linux-stable/sound/pci/rme32.c

1915 lines
55 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
*
* Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
* Pilo Chambert <pilo.c@wanadoo.fr>
*
* Thanks to : Anders Torger <torger@ludd.luth.se>,
* Henk Hesselink <henk@anda.nl>
* for writing the digi96-driver
* and RME for all informations.
*
* ****************************************************************************
*
* Note #1 "Sek'd models" ................................... martin 2002-12-07
*
* Identical soundcards by Sek'd were labeled:
* RME Digi 32 = Sek'd Prodif 32
* RME Digi 32 Pro = Sek'd Prodif 96
* RME Digi 32/8 = Sek'd Prodif Gold
*
* ****************************************************************************
*
* Note #2 "full duplex mode" ............................... martin 2002-12-07
*
* Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
* in this mode. Rec data and play data are using the same buffer therefore. At
* first you have got the playing bits in the buffer and then (after playing
* them) they were overwitten by the captured sound of the CS8412/14. Both
* modes (play/record) are running harmonically hand in hand in the same buffer
* and you have only one start bit plus one interrupt bit to control this
* paired action.
* This is opposite to the latter rme96 where playing and capturing is totally
* separated and so their full duplex mode is supported by alsa (using two
* start bits and two interrupts for two different buffers).
* But due to the wrong sequence of playing and capturing ALSA shows no solved
* full duplex support for the rme32 at the moment. That's bad, but I'm not
* able to solve it. Are you motivated enough to solve this problem now? Your
* patch would be welcome!
*
* ****************************************************************************
*
* "The story after the long seeking" -- tiwai
*
* Ok, the situation regarding the full duplex is now improved a bit.
* In the fullduplex mode (given by the module parameter), the hardware buffer
* is split to halves for read and write directions at the DMA pointer.
* That is, the half above the current DMA pointer is used for write, and
* the half below is used for read. To mangle this strange behavior, an
* software intermediate buffer is introduced. This is, of course, not good
* from the viewpoint of the data transfer efficiency. However, this allows
* you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
*
* ****************************************************************************
*/
#include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/io.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/pcm-indirect.h>
#include <sound/asoundef.h>
#include <sound/initval.h>
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
module_param_array(fullduplex, bool, NULL, 0444);
MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
MODULE_LICENSE("GPL");
/* Defines for RME Digi32 series */
#define RME32_SPDIF_NCHANNELS 2
/* Playback and capture buffer size */
#define RME32_BUFFER_SIZE 0x20000
/* IO area size */
#define RME32_IO_SIZE 0x30000
/* IO area offsets */
#define RME32_IO_DATA_BUFFER 0x0
#define RME32_IO_CONTROL_REGISTER 0x20000
#define RME32_IO_GET_POS 0x20000
#define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
#define RME32_IO_RESET_POS 0x20100
/* Write control register bits */
#define RME32_WCR_START (1 << 0) /* startbit */
#define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono
Setting the whole card to mono
doesn't seem to be very useful.
A software-solution can handle
full-duplex with one direction in
stereo and the other way in mono.
So, the hardware should work all
the time in stereo! */
#define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */
#define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */
#define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */
#define RME32_WCR_FREQ_1 (1 << 5)
#define RME32_WCR_INP_0 (1 << 6) /* input switch */
#define RME32_WCR_INP_1 (1 << 7)
#define RME32_WCR_RESET (1 << 8) /* Reset address */
#define RME32_WCR_MUTE (1 << 9) /* digital mute for output */
#define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */
#define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
#define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */
#define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */
#define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */
#define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */
#define RME32_WCR_BITPOS_FREQ_0 4
#define RME32_WCR_BITPOS_FREQ_1 5
#define RME32_WCR_BITPOS_INP_0 6
#define RME32_WCR_BITPOS_INP_1 7
/* Read control register bits */
#define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
#define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */
#define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */
#define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */
#define RME32_RCR_FREQ_1 (1 << 28)
#define RME32_RCR_FREQ_2 (1 << 29)
#define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */
#define RME32_RCR_IRQ (1 << 31) /* interrupt */
#define RME32_RCR_BITPOS_F0 27
#define RME32_RCR_BITPOS_F1 28
#define RME32_RCR_BITPOS_F2 29
/* Input types */
#define RME32_INPUT_OPTICAL 0
#define RME32_INPUT_COAXIAL 1
#define RME32_INPUT_INTERNAL 2
#define RME32_INPUT_XLR 3
/* Clock modes */
#define RME32_CLOCKMODE_SLAVE 0
#define RME32_CLOCKMODE_MASTER_32 1
#define RME32_CLOCKMODE_MASTER_44 2
#define RME32_CLOCKMODE_MASTER_48 3
/* Block sizes in bytes */
#define RME32_BLOCK_SIZE 8192
/* Software intermediate buffer (max) size */
#define RME32_MID_BUFFER_SIZE (1024*1024)
/* Hardware revisions */
#define RME32_32_REVISION 192
#define RME32_328_REVISION_OLD 100
#define RME32_328_REVISION_NEW 101
#define RME32_PRO_REVISION_WITH_8412 192
#define RME32_PRO_REVISION_WITH_8414 150
struct rme32 {
spinlock_t lock;
int irq;
unsigned long port;
void __iomem *iobase;
u32 wcreg; /* cached write control register value */
u32 wcreg_spdif; /* S/PDIF setup */
u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
u32 rcreg; /* cached read control register value */
u8 rev; /* card revision number */
struct snd_pcm_substream *playback_substream;
struct snd_pcm_substream *capture_substream;
int playback_frlog; /* log2 of framesize */
int capture_frlog;
size_t playback_periodsize; /* in bytes, zero if not used */
size_t capture_periodsize; /* in bytes, zero if not used */
unsigned int fullduplex_mode;
int running;
struct snd_pcm_indirect playback_pcm;
struct snd_pcm_indirect capture_pcm;
struct snd_card *card;
struct snd_pcm *spdif_pcm;
struct snd_pcm *adat_pcm;
struct pci_dev *pci;
struct snd_kcontrol *spdif_ctl;
};
static const struct pci_device_id snd_rme32_ids[] = {
{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
{0,}
};
MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
#define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
#define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
static void snd_rme32_proc_init(struct rme32 * rme32);
static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
{
return (readl(rme32->iobase + RME32_IO_GET_POS)
& RME32_RCR_AUDIO_ADDR_MASK);
}
/* silence callback for halfduplex mode */
static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
int channel, unsigned long pos,
unsigned long count)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
return 0;
}
/* copy callback for halfduplex mode */
static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
int channel, unsigned long pos,
struct iov_iter *src, unsigned long count)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
return copy_from_iter_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
src, count);
}
/* copy callback for halfduplex mode */
static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
int channel, unsigned long pos,
struct iov_iter *dst, unsigned long count)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
return copy_to_iter_fromio(dst,
rme32->iobase + RME32_IO_DATA_BUFFER + pos,
count);
}
/*
* SPDIF I/O capabilities (half-duplex mode)
*/
static const struct snd_pcm_hardware snd_rme32_spdif_info = {
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_SYNC_APPLPTR),
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE),
.rates = (SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
.rate_min = 32000,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = RME32_BUFFER_SIZE,
.period_bytes_min = RME32_BLOCK_SIZE,
.period_bytes_max = RME32_BLOCK_SIZE,
.periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
.periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
.fifo_size = 0,
};
/*
* ADAT I/O capabilities (half-duplex mode)
*/
static const struct snd_pcm_hardware snd_rme32_adat_info =
{
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_SYNC_APPLPTR),
.formats= SNDRV_PCM_FMTBIT_S16_LE,
.rates = (SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 8,
.channels_max = 8,
.buffer_bytes_max = RME32_BUFFER_SIZE,
.period_bytes_min = RME32_BLOCK_SIZE,
.period_bytes_max = RME32_BLOCK_SIZE,
.periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
.periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
.fifo_size = 0,
};
/*
* SPDIF I/O capabilities (full-duplex mode)
*/
static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_SYNC_APPLPTR),
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE),
.rates = (SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
.rate_min = 32000,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
.period_bytes_min = RME32_BLOCK_SIZE,
.period_bytes_max = RME32_BLOCK_SIZE,
.periods_min = 2,
.periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
.fifo_size = 0,
};
/*
* ADAT I/O capabilities (full-duplex mode)
*/
static const struct snd_pcm_hardware snd_rme32_adat_fd_info =
{
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_SYNC_APPLPTR),
.formats= SNDRV_PCM_FMTBIT_S16_LE,
.rates = (SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 8,
.channels_max = 8,
.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
.period_bytes_min = RME32_BLOCK_SIZE,
.period_bytes_max = RME32_BLOCK_SIZE,
.periods_min = 2,
.periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
.fifo_size = 0,
};
static void snd_rme32_reset_dac(struct rme32 *rme32)
{
writel(rme32->wcreg | RME32_WCR_PD,
rme32->iobase + RME32_IO_CONTROL_REGISTER);
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
static int snd_rme32_playback_getrate(struct rme32 * rme32)
{
int rate;
rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
(((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
switch (rate) {
case 1:
rate = 32000;
break;
case 2:
rate = 44100;
break;
case 3:
rate = 48000;
break;
default:
return -1;
}
return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
}
static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
{
int n;
*is_adat = 0;
if (rme32->rcreg & RME32_RCR_LOCK) {
/* ADAT rate */
*is_adat = 1;
}
if (rme32->rcreg & RME32_RCR_ERF) {
return -1;
}
/* S/PDIF rate */
n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
(((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
(((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
if (RME32_PRO_WITH_8414(rme32))
switch (n) { /* supporting the CS8414 */
case 0:
case 1:
case 2:
return -1;
case 3:
return 96000;
case 4:
return 88200;
case 5:
return 48000;
case 6:
return 44100;
case 7:
return 32000;
default:
return -1;
}
else
switch (n) { /* supporting the CS8412 */
case 0:
return -1;
case 1:
return 48000;
case 2:
return 44100;
case 3:
return 32000;
case 4:
return 48000;
case 5:
return 44100;
case 6:
return 44056;
case 7:
return 32000;
default:
break;
}
return -1;
}
static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
{
int ds;
ds = rme32->wcreg & RME32_WCR_DS_BM;
switch (rate) {
case 32000:
rme32->wcreg &= ~RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
~RME32_WCR_FREQ_1;
break;
case 44100:
rme32->wcreg &= ~RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
~RME32_WCR_FREQ_0;
break;
case 48000:
rme32->wcreg &= ~RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
RME32_WCR_FREQ_1;
break;
case 64000:
if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
return -EINVAL;
rme32->wcreg |= RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
~RME32_WCR_FREQ_1;
break;
case 88200:
if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
return -EINVAL;
rme32->wcreg |= RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
~RME32_WCR_FREQ_0;
break;
case 96000:
if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
return -EINVAL;
rme32->wcreg |= RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
RME32_WCR_FREQ_1;
break;
default:
return -EINVAL;
}
if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
(ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
{
/* change to/from double-speed: reset the DAC (if available) */
snd_rme32_reset_dac(rme32);
} else {
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
return 0;
}
static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
{
switch (mode) {
case RME32_CLOCKMODE_SLAVE:
/* AutoSync */
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
~RME32_WCR_FREQ_1;
break;
case RME32_CLOCKMODE_MASTER_32:
/* Internal 32.0kHz */
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
~RME32_WCR_FREQ_1;
break;
case RME32_CLOCKMODE_MASTER_44:
/* Internal 44.1kHz */
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
RME32_WCR_FREQ_1;
break;
case RME32_CLOCKMODE_MASTER_48:
/* Internal 48.0kHz */
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
RME32_WCR_FREQ_1;
break;
default:
return -EINVAL;
}
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
return 0;
}
static int snd_rme32_getclockmode(struct rme32 * rme32)
{
return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
(((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
}
static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
{
switch (type) {
case RME32_INPUT_OPTICAL:
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
~RME32_WCR_INP_1;
break;
case RME32_INPUT_COAXIAL:
rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
~RME32_WCR_INP_1;
break;
case RME32_INPUT_INTERNAL:
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
RME32_WCR_INP_1;
break;
case RME32_INPUT_XLR:
rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
RME32_WCR_INP_1;
break;
default:
return -EINVAL;
}
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
return 0;
}
static int snd_rme32_getinputtype(struct rme32 * rme32)
{
return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
(((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
}
static void
snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
{
int frlog;
if (n_channels == 2) {
frlog = 1;
} else {
/* assume 8 channels */
frlog = 3;
}
if (is_playback) {
frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
rme32->playback_frlog = frlog;
} else {
frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
rme32->capture_frlog = frlog;
}
}
static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
{
switch (format) {
case SNDRV_PCM_FORMAT_S16_LE:
rme32->wcreg &= ~RME32_WCR_MODE24;
break;
case SNDRV_PCM_FORMAT_S32_LE:
rme32->wcreg |= RME32_WCR_MODE24;
break;
default:
return -EINVAL;
}
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
return 0;
}
static int
snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
int err, rate, dummy;
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
if (!rme32->fullduplex_mode) {
runtime->dma_area = (void __force *)(rme32->iobase +
RME32_IO_DATA_BUFFER);
runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
runtime->dma_bytes = RME32_BUFFER_SIZE;
}
spin_lock_irq(&rme32->lock);
rate = 0;
if (rme32->rcreg & RME32_RCR_KMODE)
rate = snd_rme32_capture_getrate(rme32, &dummy);
if (rate > 0) {
/* AutoSync */
if ((int)params_rate(params) != rate) {
spin_unlock_irq(&rme32->lock);
return -EIO;
}
} else {
err = snd_rme32_playback_setrate(rme32, params_rate(params));
if (err < 0) {
spin_unlock_irq(&rme32->lock);
return err;
}
}
err = snd_rme32_setformat(rme32, params_format(params));
if (err < 0) {
spin_unlock_irq(&rme32->lock);
return err;
}
snd_rme32_setframelog(rme32, params_channels(params), 1);
if (rme32->capture_periodsize != 0) {
if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
spin_unlock_irq(&rme32->lock);
return -EBUSY;
}
}
rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
/* S/PDIF setup */
if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
rme32->wcreg |= rme32->wcreg_spdif_stream;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
spin_unlock_irq(&rme32->lock);
return 0;
}
static int
snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
int err, isadat, rate;
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
if (!rme32->fullduplex_mode) {
runtime->dma_area = (void __force *)rme32->iobase +
RME32_IO_DATA_BUFFER;
runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
runtime->dma_bytes = RME32_BUFFER_SIZE;
}
spin_lock_irq(&rme32->lock);
/* enable AutoSync for record-preparing */
rme32->wcreg |= RME32_WCR_AUTOSYNC;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
err = snd_rme32_setformat(rme32, params_format(params));
if (err < 0) {
spin_unlock_irq(&rme32->lock);
return err;
}
err = snd_rme32_playback_setrate(rme32, params_rate(params));
if (err < 0) {
spin_unlock_irq(&rme32->lock);
return err;
}
rate = snd_rme32_capture_getrate(rme32, &isadat);
if (rate > 0) {
if ((int)params_rate(params) != rate) {
spin_unlock_irq(&rme32->lock);
return -EIO;
}
if ((isadat && runtime->hw.channels_min == 2) ||
(!isadat && runtime->hw.channels_min == 8)) {
spin_unlock_irq(&rme32->lock);
return -EIO;
}
}
/* AutoSync off for recording */
rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
snd_rme32_setframelog(rme32, params_channels(params), 0);
if (rme32->playback_periodsize != 0) {
if (params_period_size(params) << rme32->capture_frlog !=
rme32->playback_periodsize) {
spin_unlock_irq(&rme32->lock);
return -EBUSY;
}
}
rme32->capture_periodsize =
params_period_size(params) << rme32->capture_frlog;
spin_unlock_irq(&rme32->lock);
return 0;
}
static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
{
if (!from_pause) {
writel(0, rme32->iobase + RME32_IO_RESET_POS);
}
rme32->wcreg |= RME32_WCR_START;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
{
/*
* Check if there is an unconfirmed IRQ, if so confirm it, or else
* the hardware will not stop generating interrupts
*/
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
if (rme32->rcreg & RME32_RCR_IRQ) {
writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
}
rme32->wcreg &= ~RME32_WCR_START;
if (rme32->wcreg & RME32_WCR_SEL)
rme32->wcreg |= RME32_WCR_MUTE;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
if (! to_pause)
writel(0, rme32->iobase + RME32_IO_RESET_POS);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
{
struct rme32 *rme32 = (struct rme32 *) dev_id;
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
if (!(rme32->rcreg & RME32_RCR_IRQ)) {
return IRQ_NONE;
} else {
if (rme32->capture_substream) {
snd_pcm_period_elapsed(rme32->capture_substream);
}
if (rme32->playback_substream) {
snd_pcm_period_elapsed(rme32->playback_substream);
}
writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
}
return IRQ_HANDLED;
}
static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
.count = ARRAY_SIZE(period_bytes),
.list = period_bytes,
.mask = 0
};
static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
{
if (! rme32->fullduplex_mode) {
snd_pcm_hw_constraint_single(runtime,
SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
RME32_BUFFER_SIZE);
snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
&hw_constraints_period_bytes);
}
}
static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
{
int rate, dummy;
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_set_sync(substream);
spin_lock_irq(&rme32->lock);
if (rme32->playback_substream != NULL) {
spin_unlock_irq(&rme32->lock);
return -EBUSY;
}
rme32->wcreg &= ~RME32_WCR_ADAT;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
rme32->playback_substream = substream;
spin_unlock_irq(&rme32->lock);
if (rme32->fullduplex_mode)
runtime->hw = snd_rme32_spdif_fd_info;
else
runtime->hw = snd_rme32_spdif_info;
if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
runtime->hw.rate_max = 96000;
}
rate = 0;
if (rme32->rcreg & RME32_RCR_KMODE)
rate = snd_rme32_capture_getrate(rme32, &dummy);
if (rate > 0) {
/* AutoSync */
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
snd_rme32_set_buffer_constraint(rme32, runtime);
rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
return 0;
}
static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
{
int isadat, rate;
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_set_sync(substream);
spin_lock_irq(&rme32->lock);
if (rme32->capture_substream != NULL) {
spin_unlock_irq(&rme32->lock);
return -EBUSY;
}
rme32->capture_substream = substream;
spin_unlock_irq(&rme32->lock);
if (rme32->fullduplex_mode)
runtime->hw = snd_rme32_spdif_fd_info;
else
runtime->hw = snd_rme32_spdif_info;
if (RME32_PRO_WITH_8414(rme32)) {
runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
runtime->hw.rate_max = 96000;
}
rate = snd_rme32_capture_getrate(rme32, &isadat);
if (rate > 0) {
if (isadat) {
return -EIO;
}
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
snd_rme32_set_buffer_constraint(rme32, runtime);
return 0;
}
static int
snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
{
int rate, dummy;
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_set_sync(substream);
spin_lock_irq(&rme32->lock);
if (rme32->playback_substream != NULL) {
spin_unlock_irq(&rme32->lock);
return -EBUSY;
}
rme32->wcreg |= RME32_WCR_ADAT;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
rme32->playback_substream = substream;
spin_unlock_irq(&rme32->lock);
if (rme32->fullduplex_mode)
runtime->hw = snd_rme32_adat_fd_info;
else
runtime->hw = snd_rme32_adat_info;
rate = 0;
if (rme32->rcreg & RME32_RCR_KMODE)
rate = snd_rme32_capture_getrate(rme32, &dummy);
if (rate > 0) {
/* AutoSync */
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
snd_rme32_set_buffer_constraint(rme32, runtime);
return 0;
}
static int
snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
{
int isadat, rate;
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
if (rme32->fullduplex_mode)
runtime->hw = snd_rme32_adat_fd_info;
else
runtime->hw = snd_rme32_adat_info;
rate = snd_rme32_capture_getrate(rme32, &isadat);
if (rate > 0) {
if (!isadat) {
return -EIO;
}
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
snd_pcm_set_sync(substream);
spin_lock_irq(&rme32->lock);
if (rme32->capture_substream != NULL) {
spin_unlock_irq(&rme32->lock);
return -EBUSY;
}
rme32->capture_substream = substream;
spin_unlock_irq(&rme32->lock);
snd_rme32_set_buffer_constraint(rme32, runtime);
return 0;
}
static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
int spdif = 0;
spin_lock_irq(&rme32->lock);
rme32->playback_substream = NULL;
rme32->playback_periodsize = 0;
spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
spin_unlock_irq(&rme32->lock);
if (spdif) {
rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO,
&rme32->spdif_ctl->id);
}
return 0;
}
static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
spin_lock_irq(&rme32->lock);
rme32->capture_substream = NULL;
rme32->capture_periodsize = 0;
spin_unlock_irq(&rme32->lock);
return 0;
}
static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
spin_lock_irq(&rme32->lock);
if (rme32->fullduplex_mode) {
memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
} else {
writel(0, rme32->iobase + RME32_IO_RESET_POS);
}
if (rme32->wcreg & RME32_WCR_SEL)
rme32->wcreg &= ~RME32_WCR_MUTE;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
spin_unlock_irq(&rme32->lock);
return 0;
}
static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
spin_lock_irq(&rme32->lock);
if (rme32->fullduplex_mode) {
memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
} else {
writel(0, rme32->iobase + RME32_IO_RESET_POS);
}
spin_unlock_irq(&rme32->lock);
return 0;
}
static int
snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
struct snd_pcm_substream *s;
spin_lock(&rme32->lock);
snd_pcm_group_for_each_entry(s, substream) {
if (s != rme32->playback_substream &&
s != rme32->capture_substream)
continue;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
rme32->running |= (1 << s->stream);
if (rme32->fullduplex_mode) {
/* remember the current DMA position */
if (s == rme32->playback_substream) {
rme32->playback_pcm.hw_io =
rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
} else {
rme32->capture_pcm.hw_io =
rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
}
}
break;
case SNDRV_PCM_TRIGGER_STOP:
rme32->running &= ~(1 << s->stream);
break;
}
snd_pcm_trigger_done(s, substream);
}
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (rme32->running && ! RME32_ISWORKING(rme32))
snd_rme32_pcm_start(rme32, 0);
break;
case SNDRV_PCM_TRIGGER_STOP:
if (! rme32->running && RME32_ISWORKING(rme32))
snd_rme32_pcm_stop(rme32, 0);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (rme32->running && RME32_ISWORKING(rme32))
snd_rme32_pcm_stop(rme32, 1);
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (rme32->running && ! RME32_ISWORKING(rme32))
snd_rme32_pcm_start(rme32, 1);
break;
}
spin_unlock(&rme32->lock);
return 0;
}
/* pointer callback for halfduplex mode */
static snd_pcm_uframes_t
snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
}
static snd_pcm_uframes_t
snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
}
/* ack and pointer callbacks for fullduplex mode */
static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
struct snd_pcm_indirect *rec, size_t bytes)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
substream->runtime->dma_area + rec->sw_data, bytes);
}
static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
struct snd_pcm_indirect *rec, *cprec;
rec = &rme32->playback_pcm;
cprec = &rme32->capture_pcm;
spin_lock(&rme32->lock);
rec->hw_queue_size = RME32_BUFFER_SIZE;
if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
rec->hw_queue_size -= cprec->hw_ready;
spin_unlock(&rme32->lock);
return snd_pcm_indirect_playback_transfer(substream, rec,
snd_rme32_pb_trans_copy);
}
static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
struct snd_pcm_indirect *rec, size_t bytes)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
bytes);
}
static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
snd_rme32_cp_trans_copy);
}
static snd_pcm_uframes_t
snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
snd_rme32_pcm_byteptr(rme32));
}
static snd_pcm_uframes_t
snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
{
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
snd_rme32_pcm_byteptr(rme32));
}
/* for halfduplex mode */
static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
.open = snd_rme32_playback_spdif_open,
.close = snd_rme32_playback_close,
.hw_params = snd_rme32_playback_hw_params,
.prepare = snd_rme32_playback_prepare,
.trigger = snd_rme32_pcm_trigger,
.pointer = snd_rme32_playback_pointer,
.copy = snd_rme32_playback_copy,
.fill_silence = snd_rme32_playback_silence,
.mmap = snd_pcm_lib_mmap_iomem,
};
static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
.open = snd_rme32_capture_spdif_open,
.close = snd_rme32_capture_close,
.hw_params = snd_rme32_capture_hw_params,
.prepare = snd_rme32_capture_prepare,
.trigger = snd_rme32_pcm_trigger,
.pointer = snd_rme32_capture_pointer,
.copy = snd_rme32_capture_copy,
.mmap = snd_pcm_lib_mmap_iomem,
};
static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
.open = snd_rme32_playback_adat_open,
.close = snd_rme32_playback_close,
.hw_params = snd_rme32_playback_hw_params,
.prepare = snd_rme32_playback_prepare,
.trigger = snd_rme32_pcm_trigger,
.pointer = snd_rme32_playback_pointer,
.copy = snd_rme32_playback_copy,
.fill_silence = snd_rme32_playback_silence,
.mmap = snd_pcm_lib_mmap_iomem,
};
static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
.open = snd_rme32_capture_adat_open,
.close = snd_rme32_capture_close,
.hw_params = snd_rme32_capture_hw_params,
.prepare = snd_rme32_capture_prepare,
.trigger = snd_rme32_pcm_trigger,
.pointer = snd_rme32_capture_pointer,
.copy = snd_rme32_capture_copy,
.mmap = snd_pcm_lib_mmap_iomem,
};
/* for fullduplex mode */
static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
.open = snd_rme32_playback_spdif_open,
.close = snd_rme32_playback_close,
.hw_params = snd_rme32_playback_hw_params,
.prepare = snd_rme32_playback_prepare,
.trigger = snd_rme32_pcm_trigger,
.pointer = snd_rme32_playback_fd_pointer,
.ack = snd_rme32_playback_fd_ack,
};
static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
.open = snd_rme32_capture_spdif_open,
.close = snd_rme32_capture_close,
.hw_params = snd_rme32_capture_hw_params,
.prepare = snd_rme32_capture_prepare,
.trigger = snd_rme32_pcm_trigger,
.pointer = snd_rme32_capture_fd_pointer,
.ack = snd_rme32_capture_fd_ack,
};
static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
.open = snd_rme32_playback_adat_open,
.close = snd_rme32_playback_close,
.hw_params = snd_rme32_playback_hw_params,
.prepare = snd_rme32_playback_prepare,
.trigger = snd_rme32_pcm_trigger,
.pointer = snd_rme32_playback_fd_pointer,
.ack = snd_rme32_playback_fd_ack,
};
static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
.open = snd_rme32_capture_adat_open,
.close = snd_rme32_capture_close,
.hw_params = snd_rme32_capture_hw_params,
.prepare = snd_rme32_capture_prepare,
.trigger = snd_rme32_pcm_trigger,
.pointer = snd_rme32_capture_fd_pointer,
.ack = snd_rme32_capture_fd_ack,
};
static void snd_rme32_free(struct rme32 *rme32)
{
if (rme32->irq >= 0)
snd_rme32_pcm_stop(rme32, 0);
}
static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
{
struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
rme32->spdif_pcm = NULL;
}
static void
snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
{
struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
rme32->adat_pcm = NULL;
}
static int snd_rme32_create(struct rme32 *rme32)
{
struct pci_dev *pci = rme32->pci;
int err;
rme32->irq = -1;
spin_lock_init(&rme32->lock);
err = pcim_enable_device(pci);
if (err < 0)
return err;
err = pci_request_regions(pci, "RME32");
if (err < 0)
return err;
rme32->port = pci_resource_start(rme32->pci, 0);
rme32->iobase = devm_ioremap(&pci->dev, rme32->port, RME32_IO_SIZE);
if (!rme32->iobase) {
dev_err(rme32->card->dev,
"unable to remap memory region 0x%lx-0x%lx\n",
rme32->port, rme32->port + RME32_IO_SIZE - 1);
return -ENOMEM;
}
if (devm_request_irq(&pci->dev, pci->irq, snd_rme32_interrupt,
IRQF_SHARED, KBUILD_MODNAME, rme32)) {
dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
return -EBUSY;
}
rme32->irq = pci->irq;
rme32->card->sync_irq = rme32->irq;
/* read the card's revision number */
pci_read_config_byte(pci, 8, &rme32->rev);
/* set up ALSA pcm device for S/PDIF */
err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm);
if (err < 0)
return err;
rme32->spdif_pcm->private_data = rme32;
rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
if (rme32->fullduplex_mode) {
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_rme32_playback_spdif_fd_ops);
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_rme32_capture_spdif_fd_ops);
snd_pcm_set_managed_buffer_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
NULL, 0, RME32_MID_BUFFER_SIZE);
rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
} else {
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_rme32_playback_spdif_ops);
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_rme32_capture_spdif_ops);
rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
}
/* set up ALSA pcm device for ADAT */
if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
(pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
/* ADAT is not available on DIGI32 and DIGI32 Pro */
rme32->adat_pcm = NULL;
}
else {
err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
1, 1, &rme32->adat_pcm);
if (err < 0)
return err;
rme32->adat_pcm->private_data = rme32;
rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
if (rme32->fullduplex_mode) {
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_rme32_playback_adat_fd_ops);
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_rme32_capture_adat_fd_ops);
snd_pcm_set_managed_buffer_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
NULL,
0, RME32_MID_BUFFER_SIZE);
rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
} else {
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_rme32_playback_adat_ops);
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_rme32_capture_adat_ops);
rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
}
}
rme32->playback_periodsize = 0;
rme32->capture_periodsize = 0;
/* make sure playback/capture is stopped, if by some reason active */
snd_rme32_pcm_stop(rme32, 0);
/* reset DAC */
snd_rme32_reset_dac(rme32);
/* reset buffer pointer */
writel(0, rme32->iobase + RME32_IO_RESET_POS);
/* set default values in registers */
rme32->wcreg = RME32_WCR_SEL | /* normal playback */
RME32_WCR_INP_0 | /* input select */
RME32_WCR_MUTE; /* muting on */
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
/* init switch interface */
err = snd_rme32_create_switches(rme32->card, rme32);
if (err < 0)
return err;
/* init proc interface */
snd_rme32_proc_init(rme32);
rme32->capture_substream = NULL;
rme32->playback_substream = NULL;
return 0;
}
/*
* proc interface
*/
static void
snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
{
int n;
struct rme32 *rme32 = (struct rme32 *) entry->private_data;
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
snd_iprintf(buffer, rme32->card->longname);
snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
snd_iprintf(buffer, "\nGeneral settings\n");
if (rme32->fullduplex_mode)
snd_iprintf(buffer, " Full-duplex mode\n");
else
snd_iprintf(buffer, " Half-duplex mode\n");
if (RME32_PRO_WITH_8414(rme32)) {
snd_iprintf(buffer, " receiver: CS8414\n");
} else {
snd_iprintf(buffer, " receiver: CS8412\n");
}
if (rme32->wcreg & RME32_WCR_MODE24) {
snd_iprintf(buffer, " format: 24 bit");
} else {
snd_iprintf(buffer, " format: 16 bit");
}
if (rme32->wcreg & RME32_WCR_MONO) {
snd_iprintf(buffer, ", Mono\n");
} else {
snd_iprintf(buffer, ", Stereo\n");
}
snd_iprintf(buffer, "\nInput settings\n");
switch (snd_rme32_getinputtype(rme32)) {
case RME32_INPUT_OPTICAL:
snd_iprintf(buffer, " input: optical");
break;
case RME32_INPUT_COAXIAL:
snd_iprintf(buffer, " input: coaxial");
break;
case RME32_INPUT_INTERNAL:
snd_iprintf(buffer, " input: internal");
break;
case RME32_INPUT_XLR:
snd_iprintf(buffer, " input: XLR");
break;
}
if (snd_rme32_capture_getrate(rme32, &n) < 0) {
snd_iprintf(buffer, "\n sample rate: no valid signal\n");
} else {
if (n) {
snd_iprintf(buffer, " (8 channels)\n");
} else {
snd_iprintf(buffer, " (2 channels)\n");
}
snd_iprintf(buffer, " sample rate: %d Hz\n",
snd_rme32_capture_getrate(rme32, &n));
}
snd_iprintf(buffer, "\nOutput settings\n");
if (rme32->wcreg & RME32_WCR_SEL) {
snd_iprintf(buffer, " output signal: normal playback");
} else {
snd_iprintf(buffer, " output signal: same as input");
}
if (rme32->wcreg & RME32_WCR_MUTE) {
snd_iprintf(buffer, " (muted)\n");
} else {
snd_iprintf(buffer, "\n");
}
/* master output frequency */
if (!
((!(rme32->wcreg & RME32_WCR_FREQ_0))
&& (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
snd_iprintf(buffer, " sample rate: %d Hz\n",
snd_rme32_playback_getrate(rme32));
}
if (rme32->rcreg & RME32_RCR_KMODE) {
snd_iprintf(buffer, " sample clock source: AutoSync\n");
} else {
snd_iprintf(buffer, " sample clock source: Internal\n");
}
if (rme32->wcreg & RME32_WCR_PRO) {
snd_iprintf(buffer, " format: AES/EBU (professional)\n");
} else {
snd_iprintf(buffer, " format: IEC958 (consumer)\n");
}
if (rme32->wcreg & RME32_WCR_EMP) {
snd_iprintf(buffer, " emphasis: on\n");
} else {
snd_iprintf(buffer, " emphasis: off\n");
}
}
static void snd_rme32_proc_init(struct rme32 *rme32)
{
snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read);
}
/*
* control interface
*/
#define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info
static int
snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&rme32->lock);
ucontrol->value.integer.value[0] =
rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
spin_unlock_irq(&rme32->lock);
return 0;
}
static int
snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
spin_lock_irq(&rme32->lock);
val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
change = val != rme32->wcreg;
if (ucontrol->value.integer.value[0])
val &= ~RME32_WCR_MUTE;
else
val |= RME32_WCR_MUTE;
rme32->wcreg = val;
writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
spin_unlock_irq(&rme32->lock);
return change;
}
static int
snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
static const char * const texts[4] = {
"Optical", "Coaxial", "Internal", "XLR"
};
int num_items;
switch (rme32->pci->device) {
case PCI_DEVICE_ID_RME_DIGI32:
case PCI_DEVICE_ID_RME_DIGI32_8:
num_items = 3;
break;
case PCI_DEVICE_ID_RME_DIGI32_PRO:
num_items = 4;
break;
default:
snd_BUG();
return -EINVAL;
}
return snd_ctl_enum_info(uinfo, 1, num_items, texts);
}
static int
snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
unsigned int items = 3;
spin_lock_irq(&rme32->lock);
ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
switch (rme32->pci->device) {
case PCI_DEVICE_ID_RME_DIGI32:
case PCI_DEVICE_ID_RME_DIGI32_8:
items = 3;
break;
case PCI_DEVICE_ID_RME_DIGI32_PRO:
items = 4;
break;
default:
snd_BUG();
break;
}
if (ucontrol->value.enumerated.item[0] >= items) {
ucontrol->value.enumerated.item[0] = items - 1;
}
spin_unlock_irq(&rme32->lock);
return 0;
}
static int
snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change, items = 3;
switch (rme32->pci->device) {
case PCI_DEVICE_ID_RME_DIGI32:
case PCI_DEVICE_ID_RME_DIGI32_8:
items = 3;
break;
case PCI_DEVICE_ID_RME_DIGI32_PRO:
items = 4;
break;
default:
snd_BUG();
break;
}
val = ucontrol->value.enumerated.item[0] % items;
spin_lock_irq(&rme32->lock);
change = val != (unsigned int)snd_rme32_getinputtype(rme32);
snd_rme32_setinputtype(rme32, val);
spin_unlock_irq(&rme32->lock);
return change;
}
static int
snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[4] = { "AutoSync",
"Internal 32.0kHz",
"Internal 44.1kHz",
"Internal 48.0kHz" };
return snd_ctl_enum_info(uinfo, 1, 4, texts);
}
static int
snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&rme32->lock);
ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
spin_unlock_irq(&rme32->lock);
return 0;
}
static int
snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ucontrol->value.enumerated.item[0] % 3;
spin_lock_irq(&rme32->lock);
change = val != (unsigned int)snd_rme32_getclockmode(rme32);
snd_rme32_setclockmode(rme32, val);
spin_unlock_irq(&rme32->lock);
return change;
}
static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
{
u32 val = 0;
val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
if (val & RME32_WCR_PRO)
val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
else
val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
return val;
}
static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
{
aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
if (val & RME32_WCR_PRO)
aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
else
aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
}
static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
snd_rme32_convert_to_aes(&ucontrol->value.iec958,
rme32->wcreg_spdif);
return 0;
}
static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
int change;
u32 val;
val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
spin_lock_irq(&rme32->lock);
change = val != rme32->wcreg_spdif;
rme32->wcreg_spdif = val;
spin_unlock_irq(&rme32->lock);
return change;
}
static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *
ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
snd_rme32_convert_to_aes(&ucontrol->value.iec958,
rme32->wcreg_spdif_stream);
return 0;
}
static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *
ucontrol)
{
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
int change;
u32 val;
val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
spin_lock_irq(&rme32->lock);
change = val != rme32->wcreg_spdif_stream;
rme32->wcreg_spdif_stream = val;
rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
rme32->wcreg |= val;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
spin_unlock_irq(&rme32->lock);
return change;
}
static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *
ucontrol)
{
ucontrol->value.iec958.status[0] = kcontrol->private_value;
return 0;
}
static const struct snd_kcontrol_new snd_rme32_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = snd_rme32_control_spdif_info,
.get = snd_rme32_control_spdif_get,
.put = snd_rme32_control_spdif_put
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
.info = snd_rme32_control_spdif_stream_info,
.get = snd_rme32_control_spdif_stream_get,
.put = snd_rme32_control_spdif_stream_put
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
.info = snd_rme32_control_spdif_mask_info,
.get = snd_rme32_control_spdif_mask_get,
.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
.info = snd_rme32_control_spdif_mask_info,
.get = snd_rme32_control_spdif_mask_get,
.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Input Connector",
.info = snd_rme32_info_inputtype_control,
.get = snd_rme32_get_inputtype_control,
.put = snd_rme32_put_inputtype_control
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Loopback Input",
.info = snd_rme32_info_loopback_control,
.get = snd_rme32_get_loopback_control,
.put = snd_rme32_put_loopback_control
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Sample Clock Source",
.info = snd_rme32_info_clockmode_control,
.get = snd_rme32_get_clockmode_control,
.put = snd_rme32_put_clockmode_control
}
};
static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
{
int idx, err;
struct snd_kcontrol *kctl;
for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32);
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
if (idx == 1) /* IEC958 (S/PDIF) Stream */
rme32->spdif_ctl = kctl;
}
return 0;
}
/*
* Card initialisation
*/
static void snd_rme32_card_free(struct snd_card *card)
{
snd_rme32_free(card->private_data);
}
static int
__snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
{
static int dev;
struct rme32 *rme32;
struct snd_card *card;
int err;
if (dev >= SNDRV_CARDS) {
return -ENODEV;
}
if (!enable[dev]) {
dev++;
return -ENOENT;
}
err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
sizeof(*rme32), &card);
if (err < 0)
return err;
card->private_free = snd_rme32_card_free;
rme32 = (struct rme32 *) card->private_data;
rme32->card = card;
rme32->pci = pci;
if (fullduplex[dev])
rme32->fullduplex_mode = 1;
err = snd_rme32_create(rme32);
if (err < 0)
return err;
strcpy(card->driver, "Digi32");
switch (rme32->pci->device) {
case PCI_DEVICE_ID_RME_DIGI32:
strcpy(card->shortname, "RME Digi32");
break;
case PCI_DEVICE_ID_RME_DIGI32_8:
strcpy(card->shortname, "RME Digi32/8");
break;
case PCI_DEVICE_ID_RME_DIGI32_PRO:
strcpy(card->shortname, "RME Digi32 PRO");
break;
}
sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
card->shortname, rme32->rev, rme32->port, rme32->irq);
err = snd_card_register(card);
if (err < 0)
return err;
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static int
snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
{
return snd_card_free_on_error(&pci->dev, __snd_rme32_probe(pci, pci_id));
}
static struct pci_driver rme32_driver = {
.name = KBUILD_MODNAME,
.id_table = snd_rme32_ids,
.probe = snd_rme32_probe,
};
module_pci_driver(rme32_driver);