and-tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: David Rientjes <rientjes@google.com>
2022-03-02 11:02:22 +00:00
return ret;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
}
early_param("page_owner", early_page_owner_param);
static __init bool need_page_owner(void)
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
{
mm, page_owner: decouple freeing stack trace from debug_pagealloc Commit 8974558f49a6 ("mm, page_owner, debug_pagealloc: save and dump freeing stack trace") enhanced page_owner to also store freeing stack trace, when debug_pagealloc is also enabled. KASAN would also like to do this [1] to improve error reports to debug e.g. UAF issues. Kirill has suggested that the freeing stack trace saving should be also possible to be enabled separately from KASAN or debug_pagealloc, i.e. with an extra boot option. Qian argued that we have enough options already, and avoiding the extra overhead is not worth the complications in the case of a debugging option. Kirill noted that the extra stack handle in struct page_owner requires 0.1% of memory. This patch therefore enables free stack saving whenever page_owner is enabled, regardless of whether debug_pagealloc or KASAN is also enabled. KASAN kernels booted with page_owner=on will thus benefit from the improved error reports. [1] https://bugzilla.kernel.org/show_bug.cgi?id=203967 [vbabka@suse.cz: v3] Link: http://lkml.kernel.org/r/20191007091808.7096-3-vbabka@suse.cz Link: http://lkml.kernel.org/r/20190930122916.14969-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Qian Cai <cai@lca.pw> Suggested-by: Dmitry Vyukov <dvyukov@google.com> Suggested-by: Walter Wu <walter-zh.wu@mediatek.com> Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-14 21:11:44 +00:00
return page_owner_enabled;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
}
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
static __always_inline depot_stack_handle_t create_dummy_stack(void)
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
{
unsigned long entries[4];
mm/page_owner: Simplify stack trace handling Replace the indirection through struct stack_trace by using the storage array based interfaces. The original code in all printing functions is really wrong. It allocates a storage array on stack which is unused because depot_fetch_stack() does not store anything in it. It overwrites the entries pointer in the stack_trace struct so it points to the depot storage. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094802.067210525@linutronix.de
2019-04-25 09:45:03 +00:00
unsigned int nr_entries;
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
mm/page_owner: Simplify stack trace handling Replace the indirection through struct stack_trace by using the storage array based interfaces. The original code in all printing functions is really wrong. It allocates a storage array on stack which is unused because depot_fetch_stack() does not store anything in it. It overwrites the entries pointer in the stack_trace struct so it points to the depot storage. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094802.067210525@linutronix.de
2019-04-25 09:45:03 +00:00
nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
return stack_depot_save(entries, nr_entries, GFP_KERNEL);
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
}
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
static noinline void register_dummy_stack(void)
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
{
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
dummy_handle = create_dummy_stack();
}
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
static noinline void register_failure_stack(void)
{
failure_handle = create_dummy_stack();
}
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
static noinline void register_early_stack(void)
{
early_handle = create_dummy_stack();
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
}
static __init void init_page_owner(void)
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
{
mm, page_owner: decouple freeing stack trace from debug_pagealloc Commit 8974558f49a6 ("mm, page_owner, debug_pagealloc: save and dump freeing stack trace") enhanced page_owner to also store freeing stack trace, when debug_pagealloc is also enabled. KASAN would also like to do this [1] to improve error reports to debug e.g. UAF issues. Kirill has suggested that the freeing stack trace saving should be also possible to be enabled separately from KASAN or debug_pagealloc, i.e. with an extra boot option. Qian argued that we have enough options already, and avoiding the extra overhead is not worth the complications in the case of a debugging option. Kirill noted that the extra stack handle in struct page_owner requires 0.1% of memory. This patch therefore enables free stack saving whenever page_owner is enabled, regardless of whether debug_pagealloc or KASAN is also enabled. KASAN kernels booted with page_owner=on will thus benefit from the improved error reports. [1] https://bugzilla.kernel.org/show_bug.cgi?id=203967 [vbabka@suse.cz: v3] Link: http://lkml.kernel.org/r/20191007091808.7096-3-vbabka@suse.cz Link: http://lkml.kernel.org/r/20190930122916.14969-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Qian Cai <cai@lca.pw> Suggested-by: Dmitry Vyukov <dvyukov@google.com> Suggested-by: Walter Wu <walter-zh.wu@mediatek.com> Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-14 21:11:44 +00:00
if (!page_owner_enabled)
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
return;
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
register_dummy_stack();
register_failure_stack();
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
register_early_stack();
init_early_allocated_pages();
/* Initialize dummy and failure stacks and link them to stack_list */
dummy_stack.stack_record = __stack_depot_get_stack_record(dummy_handle);
failure_stack.stack_record = __stack_depot_get_stack_record(failure_handle);
mm,page_owner: check for null stack_record before bumping its refcount Patch series "page_owner: Fixup and cleanup". This patchset consists of a fixup by an error that was reported by intel robot, where it seems to be that by the time page_owner gets initialized, stackdepot has already depleted its allocation space and returns 0-handles, turning that into null stack_records when trying to retrieve the stack_record. I was not able to reproduce that from the config because it booted fine for me, but when setting e.g: dummy_handle to 0 artificially, I could see the same error that was reported. The second patch is a cleanup that can also lead to a compilation warning. This patch (of 2): Although the retrieval of the stack_records for {dummy,failure}_handle happen when page_owner gets initialized, there seems to be some situations where stackdepot space has been already depleted by then, so we get 0-handles which make stack_records being NULL for those cases. Be careful to 1) only bump stack_records refcount and 2) only access stack_record fields if we actually have a non-null stack_record between hands. Link: https://lkml.kernel.org/r/20240306123217.29774-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240306123217.29774-2-osalvador@suse.de Fixes: 4bedfb314bdd ("mm,page_owner: implement the tracking of the stacks count") Signed-off-by: Oscar Salvador <osalvador@suse.de> Reported-by: kernel test robot <oliver.sang@intel.com> Closes: https://lore.kernel.org/oe-lkp/202403051032.e2f865a-lkp@intel.com Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 12:32:16 +00:00
if (dummy_stack.stack_record)
refcount_set(&dummy_stack.stack_record->count, 1);
if (failure_stack.stack_record)
refcount_set(&failure_stack.stack_record->count, 1);
dummy_stack.next = &failure_stack;
stack_list = &dummy_stack;
static_branch_enable(&page_owner_inited);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
}
struct page_ext_operations page_owner_ops = {
.size = sizeof(struct page_owner),
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
.need = need_page_owner,
.init = init_page_owner,
.need_shared_flags = true,
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
};
static inline struct page_owner *get_page_owner(struct page_ext *page_ext)
{
return page_ext_data(page_ext, &page_owner_ops);
}
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
static noinline depot_stack_handle_t save_stack(gfp_t flags)
{
unsigned long entries[PAGE_OWNER_STACK_DEPTH];
depot_stack_handle_t handle;
mm/page_owner: Simplify stack trace handling Replace the indirection through struct stack_trace by using the storage array based interfaces. The original code in all printing functions is really wrong. It allocates a storage array on stack which is unused because depot_fetch_stack() does not store anything in it. It overwrites the entries pointer in the stack_trace struct so it points to the depot storage. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094802.067210525@linutronix.de
2019-04-25 09:45:03 +00:00
unsigned int nr_entries;
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
2021-04-30 05:55:08 +00:00
if (current->in_page_owner)
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
return dummy_handle;
set_current_in_page_owner();
2021-04-30 05:55:08 +00:00
nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 2);
mm/page_owner: Simplify stack trace handling Replace the indirection through struct stack_trace by using the storage array based interfaces. The original code in all printing functions is really wrong. It allocates a storage array on stack which is unused because depot_fetch_stack() does not store anything in it. It overwrites the entries pointer in the stack_trace struct so it points to the depot storage. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094802.067210525@linutronix.de
2019-04-25 09:45:03 +00:00
handle = stack_depot_save(entries, nr_entries, flags);
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
if (!handle)
handle = failure_handle;
unset_current_in_page_owner();
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
return handle;
}
static void add_stack_record_to_list(struct stack_record *stack_record,
gfp_t gfp_mask)
{
unsigned long flags;
struct stack *stack;
/* Filter gfp_mask the same way stackdepot does, for consistency */
gfp_mask &= ~GFP_ZONEMASK;
gfp_mask &= (GFP_ATOMIC | GFP_KERNEL | __GFP_NOLOCKDEP);
gfp_mask |= __GFP_NOWARN;
set_current_in_page_owner();
stack = kmalloc(sizeof(*stack), gfp_mask);
if (!stack) {
unset_current_in_page_owner();
return;
}
unset_current_in_page_owner();
stack->stack_record = stack_record;
stack->next = NULL;
spin_lock_irqsave(&stack_list_lock, flags);
stack->next = stack_list;
/*
* This pairs with smp_load_acquire() from function
* stack_start(). This guarantees that stack_start()
* will see an updated stack_list before starting to
* traverse the list.
*/
smp_store_release(&stack_list, stack);
spin_unlock_irqrestore(&stack_list_lock, flags);
}
static void inc_stack_record_count(depot_stack_handle_t handle, gfp_t gfp_mask,
int nr_base_pages)
{
struct stack_record *stack_record = __stack_depot_get_stack_record(handle);
if (!stack_record)
return;
/*
* New stack_record's that do not use STACK_DEPOT_FLAG_GET start
* with REFCOUNT_SATURATED to catch spurious increments of their
* refcount.
* Since we do not use STACK_DEPOT_FLAG_GET API, let us
* set a refcount of 1 ourselves.
*/
if (refcount_read(&stack_record->count) == REFCOUNT_SATURATED) {
int old = REFCOUNT_SATURATED;
if (atomic_try_cmpxchg_relaxed(&stack_record->count.refs, &old, 1))
/* Add the new stack_record to our list */
add_stack_record_to_list(stack_record, gfp_mask);
}
refcount_add(nr_base_pages, &stack_record->count);
}
static void dec_stack_record_count(depot_stack_handle_t handle,
int nr_base_pages)
{
struct stack_record *stack_record = __stack_depot_get_stack_record(handle);
if (!stack_record)
return;
if (refcount_sub_and_test(nr_base_pages, &stack_record->count))
pr_warn("%s: refcount went to 0 for %u handle\n", __func__,
handle);
}
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
static inline void __update_page_owner_handle(struct page_ext *page_ext,
depot_stack_handle_t handle,
unsigned short order,
gfp_t gfp_mask,
short last_migrate_reason, u64 ts_nsec,
pid_t pid, pid_t tgid, char *comm)
mm, page_owner, debug_pagealloc: save and dump freeing stack trace The debug_pagealloc functionality is useful to catch buggy page allocator users that cause e.g. use after free or double free. When page inconsistency is detected, debugging is often simpler by knowing the call stack of process that last allocated and freed the page. When page_owner is also enabled, we record the allocation stack trace, but not freeing. This patch therefore adds recording of freeing process stack trace to page owner info, if both page_owner and debug_pagealloc are configured and enabled. With only page_owner enabled, this info is not useful for the memory leak debugging use case. dump_page() is adjusted to print the info. An example result of calling __free_pages() twice may look like this (note the page last free stack trace): BUG: Bad page state in process bash pfn:13d8f8 page:ffffc31984f63e00 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x0 flags: 0x1affff800000000() raw: 01affff800000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 ffffffffffffffff 0000000000000000 page dumped because: nonzero _refcount page_owner tracks the page as freed page last allocated via order 0, migratetype Unmovable, gfp_mask 0xcc0(GFP_KERNEL) prep_new_page+0x143/0x150 get_page_from_freelist+0x289/0x380 __alloc_pages_nodemask+0x13c/0x2d0 khugepaged+0x6e/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 page last free stack trace: free_pcp_prepare+0x134/0x1e0 free_unref_page+0x18/0x90 khugepaged+0x7b/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 Modules linked in: CPU: 3 PID: 271 Comm: bash Not tainted 5.3.0-rc4-2.g07a1a73-default+ #57 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x85/0xc0 bad_page.cold+0xba/0xbf rmqueue_pcplist.isra.0+0x6c5/0x6d0 rmqueue+0x2d/0x810 get_page_from_freelist+0x191/0x380 __alloc_pages_nodemask+0x13c/0x2d0 __get_free_pages+0xd/0x30 __pud_alloc+0x2c/0x110 copy_page_range+0x4f9/0x630 dup_mmap+0x362/0x480 dup_mm+0x68/0x110 copy_process+0x19e1/0x1b40 _do_fork+0x73/0x310 __x64_sys_clone+0x75/0x80 do_syscall_64+0x6e/0x1e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f10af854a10 ... Link: http://lkml.kernel.org/r/20190820131828.22684-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:42 +00:00
{
int i;
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
struct page_owner *page_owner;
for (i = 0; i < (1 << order); i++) {
page_owner = get_page_owner(page_ext);
page_owner->handle = handle;
page_owner->order = order;
page_owner->gfp_mask = gfp_mask;
page_owner->last_migrate_reason = last_migrate_reason;
page_owner->pid = pid;
page_owner->tgid = tgid;
page_owner->ts_nsec = ts_nsec;
strscpy(page_owner->comm, comm,
sizeof(page_owner->comm));
__set_bit(PAGE_EXT_OWNER, &page_ext->flags);
__set_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags);
page_ext = page_ext_next(page_ext);
}
}
static inline void __update_page_owner_free_handle(struct page_ext *page_ext,
depot_stack_handle_t handle,
unsigned short order,
pid_t pid, pid_t tgid,
u64 free_ts_nsec)
{
int i;
struct page_owner *page_owner;
for (i = 0; i < (1 << order); i++) {
page_owner = get_page_owner(page_ext);
/* Only __reset_page_owner() wants to clear the bit */
if (handle) {
__clear_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags);
page_owner->free_handle = handle;
}
page_owner->free_ts_nsec = free_ts_nsec;
page_owner->free_pid = current->pid;
page_owner->free_tgid = current->tgid;
page_ext = page_ext_next(page_ext);
}
}
void __reset_page_owner(struct page *page, unsigned short order)
{
mm, page_owner, debug_pagealloc: save and dump freeing stack trace The debug_pagealloc functionality is useful to catch buggy page allocator users that cause e.g. use after free or double free. When page inconsistency is detected, debugging is often simpler by knowing the call stack of process that last allocated and freed the page. When page_owner is also enabled, we record the allocation stack trace, but not freeing. This patch therefore adds recording of freeing process stack trace to page owner info, if both page_owner and debug_pagealloc are configured and enabled. With only page_owner enabled, this info is not useful for the memory leak debugging use case. dump_page() is adjusted to print the info. An example result of calling __free_pages() twice may look like this (note the page last free stack trace): BUG: Bad page state in process bash pfn:13d8f8 page:ffffc31984f63e00 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x0 flags: 0x1affff800000000() raw: 01affff800000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 ffffffffffffffff 0000000000000000 page dumped because: nonzero _refcount page_owner tracks the page as freed page last allocated via order 0, migratetype Unmovable, gfp_mask 0xcc0(GFP_KERNEL) prep_new_page+0x143/0x150 get_page_from_freelist+0x289/0x380 __alloc_pages_nodemask+0x13c/0x2d0 khugepaged+0x6e/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 page last free stack trace: free_pcp_prepare+0x134/0x1e0 free_unref_page+0x18/0x90 khugepaged+0x7b/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 Modules linked in: CPU: 3 PID: 271 Comm: bash Not tainted 5.3.0-rc4-2.g07a1a73-default+ #57 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x85/0xc0 bad_page.cold+0xba/0xbf rmqueue_pcplist.isra.0+0x6c5/0x6d0 rmqueue+0x2d/0x810 get_page_from_freelist+0x191/0x380 __alloc_pages_nodemask+0x13c/0x2d0 __get_free_pages+0xd/0x30 __pud_alloc+0x2c/0x110 copy_page_range+0x4f9/0x630 dup_mmap+0x362/0x480 dup_mm+0x68/0x110 copy_process+0x19e1/0x1b40 _do_fork+0x73/0x310 __x64_sys_clone+0x75/0x80 do_syscall_64+0x6e/0x1e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f10af854a10 ... Link: http://lkml.kernel.org/r/20190820131828.22684-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:42 +00:00
struct page_ext *page_ext;
depot_stack_handle_t handle;
depot_stack_handle_t alloc_handle;
mm, page_owner, debug_pagealloc: save and dump freeing stack trace The debug_pagealloc functionality is useful to catch buggy page allocator users that cause e.g. use after free or double free. When page inconsistency is detected, debugging is often simpler by knowing the call stack of process that last allocated and freed the page. When page_owner is also enabled, we record the allocation stack trace, but not freeing. This patch therefore adds recording of freeing process stack trace to page owner info, if both page_owner and debug_pagealloc are configured and enabled. With only page_owner enabled, this info is not useful for the memory leak debugging use case. dump_page() is adjusted to print the info. An example result of calling __free_pages() twice may look like this (note the page last free stack trace): BUG: Bad page state in process bash pfn:13d8f8 page:ffffc31984f63e00 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x0 flags: 0x1affff800000000() raw: 01affff800000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 ffffffffffffffff 0000000000000000 page dumped because: nonzero _refcount page_owner tracks the page as freed page last allocated via order 0, migratetype Unmovable, gfp_mask 0xcc0(GFP_KERNEL) prep_new_page+0x143/0x150 get_page_from_freelist+0x289/0x380 __alloc_pages_nodemask+0x13c/0x2d0 khugepaged+0x6e/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 page last free stack trace: free_pcp_prepare+0x134/0x1e0 free_unref_page+0x18/0x90 khugepaged+0x7b/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 Modules linked in: CPU: 3 PID: 271 Comm: bash Not tainted 5.3.0-rc4-2.g07a1a73-default+ #57 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x85/0xc0 bad_page.cold+0xba/0xbf rmqueue_pcplist.isra.0+0x6c5/0x6d0 rmqueue+0x2d/0x810 get_page_from_freelist+0x191/0x380 __alloc_pages_nodemask+0x13c/0x2d0 __get_free_pages+0xd/0x30 __pud_alloc+0x2c/0x110 copy_page_range+0x4f9/0x630 dup_mmap+0x362/0x480 dup_mm+0x68/0x110 copy_process+0x19e1/0x1b40 _do_fork+0x73/0x310 __x64_sys_clone+0x75/0x80 do_syscall_64+0x6e/0x1e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f10af854a10 ... Link: http://lkml.kernel.org/r/20190820131828.22684-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:42 +00:00
struct page_owner *page_owner;
u64 free_ts_nsec = local_clock();
mm, page_owner, debug_pagealloc: save and dump freeing stack trace The debug_pagealloc functionality is useful to catch buggy page allocator users that cause e.g. use after free or double free. When page inconsistency is detected, debugging is often simpler by knowing the call stack of process that last allocated and freed the page. When page_owner is also enabled, we record the allocation stack trace, but not freeing. This patch therefore adds recording of freeing process stack trace to page owner info, if both page_owner and debug_pagealloc are configured and enabled. With only page_owner enabled, this info is not useful for the memory leak debugging use case. dump_page() is adjusted to print the info. An example result of calling __free_pages() twice may look like this (note the page last free stack trace): BUG: Bad page state in process bash pfn:13d8f8 page:ffffc31984f63e00 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x0 flags: 0x1affff800000000() raw: 01affff800000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 ffffffffffffffff 0000000000000000 page dumped because: nonzero _refcount page_owner tracks the page as freed page last allocated via order 0, migratetype Unmovable, gfp_mask 0xcc0(GFP_KERNEL) prep_new_page+0x143/0x150 get_page_from_freelist+0x289/0x380 __alloc_pages_nodemask+0x13c/0x2d0 khugepaged+0x6e/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 page last free stack trace: free_pcp_prepare+0x134/0x1e0 free_unref_page+0x18/0x90 khugepaged+0x7b/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 Modules linked in: CPU: 3 PID: 271 Comm: bash Not tainted 5.3.0-rc4-2.g07a1a73-default+ #57 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x85/0xc0 bad_page.cold+0xba/0xbf rmqueue_pcplist.isra.0+0x6c5/0x6d0 rmqueue+0x2d/0x810 get_page_from_freelist+0x191/0x380 __alloc_pages_nodemask+0x13c/0x2d0 __get_free_pages+0xd/0x30 __pud_alloc+0x2c/0x110 copy_page_range+0x4f9/0x630 dup_mmap+0x362/0x480 dup_mm+0x68/0x110 copy_process+0x19e1/0x1b40 _do_fork+0x73/0x310 __x64_sys_clone+0x75/0x80 do_syscall_64+0x6e/0x1e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f10af854a10 ... Link: http://lkml.kernel.org/r/20190820131828.22684-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:42 +00:00
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext = page_ext_get(page);
mm, page_owner: fix off-by-one error in __set_page_owner_handle() Patch series "followups to debug_pagealloc improvements through page_owner", v3. These are followups to [1] which made it to Linus meanwhile. Patches 1 and 3 are based on Kirill's review, patch 2 on KASAN request [2]. It would be nice if all of this made it to 5.4 with [1] already there (or at least Patch 1). This patch (of 3): As noted by Kirill, commit 7e2f2a0cd17c ("mm, page_owner: record page owner for each subpage") has introduced an off-by-one error in __set_page_owner_handle() when looking up page_ext for subpages. As a result, the head page page_owner info is set twice, while for the last tail page, it's not set at all. Fix this and also make the code more efficient by advancing the page_ext pointer we already have, instead of calling lookup_page_ext() for each subpage. Since the full size of struct page_ext is not known at compile time, we can't use a simple page_ext++ statement, so introduce a page_ext_next() inline function for that. Link: http://lkml.kernel.org/r/20190930122916.14969-2-vbabka@suse.cz Fixes: 7e2f2a0cd17c ("mm, page_owner: record page owner for each subpage") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Kirill A. Shutemov <kirill@shutemov.name> Reported-by: Miles Chen <miles.chen@mediatek.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Walter Wu <walter-zh.wu@mediatek.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-14 21:11:40 +00:00
if (unlikely(!page_ext))
return;
page_owner = get_page_owner(page_ext);
alloc_handle = page_owner->handle;
handle = save_stack(GFP_NOWAIT | __GFP_NOWARN);
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
__update_page_owner_free_handle(page_ext, handle, order, current->pid,
current->tgid, free_ts_nsec);
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext_put(page_ext);
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
if (alloc_handle != early_handle)
/*
* early_handle is being set as a handle for all those
* early allocated pages. See init_pages_in_zone().
* Since their refcount is not being incremented because
* the machinery is not ready yet, we cannot decrement
* their refcount either.
*/
dec_stack_record_count(alloc_handle, 1 << order);
mm, page_owner, debug_pagealloc: save and dump freeing stack trace The debug_pagealloc functionality is useful to catch buggy page allocator users that cause e.g. use after free or double free. When page inconsistency is detected, debugging is often simpler by knowing the call stack of process that last allocated and freed the page. When page_owner is also enabled, we record the allocation stack trace, but not freeing. This patch therefore adds recording of freeing process stack trace to page owner info, if both page_owner and debug_pagealloc are configured and enabled. With only page_owner enabled, this info is not useful for the memory leak debugging use case. dump_page() is adjusted to print the info. An example result of calling __free_pages() twice may look like this (note the page last free stack trace): BUG: Bad page state in process bash pfn:13d8f8 page:ffffc31984f63e00 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x0 flags: 0x1affff800000000() raw: 01affff800000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 ffffffffffffffff 0000000000000000 page dumped because: nonzero _refcount page_owner tracks the page as freed page last allocated via order 0, migratetype Unmovable, gfp_mask 0xcc0(GFP_KERNEL) prep_new_page+0x143/0x150 get_page_from_freelist+0x289/0x380 __alloc_pages_nodemask+0x13c/0x2d0 khugepaged+0x6e/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 page last free stack trace: free_pcp_prepare+0x134/0x1e0 free_unref_page+0x18/0x90 khugepaged+0x7b/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 Modules linked in: CPU: 3 PID: 271 Comm: bash Not tainted 5.3.0-rc4-2.g07a1a73-default+ #57 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x85/0xc0 bad_page.cold+0xba/0xbf rmqueue_pcplist.isra.0+0x6c5/0x6d0 rmqueue+0x2d/0x810 get_page_from_freelist+0x191/0x380 __alloc_pages_nodemask+0x13c/0x2d0 __get_free_pages+0xd/0x30 __pud_alloc+0x2c/0x110 copy_page_range+0x4f9/0x630 dup_mmap+0x362/0x480 dup_mm+0x68/0x110 copy_process+0x19e1/0x1b40 _do_fork+0x73/0x310 __x64_sys_clone+0x75/0x80 do_syscall_64+0x6e/0x1e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f10af854a10 ... Link: http://lkml.kernel.org/r/20190820131828.22684-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:42 +00:00
}
noinline void __set_page_owner(struct page *page, unsigned short order,
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
gfp_t gfp_mask)
{
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
struct page_ext *page_ext;
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
u64 ts_nsec = local_clock();
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
depot_stack_handle_t handle;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
handle = save_stack(gfp_mask);
page_ext = page_ext_get(page);
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
if (unlikely(!page_ext))
return;
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
__update_page_owner_handle(page_ext, handle, order, gfp_mask, -1,
ts_nsec, current->pid, current->tgid,
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
current->comm);
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext_put(page_ext);
inc_stack_record_count(handle, gfp_mask, 1 << order);
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
}
mm, page_owner: track and print last migrate reason During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:18 +00:00
void __set_page_owner_migrate_reason(struct page *page, int reason)
{
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
struct page_ext *page_ext = page_ext_get(page);
struct page_owner *page_owner;
if (unlikely(!page_ext))
return;
mm, page_owner: track and print last migrate reason During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:18 +00:00
page_owner = get_page_owner(page_ext);
page_owner->last_migrate_reason = reason;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext_put(page_ext);
mm, page_owner: track and print last migrate reason During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:18 +00:00
}
void __split_page_owner(struct page *page, int old_order, int new_order)
{
int i;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
struct page_ext *page_ext = page_ext_get(page);
struct page_owner *page_owner;
if (unlikely(!page_ext))
return;
for (i = 0; i < (1 << old_order); i++) {
mm, page_owner: record page owner for each subpage Patch series "debug_pagealloc improvements through page_owner", v2. The debug_pagealloc functionality serves a similar purpose on the page allocator level that slub_debug does on the kmalloc level, which is to detect bad users. One notable feature that slub_debug has is storing stack traces of who last allocated and freed the object. On page level we track allocations via page_owner, but that info is discarded when freeing, and we don't track freeing at all. This series improves those aspects. With both debug_pagealloc and page_owner enabled, we can then get bug reports such as the example in Patch 4. SLUB debug tracking additionally stores cpu, pid and timestamp. This could be added later, if deemed useful enough to justify the additional page_ext structure size. This patch (of 3): Currently, page owner info is only recorded for the first page of a high-order allocation, and copied to tail pages in the event of a split page. With the plan to keep previous owner info after freeing the page, it would be benefical to record page owner for each subpage upon allocation. This increases the overhead for high orders, but that should be acceptable for a debugging option. The order stored for each subpage is the order of the whole allocation. This makes it possible to calculate the "head" pfn and to recognize "tail" pages (quoted because not all high-order allocations are compound pages with true head and tail pages). When reading the page_owner debugfs file, keep skipping the "tail" pages so that stats gathered by existing scripts don't get inflated. Link: http://lkml.kernel.org/r/20190820131828.22684-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:36 +00:00
page_owner = get_page_owner(page_ext);
page_owner->order = new_order;
mm, page_owner: fix off-by-one error in __set_page_owner_handle() Patch series "followups to debug_pagealloc improvements through page_owner", v3. These are followups to [1] which made it to Linus meanwhile. Patches 1 and 3 are based on Kirill's review, patch 2 on KASAN request [2]. It would be nice if all of this made it to 5.4 with [1] already there (or at least Patch 1). This patch (of 3): As noted by Kirill, commit 7e2f2a0cd17c ("mm, page_owner: record page owner for each subpage") has introduced an off-by-one error in __set_page_owner_handle() when looking up page_ext for subpages. As a result, the head page page_owner info is set twice, while for the last tail page, it's not set at all. Fix this and also make the code more efficient by advancing the page_ext pointer we already have, instead of calling lookup_page_ext() for each subpage. Since the full size of struct page_ext is not known at compile time, we can't use a simple page_ext++ statement, so introduce a page_ext_next() inline function for that. Link: http://lkml.kernel.org/r/20190930122916.14969-2-vbabka@suse.cz Fixes: 7e2f2a0cd17c ("mm, page_owner: record page owner for each subpage") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Kirill A. Shutemov <kirill@shutemov.name> Reported-by: Miles Chen <miles.chen@mediatek.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Walter Wu <walter-zh.wu@mediatek.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-14 21:11:40 +00:00
page_ext = page_ext_next(page_ext);
mm, page_owner: record page owner for each subpage Patch series "debug_pagealloc improvements through page_owner", v2. The debug_pagealloc functionality serves a similar purpose on the page allocator level that slub_debug does on the kmalloc level, which is to detect bad users. One notable feature that slub_debug has is storing stack traces of who last allocated and freed the object. On page level we track allocations via page_owner, but that info is discarded when freeing, and we don't track freeing at all. This series improves those aspects. With both debug_pagealloc and page_owner enabled, we can then get bug reports such as the example in Patch 4. SLUB debug tracking additionally stores cpu, pid and timestamp. This could be added later, if deemed useful enough to justify the additional page_ext structure size. This patch (of 3): Currently, page owner info is only recorded for the first page of a high-order allocation, and copied to tail pages in the event of a split page. With the plan to keep previous owner info after freeing the page, it would be benefical to record page owner for each subpage upon allocation. This increases the overhead for high orders, but that should be acceptable for a debugging option. The order stored for each subpage is the order of the whole allocation. This makes it possible to calculate the "head" pfn and to recognize "tail" pages (quoted because not all high-order allocations are compound pages with true head and tail pages). When reading the page_owner debugfs file, keep skipping the "tail" pages so that stats gathered by existing scripts don't get inflated. Link: http://lkml.kernel.org/r/20190820131828.22684-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:36 +00:00
}
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext_put(page_ext);
}
void __folio_copy_owner(struct folio *newfolio, struct folio *old)
{
int i;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
struct page_ext *old_ext;
struct page_ext *new_ext;
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
struct page_owner *old_page_owner;
struct page_owner *new_page_owner;
depot_stack_handle_t migrate_handle;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
old_ext = page_ext_get(&old->page);
if (unlikely(!old_ext))
return;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
new_ext = page_ext_get(&newfolio->page);
if (unlikely(!new_ext)) {
page_ext_put(old_ext);
return;
}
old_page_owner = get_page_owner(old_ext);
new_page_owner = get_page_owner(new_ext);
migrate_handle = new_page_owner->handle;
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
__update_page_owner_handle(new_ext, old_page_owner->handle,
old_page_owner->order, old_page_owner->gfp_mask,
old_page_owner->last_migrate_reason,
old_page_owner->ts_nsec, old_page_owner->pid,
old_page_owner->tgid, old_page_owner->comm);
/*
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
* Do not proactively clear PAGE_EXT_OWNER{_ALLOCATED} bits as the folio
* will be freed after migration. Keep them until then as they may be
* useful.
*/
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
__update_page_owner_free_handle(new_ext, 0, old_page_owner->order,
old_page_owner->free_pid,
old_page_owner->free_tgid,
old_page_owner->free_ts_nsec);
/*
* We linked the original stack to the new folio, we need to do the same
* for the new one and the old folio otherwise there will be an imbalance
* when subtracting those pages from the stack.
*/
for (i = 0; i < (1 << new_page_owner->order); i++) {
old_page_owner->handle = migrate_handle;
old_ext = page_ext_next(old_ext);
old_page_owner = get_page_owner(old_ext);
}
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext_put(new_ext);
page_ext_put(old_ext);
}
void pagetypeinfo_showmixedcount_print(struct seq_file *m,
pg_data_t *pgdat, struct zone *zone)
{
struct page *page;
struct page_ext *page_ext;
struct page_owner *page_owner;
unsigned long pfn, block_end_pfn;
unsigned long end_pfn = zone_end_pfn(zone);
unsigned long count[MIGRATE_TYPES] = { 0, };
int pageblock_mt, page_mt;
int i;
/* Scan block by block. First and last block may be incomplete */
pfn = zone->zone_start_pfn;
/*
* Walk the zone in pageblock_nr_pages steps. If a page block spans
* a zone boundary, it will be double counted between zones. This does
* not matter as the mixed block count will still be correct
*/
for (; pfn < end_pfn; ) {
mm/page_owner: don't access uninitialized memmaps when reading /proc/pagetypeinfo Uninitialized memmaps contain garbage and in the worst case trigger kernel BUGs, especially with CONFIG_PAGE_POISONING. They should not get touched. For example, when not onlining a memory block that is spanned by a zone and reading /proc/pagetypeinfo with CONFIG_DEBUG_VM_PGFLAGS and CONFIG_PAGE_POISONING, we can trigger a kernel BUG: :/# echo 1 > /sys/devices/system/memory/memory40/online :/# echo 1 > /sys/devices/system/memory/memory42/online :/# cat /proc/pagetypeinfo > test.file page:fffff2c585200000 is uninitialized and poisoned raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) There is not page extension available. ------------[ cut here ]------------ kernel BUG at include/linux/mm.h:1107! invalid opcode: 0000 [#1] SMP NOPTI Please note that this change does not affect ZONE_DEVICE, because pagetypeinfo_showmixedcount_print() is called from mm/vmstat.c:pagetypeinfo_showmixedcount() only for populated zones, and ZONE_DEVICE is never populated (zone->present_pages always 0). [david@redhat.com: move check to outer loop, add comment, rephrase description] Link: http://lkml.kernel.org/r/20191011140638.8160-1-david@redhat.com Fixes: f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") # visible after d0dc12e86b319 Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Miles Chen <miles.chen@mediatek.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Qian Cai <cai@lca.pw> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: <stable@vger.kernel.org> [4.13+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-19 03:19:29 +00:00
page = pfn_to_online_page(pfn);
if (!page) {
pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
continue;
}
block_end_pfn = pageblock_end_pfn(pfn);
block_end_pfn = min(block_end_pfn, end_pfn);
pageblock_mt = get_pageblock_migratetype(page);
for (; pfn < block_end_pfn; pfn++) {
mm/page_owner: don't access uninitialized memmaps when reading /proc/pagetypeinfo Uninitialized memmaps contain garbage and in the worst case trigger kernel BUGs, especially with CONFIG_PAGE_POISONING. They should not get touched. For example, when not onlining a memory block that is spanned by a zone and reading /proc/pagetypeinfo with CONFIG_DEBUG_VM_PGFLAGS and CONFIG_PAGE_POISONING, we can trigger a kernel BUG: :/# echo 1 > /sys/devices/system/memory/memory40/online :/# echo 1 > /sys/devices/system/memory/memory42/online :/# cat /proc/pagetypeinfo > test.file page:fffff2c585200000 is uninitialized and poisoned raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) There is not page extension available. ------------[ cut here ]------------ kernel BUG at include/linux/mm.h:1107! invalid opcode: 0000 [#1] SMP NOPTI Please note that this change does not affect ZONE_DEVICE, because pagetypeinfo_showmixedcount_print() is called from mm/vmstat.c:pagetypeinfo_showmixedcount() only for populated zones, and ZONE_DEVICE is never populated (zone->present_pages always 0). [david@redhat.com: move check to outer loop, add comment, rephrase description] Link: http://lkml.kernel.org/r/20191011140638.8160-1-david@redhat.com Fixes: f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") # visible after d0dc12e86b319 Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Miles Chen <miles.chen@mediatek.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Qian Cai <cai@lca.pw> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: <stable@vger.kernel.org> [4.13+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-19 03:19:29 +00:00
/* The pageblock is online, no need to recheck. */
page = pfn_to_page(pfn);
if (page_zone(page) != zone)
continue;
if (PageBuddy(page)) {
unsigned long freepage_order;
freepage_order = buddy_order_unsafe(page);
if (freepage_order <= MAX_PAGE_ORDER)
pfn += (1UL << freepage_order) - 1;
continue;
}
if (PageReserved(page))
continue;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext = page_ext_get(page);
if (unlikely(!page_ext))
continue;
if (!test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags))
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
goto ext_put_continue;
page_owner = get_page_owner(page_ext);
page_mt = gfp_migratetype(page_owner->gfp_mask);
if (pageblock_mt != page_mt) {
if (is_migrate_cma(pageblock_mt))
count[MIGRATE_MOVABLE]++;
else
count[pageblock_mt]++;
pfn = block_end_pfn;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext_put(page_ext);
break;
}
pfn += (1UL << page_owner->order) - 1;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
ext_put_continue:
page_ext_put(page_ext);
}
}
/* Print counts */
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
for (i = 0; i < MIGRATE_TYPES; i++)
seq_printf(m, "%12lu ", count[i]);
seq_putc(m, '\n');
}
mm/page_owner: print memcg information It was found that a number of offline memcgs were not freed because they were pinned by some charged pages that were present. Even "echo 1 > /proc/sys/vm/drop_caches" wasn't able to free those pages. These offline but not freed memcgs tend to increase in number over time with the side effect that percpu memory consumption as shown in /proc/meminfo also increases over time. In order to find out more information about those pages that pin offline memcgs, the page_owner feature is extended to print memory cgroup information especially whether the cgroup is offline or not. RCU read lock is taken when memcg is being accessed to make sure that it won't be freed. Link: https://lkml.kernel.org/r/20220202203036.744010-4-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Rafael Aquini <aquini@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:09:08 +00:00
/*
* Looking for memcg information and print it out
*/
static inline int print_page_owner_memcg(char *kbuf, size_t count, int ret,
struct page *page)
{
#ifdef CONFIG_MEMCG
unsigned long memcg_data;
struct mem_cgroup *memcg;
bool online;
char name[80];
rcu_read_lock();
memcg_data = READ_ONCE(page->memcg_data);
if (!memcg_data)
goto out_unlock;
if (memcg_data & MEMCG_DATA_OBJCGS)
ret += scnprintf(kbuf + ret, count - ret,
"Slab cache page\n");
memcg = page_memcg_check(page);
if (!memcg)
goto out_unlock;
online = (memcg->css.flags & CSS_ONLINE);
cgroup_name(memcg->css.cgroup, name, sizeof(name));
ret += scnprintf(kbuf + ret, count - ret,
"Charged %sto %smemcg %s\n",
PageMemcgKmem(page) ? "(via objcg) " : "",
online ? "" : "offline ",
name);
out_unlock:
rcu_read_unlock();
#endif /* CONFIG_MEMCG */
return ret;
}
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
static ssize_t
print_page_owner(char __user *buf, size_t count, unsigned long pfn,
struct page *page, struct page_owner *page_owner,
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
depot_stack_handle_t handle)
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
{
mm/page_owner: Simplify stack trace handling Replace the indirection through struct stack_trace by using the storage array based interfaces. The original code in all printing functions is really wrong. It allocates a storage array on stack which is unused because depot_fetch_stack() does not store anything in it. It overwrites the entries pointer in the stack_trace struct so it points to the depot storage. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094802.067210525@linutronix.de
2019-04-25 09:45:03 +00:00
int ret, pageblock_mt, page_mt;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
char *kbuf;
count = min_t(size_t, count, PAGE_SIZE);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
kbuf = kmalloc(count, GFP_KERNEL);
if (!kbuf)
return -ENOMEM;
ret = scnprintf(kbuf, count,
mm/page_owner: remove free_ts from page_owner output Patch series "Fix page_owner's use of free timestamps". While page ower output is used to investigate memory utilization, typically the allocation pathway, the introduction of timestamps to the page owner records caused each record to become unique due to the granularity of the nanosecond timestamp (for example): Page allocated via order 0 ... ts 5206196026 ns, free_ts 5187156703 ns Page allocated via order 0 ... ts 5206198540 ns, free_ts 5187162702 ns Furthermore, the page_owner output only dumps the currently allocated records, so having the free timestamps is nonsensical for the typical use case. In addition, the introduction of timestamps was not properly handled in the page_owner_sort tool causing most use cases to be broken. This series is meant to remove the free timestamps from the page_owner output and fix the page_owner_sort tool so proper collation can occur. This patch (of 5): When printing page_owner data via the sysfs interface, no free pages will ever be dumped due to the series of checks in read_page_owner(): /* * Although we do have the info about past allocation of free * pages, it's not relevant for current memory usage. */ if (!test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags)) The free_ts values are still used when dump_page_owner() is called, so keeping the field for other use cases but removing them for the typical page_owner case. Link: https://lkml.kernel.org/r/20231013190350.579407-1-audra@redhat.com Link: https://lkml.kernel.org/r/20231013190350.579407-2-audra@redhat.com Fixes: 866b48526217 ("mm/page_owner: record the timestamp of all pages during free") Signed-off-by: Audra Mitchell <audra@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Georgi Djakov <djakov@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-13 19:03:45 +00:00
"Page allocated via order %u, mask %#x(%pGg), pid %d, tgid %d (%s), ts %llu ns\n",
page_owner->order, page_owner->gfp_mask,
&page_owner->gfp_mask, page_owner->pid,
page_owner->tgid, page_owner->comm,
mm/page_owner: remove free_ts from page_owner output Patch series "Fix page_owner's use of free timestamps". While page ower output is used to investigate memory utilization, typically the allocation pathway, the introduction of timestamps to the page owner records caused each record to become unique due to the granularity of the nanosecond timestamp (for example): Page allocated via order 0 ... ts 5206196026 ns, free_ts 5187156703 ns Page allocated via order 0 ... ts 5206198540 ns, free_ts 5187162702 ns Furthermore, the page_owner output only dumps the currently allocated records, so having the free timestamps is nonsensical for the typical use case. In addition, the introduction of timestamps was not properly handled in the page_owner_sort tool causing most use cases to be broken. This series is meant to remove the free timestamps from the page_owner output and fix the page_owner_sort tool so proper collation can occur. This patch (of 5): When printing page_owner data via the sysfs interface, no free pages will ever be dumped due to the series of checks in read_page_owner(): /* * Although we do have the info about past allocation of free * pages, it's not relevant for current memory usage. */ if (!test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags)) The free_ts values are still used when dump_page_owner() is called, so keeping the field for other use cases but removing them for the typical page_owner case. Link: https://lkml.kernel.org/r/20231013190350.579407-1-audra@redhat.com Link: https://lkml.kernel.org/r/20231013190350.579407-2-audra@redhat.com Fixes: 866b48526217 ("mm/page_owner: record the timestamp of all pages during free") Signed-off-by: Audra Mitchell <audra@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Georgi Djakov <djakov@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-13 19:03:45 +00:00
page_owner->ts_nsec);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
/* Print information relevant to grouping pages by mobility */
pageblock_mt = get_pageblock_migratetype(page);
page_mt = gfp_migratetype(page_owner->gfp_mask);
ret += scnprintf(kbuf + ret, count - ret,
"PFN 0x%lx type %s Block %lu type %s Flags %pGp\n",
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
pfn,
mm, page_owner: print migratetype of page and pageblock, symbolic flags The information in /sys/kernel/debug/page_owner includes the migratetype of the pageblock the page belongs to. This is also checked against the page's migratetype (as declared by gfp_flags during its allocation), and the page is reported as Fallback if its migratetype differs from the pageblock's one. t This is somewhat misleading because in fact fallback allocation is not the only reason why these two can differ. It also doesn't direcly provide the page's migratetype, although it's possible to derive that from the gfp_flags. It's arguably better to print both page and pageblock's migratetype and leave the interpretation to the consumer than to suggest fallback allocation as the only possible reason. While at it, we can print the migratetypes as string the same way as /proc/pagetypeinfo does, as some of the numeric values depend on kernel configuration. For that, this patch moves the migratetype_names array from #ifdef CONFIG_PROC_FS part of mm/vmstat.c to mm/page_alloc.c and exports it. With the new format strings for flags, we can now also provide symbolic page and gfp flags in the /sys/kernel/debug/page_owner file. This replaces the positional printing of page flags as single letters, which might have looked nicer, but was limited to a subset of flags, and required the user to remember the letters. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) PFN 520 type Movable Block 1 type Movable Flags 0xfffff8001006c(referenced|uptodate|lru|active|mappedtodisk) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b4058>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116bfb1>] page_cache_sync_readahead+0x31/0x50 [<ffffffff81160523>] generic_file_read_iter+0x453/0x760 [<ffffffff811e0d57>] __vfs_read+0xa7/0xd0 Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:08 +00:00
migratetype_names[page_mt],
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
pfn >> pageblock_order,
mm, page_owner: print migratetype of page and pageblock, symbolic flags The information in /sys/kernel/debug/page_owner includes the migratetype of the pageblock the page belongs to. This is also checked against the page's migratetype (as declared by gfp_flags during its allocation), and the page is reported as Fallback if its migratetype differs from the pageblock's one. t This is somewhat misleading because in fact fallback allocation is not the only reason why these two can differ. It also doesn't direcly provide the page's migratetype, although it's possible to derive that from the gfp_flags. It's arguably better to print both page and pageblock's migratetype and leave the interpretation to the consumer than to suggest fallback allocation as the only possible reason. While at it, we can print the migratetypes as string the same way as /proc/pagetypeinfo does, as some of the numeric values depend on kernel configuration. For that, this patch moves the migratetype_names array from #ifdef CONFIG_PROC_FS part of mm/vmstat.c to mm/page_alloc.c and exports it. With the new format strings for flags, we can now also provide symbolic page and gfp flags in the /sys/kernel/debug/page_owner file. This replaces the positional printing of page flags as single letters, which might have looked nicer, but was limited to a subset of flags, and required the user to remember the letters. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) PFN 520 type Movable Block 1 type Movable Flags 0xfffff8001006c(referenced|uptodate|lru|active|mappedtodisk) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b4058>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116bfb1>] page_cache_sync_readahead+0x31/0x50 [<ffffffff81160523>] generic_file_read_iter+0x453/0x760 [<ffffffff811e0d57>] __vfs_read+0xa7/0xd0 Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:08 +00:00
migratetype_names[pageblock_mt],
&page->flags);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
ret += stack_depot_snprint(handle, kbuf + ret, count - ret, 0);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
if (ret >= count)
goto err;
if (page_owner->last_migrate_reason != -1) {
ret += scnprintf(kbuf + ret, count - ret,
mm, page_owner: track and print last migrate reason During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:18 +00:00
"Page has been migrated, last migrate reason: %s\n",
migrate_reason_names[page_owner->last_migrate_reason]);
mm, page_owner: track and print last migrate reason During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:18 +00:00
}
mm/page_owner: print memcg information It was found that a number of offline memcgs were not freed because they were pinned by some charged pages that were present. Even "echo 1 > /proc/sys/vm/drop_caches" wasn't able to free those pages. These offline but not freed memcgs tend to increase in number over time with the side effect that percpu memory consumption as shown in /proc/meminfo also increases over time. In order to find out more information about those pages that pin offline memcgs, the page_owner feature is extended to print memory cgroup information especially whether the cgroup is offline or not. RCU read lock is taken when memcg is being accessed to make sure that it won't be freed. Link: https://lkml.kernel.org/r/20220202203036.744010-4-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Rafael Aquini <aquini@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:09:08 +00:00
ret = print_page_owner_memcg(kbuf, count, ret, page);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
ret += snprintf(kbuf + ret, count - ret, "\n");
if (ret >= count)
goto err;
if (copy_to_user(buf, kbuf, ret))
ret = -EFAULT;
kfree(kbuf);
return ret;
err:
kfree(kbuf);
return -ENOMEM;
}
void __dump_page_owner(const struct page *page)
mm, page_owner: dump page owner info from dump_page() The page_owner mechanism is useful for dealing with memory leaks. By reading /sys/kernel/debug/page_owner one can determine the stack traces leading to allocations of all pages, and find e.g. a buggy driver. This information might be also potentially useful for debugging, such as the VM_BUG_ON_PAGE() calls to dump_page(). So let's print the stored info from dump_page(). Example output: page:ffffea000292f1c0 count:1 mapcount:0 mapping:ffff8800b2f6cc18 index:0x91d flags: 0x1fffff8001002c(referenced|uptodate|lru|mappedtodisk) page dumped because: VM_BUG_ON_PAGE(1) page->mem_cgroup:ffff8801392c5000 page allocated via order 0, migratetype Movable, gfp_mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b40c8>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116be9c>] page_cache_async_readahead+0x6c/0x70 [<ffffffff811604c2>] generic_file_read_iter+0x3f2/0x760 [<ffffffff811e0dc7>] __vfs_read+0xa7/0xd0 page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:21 +00:00
{
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
struct page_ext *page_ext = page_ext_get((void *)page);
struct page_owner *page_owner;
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
depot_stack_handle_t handle;
gfp_t gfp_mask;
int mt;
mm, page_owner: dump page owner info from dump_page() The page_owner mechanism is useful for dealing with memory leaks. By reading /sys/kernel/debug/page_owner one can determine the stack traces leading to allocations of all pages, and find e.g. a buggy driver. This information might be also potentially useful for debugging, such as the VM_BUG_ON_PAGE() calls to dump_page(). So let's print the stored info from dump_page(). Example output: page:ffffea000292f1c0 count:1 mapcount:0 mapping:ffff8800b2f6cc18 index:0x91d flags: 0x1fffff8001002c(referenced|uptodate|lru|mappedtodisk) page dumped because: VM_BUG_ON_PAGE(1) page->mem_cgroup:ffff8801392c5000 page allocated via order 0, migratetype Movable, gfp_mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b40c8>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116be9c>] page_cache_async_readahead+0x6c/0x70 [<ffffffff811604c2>] generic_file_read_iter+0x3f2/0x760 [<ffffffff811e0dc7>] __vfs_read+0xa7/0xd0 page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:21 +00:00
if (unlikely(!page_ext)) {
pr_alert("There is not page extension available.\n");
return;
}
page_owner = get_page_owner(page_ext);
gfp_mask = page_owner->gfp_mask;
mt = gfp_migratetype(gfp_mask);
mm, page_owner: dump page owner info from dump_page() The page_owner mechanism is useful for dealing with memory leaks. By reading /sys/kernel/debug/page_owner one can determine the stack traces leading to allocations of all pages, and find e.g. a buggy driver. This information might be also potentially useful for debugging, such as the VM_BUG_ON_PAGE() calls to dump_page(). So let's print the stored info from dump_page(). Example output: page:ffffea000292f1c0 count:1 mapcount:0 mapping:ffff8800b2f6cc18 index:0x91d flags: 0x1fffff8001002c(referenced|uptodate|lru|mappedtodisk) page dumped because: VM_BUG_ON_PAGE(1) page->mem_cgroup:ffff8801392c5000 page allocated via order 0, migratetype Movable, gfp_mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b40c8>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116be9c>] page_cache_async_readahead+0x6c/0x70 [<ffffffff811604c2>] generic_file_read_iter+0x3f2/0x760 [<ffffffff811e0dc7>] __vfs_read+0xa7/0xd0 page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:21 +00:00
if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) {
pr_alert("page_owner info is not present (never set?)\n");
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext_put(page_ext);
mm, page_owner: dump page owner info from dump_page() The page_owner mechanism is useful for dealing with memory leaks. By reading /sys/kernel/debug/page_owner one can determine the stack traces leading to allocations of all pages, and find e.g. a buggy driver. This information might be also potentially useful for debugging, such as the VM_BUG_ON_PAGE() calls to dump_page(). So let's print the stored info from dump_page(). Example output: page:ffffea000292f1c0 count:1 mapcount:0 mapping:ffff8800b2f6cc18 index:0x91d flags: 0x1fffff8001002c(referenced|uptodate|lru|mappedtodisk) page dumped because: VM_BUG_ON_PAGE(1) page->mem_cgroup:ffff8801392c5000 page allocated via order 0, migratetype Movable, gfp_mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b40c8>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116be9c>] page_cache_async_readahead+0x6c/0x70 [<ffffffff811604c2>] generic_file_read_iter+0x3f2/0x760 [<ffffffff811e0dc7>] __vfs_read+0xa7/0xd0 page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:21 +00:00
return;
}
if (test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags))
pr_alert("page_owner tracks the page as allocated\n");
else
pr_alert("page_owner tracks the page as freed\n");
pr_alert("page last allocated via order %u, migratetype %s, gfp_mask %#x(%pGg), pid %d, tgid %d (%s), ts %llu, free_ts %llu\n",
page_owner->order, migratetype_names[mt], gfp_mask, &gfp_mask,
page_owner->pid, page_owner->tgid, page_owner->comm,
page_owner->ts_nsec, page_owner->free_ts_nsec);
handle = READ_ONCE(page_owner->handle);
if (!handle)
pr_alert("page_owner allocation stack trace missing\n");
else
stack_depot_print(handle);
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
mm, page_owner, debug_pagealloc: save and dump freeing stack trace The debug_pagealloc functionality is useful to catch buggy page allocator users that cause e.g. use after free or double free. When page inconsistency is detected, debugging is often simpler by knowing the call stack of process that last allocated and freed the page. When page_owner is also enabled, we record the allocation stack trace, but not freeing. This patch therefore adds recording of freeing process stack trace to page owner info, if both page_owner and debug_pagealloc are configured and enabled. With only page_owner enabled, this info is not useful for the memory leak debugging use case. dump_page() is adjusted to print the info. An example result of calling __free_pages() twice may look like this (note the page last free stack trace): BUG: Bad page state in process bash pfn:13d8f8 page:ffffc31984f63e00 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x0 flags: 0x1affff800000000() raw: 01affff800000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 ffffffffffffffff 0000000000000000 page dumped because: nonzero _refcount page_owner tracks the page as freed page last allocated via order 0, migratetype Unmovable, gfp_mask 0xcc0(GFP_KERNEL) prep_new_page+0x143/0x150 get_page_from_freelist+0x289/0x380 __alloc_pages_nodemask+0x13c/0x2d0 khugepaged+0x6e/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 page last free stack trace: free_pcp_prepare+0x134/0x1e0 free_unref_page+0x18/0x90 khugepaged+0x7b/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 Modules linked in: CPU: 3 PID: 271 Comm: bash Not tainted 5.3.0-rc4-2.g07a1a73-default+ #57 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x85/0xc0 bad_page.cold+0xba/0xbf rmqueue_pcplist.isra.0+0x6c5/0x6d0 rmqueue+0x2d/0x810 get_page_from_freelist+0x191/0x380 __alloc_pages_nodemask+0x13c/0x2d0 __get_free_pages+0xd/0x30 __pud_alloc+0x2c/0x110 copy_page_range+0x4f9/0x630 dup_mmap+0x362/0x480 dup_mm+0x68/0x110 copy_process+0x19e1/0x1b40 _do_fork+0x73/0x310 __x64_sys_clone+0x75/0x80 do_syscall_64+0x6e/0x1e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f10af854a10 ... Link: http://lkml.kernel.org/r/20190820131828.22684-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:42 +00:00
handle = READ_ONCE(page_owner->free_handle);
if (!handle) {
pr_alert("page_owner free stack trace missing\n");
} else {
pr_alert("page last free pid %d tgid %d stack trace:\n",
page_owner->free_pid, page_owner->free_tgid);
stack_depot_print(handle);
mm, page_owner, debug_pagealloc: save and dump freeing stack trace The debug_pagealloc functionality is useful to catch buggy page allocator users that cause e.g. use after free or double free. When page inconsistency is detected, debugging is often simpler by knowing the call stack of process that last allocated and freed the page. When page_owner is also enabled, we record the allocation stack trace, but not freeing. This patch therefore adds recording of freeing process stack trace to page owner info, if both page_owner and debug_pagealloc are configured and enabled. With only page_owner enabled, this info is not useful for the memory leak debugging use case. dump_page() is adjusted to print the info. An example result of calling __free_pages() twice may look like this (note the page last free stack trace): BUG: Bad page state in process bash pfn:13d8f8 page:ffffc31984f63e00 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x0 flags: 0x1affff800000000() raw: 01affff800000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 ffffffffffffffff 0000000000000000 page dumped because: nonzero _refcount page_owner tracks the page as freed page last allocated via order 0, migratetype Unmovable, gfp_mask 0xcc0(GFP_KERNEL) prep_new_page+0x143/0x150 get_page_from_freelist+0x289/0x380 __alloc_pages_nodemask+0x13c/0x2d0 khugepaged+0x6e/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 page last free stack trace: free_pcp_prepare+0x134/0x1e0 free_unref_page+0x18/0x90 khugepaged+0x7b/0xc10 kthread+0xf9/0x130 ret_from_fork+0x3a/0x50 Modules linked in: CPU: 3 PID: 271 Comm: bash Not tainted 5.3.0-rc4-2.g07a1a73-default+ #57 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x85/0xc0 bad_page.cold+0xba/0xbf rmqueue_pcplist.isra.0+0x6c5/0x6d0 rmqueue+0x2d/0x810 get_page_from_freelist+0x191/0x380 __alloc_pages_nodemask+0x13c/0x2d0 __get_free_pages+0xd/0x30 __pud_alloc+0x2c/0x110 copy_page_range+0x4f9/0x630 dup_mmap+0x362/0x480 dup_mm+0x68/0x110 copy_process+0x19e1/0x1b40 _do_fork+0x73/0x310 __x64_sys_clone+0x75/0x80 do_syscall_64+0x6e/0x1e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f10af854a10 ... Link: http://lkml.kernel.org/r/20190820131828.22684-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:42 +00:00
}
if (page_owner->last_migrate_reason != -1)
mm, page_owner: dump page owner info from dump_page() The page_owner mechanism is useful for dealing with memory leaks. By reading /sys/kernel/debug/page_owner one can determine the stack traces leading to allocations of all pages, and find e.g. a buggy driver. This information might be also potentially useful for debugging, such as the VM_BUG_ON_PAGE() calls to dump_page(). So let's print the stored info from dump_page(). Example output: page:ffffea000292f1c0 count:1 mapcount:0 mapping:ffff8800b2f6cc18 index:0x91d flags: 0x1fffff8001002c(referenced|uptodate|lru|mappedtodisk) page dumped because: VM_BUG_ON_PAGE(1) page->mem_cgroup:ffff8801392c5000 page allocated via order 0, migratetype Movable, gfp_mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b40c8>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116be9c>] page_cache_async_readahead+0x6c/0x70 [<ffffffff811604c2>] generic_file_read_iter+0x3f2/0x760 [<ffffffff811e0dc7>] __vfs_read+0xa7/0xd0 page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:21 +00:00
pr_alert("page has been migrated, last migrate reason: %s\n",
migrate_reason_names[page_owner->last_migrate_reason]);
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext_put(page_ext);
mm, page_owner: dump page owner info from dump_page() The page_owner mechanism is useful for dealing with memory leaks. By reading /sys/kernel/debug/page_owner one can determine the stack traces leading to allocations of all pages, and find e.g. a buggy driver. This information might be also potentially useful for debugging, such as the VM_BUG_ON_PAGE() calls to dump_page(). So let's print the stored info from dump_page(). Example output: page:ffffea000292f1c0 count:1 mapcount:0 mapping:ffff8800b2f6cc18 index:0x91d flags: 0x1fffff8001002c(referenced|uptodate|lru|mappedtodisk) page dumped because: VM_BUG_ON_PAGE(1) page->mem_cgroup:ffff8801392c5000 page allocated via order 0, migratetype Movable, gfp_mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b40c8>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116be9c>] page_cache_async_readahead+0x6c/0x70 [<ffffffff811604c2>] generic_file_read_iter+0x3f2/0x760 [<ffffffff811e0dc7>] __vfs_read+0xa7/0xd0 page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:21 +00:00
}
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
static ssize_t
read_page_owner(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
unsigned long pfn;
struct page *page;
struct page_ext *page_ext;
struct page_owner *page_owner;
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
depot_stack_handle_t handle;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
if (!static_branch_unlikely(&page_owner_inited))
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
return -EINVAL;
page = NULL;
if (*ppos == 0)
pfn = min_low_pfn;
else
pfn = *ppos;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
/* Find a valid PFN or the start of a MAX_ORDER_NR_PAGES area */
while (!pfn_valid(pfn) && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0)
pfn++;
/* Find an allocated page */
for (; pfn < max_pfn; pfn++) {
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
/*
* This temporary page_owner is required so
* that we can avoid the context switches while holding
* the rcu lock and copying the page owner information to
* user through copy_to_user() or GFP_KERNEL allocations.
*/
struct page_owner page_owner_tmp;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
/*
* If the new page is in a new MAX_ORDER_NR_PAGES area,
* validate the area as existing, skip it if not
*/
if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0 && !pfn_valid(pfn)) {
pfn += MAX_ORDER_NR_PAGES - 1;
continue;
}
page = pfn_to_page(pfn);
if (PageBuddy(page)) {
unsigned long freepage_order = buddy_order_unsafe(page);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
if (freepage_order <= MAX_PAGE_ORDER)
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
pfn += (1UL << freepage_order) - 1;
continue;
}
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext = page_ext_get(page);
if (unlikely(!page_ext))
continue;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
/*
* Some pages could be missed by concurrent allocation or free,
* because we don't hold the zone lock.
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
*/
if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
goto ext_put_continue;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
/*
* Although we do have the info about past allocation of free
* pages, it's not relevant for current memory usage.
*/
if (!test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags))
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
goto ext_put_continue;
page_owner = get_page_owner(page_ext);
mm, page_owner: record page owner for each subpage Patch series "debug_pagealloc improvements through page_owner", v2. The debug_pagealloc functionality serves a similar purpose on the page allocator level that slub_debug does on the kmalloc level, which is to detect bad users. One notable feature that slub_debug has is storing stack traces of who last allocated and freed the object. On page level we track allocations via page_owner, but that info is discarded when freeing, and we don't track freeing at all. This series improves those aspects. With both debug_pagealloc and page_owner enabled, we can then get bug reports such as the example in Patch 4. SLUB debug tracking additionally stores cpu, pid and timestamp. This could be added later, if deemed useful enough to justify the additional page_ext structure size. This patch (of 3): Currently, page owner info is only recorded for the first page of a high-order allocation, and copied to tail pages in the event of a split page. With the plan to keep previous owner info after freeing the page, it would be benefical to record page owner for each subpage upon allocation. This increases the overhead for high orders, but that should be acceptable for a debugging option. The order stored for each subpage is the order of the whole allocation. This makes it possible to calculate the "head" pfn and to recognize "tail" pages (quoted because not all high-order allocations are compound pages with true head and tail pages). When reading the page_owner debugfs file, keep skipping the "tail" pages so that stats gathered by existing scripts don't get inflated. Link: http://lkml.kernel.org/r/20190820131828.22684-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:36 +00:00
/*
* Don't print "tail" pages of high-order allocations as that
* would inflate the stats.
*/
if (!IS_ALIGNED(pfn, 1 << page_owner->order))
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
goto ext_put_continue;
mm, page_owner: record page owner for each subpage Patch series "debug_pagealloc improvements through page_owner", v2. The debug_pagealloc functionality serves a similar purpose on the page allocator level that slub_debug does on the kmalloc level, which is to detect bad users. One notable feature that slub_debug has is storing stack traces of who last allocated and freed the object. On page level we track allocations via page_owner, but that info is discarded when freeing, and we don't track freeing at all. This series improves those aspects. With both debug_pagealloc and page_owner enabled, we can then get bug reports such as the example in Patch 4. SLUB debug tracking additionally stores cpu, pid and timestamp. This could be added later, if deemed useful enough to justify the additional page_ext structure size. This patch (of 3): Currently, page owner info is only recorded for the first page of a high-order allocation, and copied to tail pages in the event of a split page. With the plan to keep previous owner info after freeing the page, it would be benefical to record page owner for each subpage upon allocation. This increases the overhead for high orders, but that should be acceptable for a debugging option. The order stored for each subpage is the order of the whole allocation. This makes it possible to calculate the "head" pfn and to recognize "tail" pages (quoted because not all high-order allocations are compound pages with true head and tail pages). When reading the page_owner debugfs file, keep skipping the "tail" pages so that stats gathered by existing scripts don't get inflated. Link: http://lkml.kernel.org/r/20190820131828.22684-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:34:36 +00:00
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
/*
* Access to page_ext->handle isn't synchronous so we should
* be careful to access it.
*/
handle = READ_ONCE(page_owner->handle);
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
if (!handle)
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
goto ext_put_continue;
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
/* Record the next PFN to read in the file offset */
*ppos = pfn + 1;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_owner_tmp = *page_owner;
page_ext_put(page_ext);
mm/page_owner: use stackdepot to store stacktrace Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:55 +00:00
return print_page_owner(buf, count, pfn, page,
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
&page_owner_tmp, handle);
ext_put_continue:
page_ext_put(page_ext);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
}
return 0;
}
static loff_t lseek_page_owner(struct file *file, loff_t offset, int orig)
{
switch (orig) {
case SEEK_SET:
file->f_pos = offset;
break;
case SEEK_CUR:
file->f_pos += offset;
break;
default:
return -EINVAL;
}
return file->f_pos;
}
static void init_pages_in_zone(pg_data_t *pgdat, struct zone *zone)
{
unsigned long pfn = zone->zone_start_pfn;
unsigned long end_pfn = zone_end_pfn(zone);
unsigned long count = 0;
/*
* Walk the zone in pageblock_nr_pages steps. If a page block spans
* a zone boundary, it will be double counted between zones. This does
* not matter as the mixed block count will still be correct
*/
for (; pfn < end_pfn; ) {
unsigned long block_end_pfn;
if (!pfn_valid(pfn)) {
pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
continue;
}
block_end_pfn = pageblock_end_pfn(pfn);
block_end_pfn = min(block_end_pfn, end_pfn);
for (; pfn < block_end_pfn; pfn++) {
struct page *page = pfn_to_page(pfn);
struct page_ext *page_ext;
if (page_zone(page) != zone)
continue;
/*
* To avoid having to grab zone->lock, be a little
* careful when reading buddy page order. The only
* danger is that we skip too much and potentially miss
* some early allocated pages, which is better than
* heavy lock contention.
*/
if (PageBuddy(page)) {
unsigned long order = buddy_order_unsafe(page);
if (order > 0 && order <= MAX_PAGE_ORDER)
pfn += (1UL << order) - 1;
continue;
}
if (PageReserved(page))
continue;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
page_ext = page_ext_get(page);
if (unlikely(!page_ext))
continue;
mm, page_owner: make init_pages_in_zone() faster In init_pages_in_zone() we currently use the generic set_page_owner() function to initialize page_owner info for early allocated pages. This means we needlessly do lookup_page_ext() twice for each page, and more importantly save_stack(), which has to unwind the stack and find the corresponding stack depot handle. Because the stack is always the same for the initialization, unwind it once in init_pages_in_zone() and reuse the handle. Also avoid the repeated lookup_page_ext(). This can significantly reduce boot times with page_owner=on on large machines, especially for kernels built without frame pointer, where the stack unwinding is noticeably slower. [vbabka@suse.cz: don't duplicate code of __set_page_owner(), per Michal Hocko] [akpm@linux-foundation.org: coding-style fixes] [vbabka@suse.cz: create statically allocated fake stack trace for early allocated pages, per Michal] Link: http://lkml.kernel.org/r/45813564-2342-fc8d-d31a-f4b68a724325@suse.cz Link: http://lkml.kernel.org/r/20170720134029.25268-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang.shi@linaro.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:44 +00:00
/* Maybe overlapping zone */
if (test_bit(PAGE_EXT_OWNER, &page_ext->flags))
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
goto ext_put_continue;
/* Found early allocated page */
mm,page_owner: update metadata for tail pages Patch series "page_owner: Fix refcount imbalance and print fixup", v4. This series consists of a refactoring/correctness of updating the metadata of tail pages, a couple of fixups for the refcounting part and a fixup for the stack_start() function. From this series on, instead of counting the stacks, we count the outstanding nr_base_pages each stack has, which gives us a much better memory overview. The other fixup is for the migration part. A more detailed explanation can be found in the changelog of the respective patches. This patch (of 4): __set_page_owner_handle() and __reset_page_owner() update the metadata of all pages when the page is of a higher-order, but we miss to do the same when the pages are migrated. __folio_copy_owner() only updates the metadata of the head page, meaning that the information stored in the first page and the tail pages will not match. Strictly speaking that is not a big problem because 1) we do not print tail pages and 2) upon splitting all tail pages will inherit the metadata of the head page, but it is better to have all metadata in check should there be any problem, so it can ease debugging. For that purpose, a couple of helpers are created __update_page_owner_handle() which updates the metadata on allocation, and __update_page_owner_free_handle() which does the same when the page is freed. __folio_copy_owner() will make use of both as it needs to entirely replace the page_owner metadata for the new page. Link: https://lkml.kernel.org/r/20240404070702.2744-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240404070702.2744-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-04 07:06:59 +00:00
__update_page_owner_handle(page_ext, early_handle, 0, 0,
-1, local_clock(), current->pid,
current->tgid, current->comm);
count++;
mm: fix use-after free of page_ext after race with memory-offline The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:50:00 +00:00
ext_put_continue:
page_ext_put(page_ext);
}
cond_resched();
}
pr_info("Node %d, zone %8s: page owner found early allocated %lu pages\n",
pgdat->node_id, zone->name, count);
}
static void init_zones_in_node(pg_data_t *pgdat)
{
struct zone *zone;
struct zone *node_zones = pgdat->node_zones;
for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
if (!populated_zone(zone))
continue;
init_pages_in_zone(pgdat, zone);
}
}
static void init_early_allocated_pages(void)
{
pg_data_t *pgdat;
for_each_online_pgdat(pgdat)
init_zones_in_node(pgdat);
}
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
static const struct file_operations proc_page_owner_operations = {
.read = read_page_owner,
.llseek = lseek_page_owner,
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
};
static void *stack_start(struct seq_file *m, loff_t *ppos)
{
struct stack *stack;
if (*ppos == -1UL)
return NULL;
if (!*ppos) {
/*
* This pairs with smp_store_release() from function
* add_stack_record_to_list(), so we get a consistent
* value of stack_list.
*/
stack = smp_load_acquire(&stack_list);
m->private = stack;
} else {
stack = m->private;
}
return stack;
}
static void *stack_next(struct seq_file *m, void *v, loff_t *ppos)
{
struct stack *stack = v;
stack = stack->next;
*ppos = stack ? *ppos + 1 : -1UL;
m->private = stack;
return stack;
}
static unsigned long page_owner_pages_threshold;
static int stack_print(struct seq_file *m, void *v)
{
int i, nr_base_pages;
struct stack *stack = v;
unsigned long *entries;
unsigned long nr_entries;
struct stack_record *stack_record = stack->stack_record;
mm,page_owner: check for null stack_record before bumping its refcount Patch series "page_owner: Fixup and cleanup". This patchset consists of a fixup by an error that was reported by intel robot, where it seems to be that by the time page_owner gets initialized, stackdepot has already depleted its allocation space and returns 0-handles, turning that into null stack_records when trying to retrieve the stack_record. I was not able to reproduce that from the config because it booted fine for me, but when setting e.g: dummy_handle to 0 artificially, I could see the same error that was reported. The second patch is a cleanup that can also lead to a compilation warning. This patch (of 2): Although the retrieval of the stack_records for {dummy,failure}_handle happen when page_owner gets initialized, there seems to be some situations where stackdepot space has been already depleted by then, so we get 0-handles which make stack_records being NULL for those cases. Be careful to 1) only bump stack_records refcount and 2) only access stack_record fields if we actually have a non-null stack_record between hands. Link: https://lkml.kernel.org/r/20240306123217.29774-1-osalvador@suse.de Link: https://lkml.kernel.org/r/20240306123217.29774-2-osalvador@suse.de Fixes: 4bedfb314bdd ("mm,page_owner: implement the tracking of the stacks count") Signed-off-by: Oscar Salvador <osalvador@suse.de> Reported-by: kernel test robot <oliver.sang@intel.com> Closes: https://lore.kernel.org/oe-lkp/202403051032.e2f865a-lkp@intel.com Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 12:32:16 +00:00
if (!stack->stack_record)
return 0;
nr_entries = stack_record->size;
entries = stack_record->entries;
nr_base_pages = refcount_read(&stack_record->count) - 1;
if (nr_base_pages < 1 || nr_base_pages < page_owner_pages_threshold)
return 0;
for (i = 0; i < nr_entries; i++)
seq_printf(m, " %pS\n", (void *)entries[i]);
seq_printf(m, "nr_base_pages: %d\n\n", nr_base_pages);
return 0;
}
static void stack_stop(struct seq_file *m, void *v)
{
}
static const struct seq_operations page_owner_stack_op = {
.start = stack_start,
.next = stack_next,
.stop = stack_stop,
.show = stack_print
};
static int page_owner_stack_open(struct inode *inode, struct file *file)
{
return seq_open_private(file, &page_owner_stack_op, 0);
}
static const struct file_operations page_owner_stack_operations = {
.open = page_owner_stack_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int page_owner_threshold_get(void *data, u64 *val)
{
*val = READ_ONCE(page_owner_pages_threshold);
return 0;
}
static int page_owner_threshold_set(void *data, u64 val)
{
WRITE_ONCE(page_owner_pages_threshold, val);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(proc_page_owner_threshold, &page_owner_threshold_get,
&page_owner_threshold_set, "%llu");
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
static int __init pageowner_init(void)
{
struct dentry *dir;
if (!static_branch_unlikely(&page_owner_inited)) {
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
pr_info("page_owner is disabled\n");
return 0;
}
debugfs_create_file("page_owner", 0400, NULL, NULL,
&proc_page_owner_operations);
dir = debugfs_create_dir("page_owner_stacks", NULL);
debugfs_create_file("show_stacks", 0400, dir, NULL,
&page_owner_stack_operations);
debugfs_create_file("count_threshold", 0600, dir, NULL,
&proc_page_owner_threshold);
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
return 0;
mm/page_owner: keep track of page owners This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
}
late_initcall(pageowner_init)