linux-stable/drivers/firmware/efi/Kconfig

72 lines
2.0 KiB
Plaintext
Raw Normal View History

menu "EFI (Extensible Firmware Interface) Support"
depends on EFI
config EFI_VARS
tristate "EFI Variable Support via sysfs"
depends on EFI
default n
help
If you say Y here, you are able to get EFI (Extensible Firmware
Interface) variable information via sysfs. You may read,
write, create, and destroy EFI variables through this interface.
Note that using this driver in concert with efibootmgr requires
at least test release version 0.5.0-test3 or later, which is
available from:
<http://linux.dell.com/efibootmgr/testing/efibootmgr-0.5.0-test3.tar.gz>
Subsequent efibootmgr releases may be found at:
<http://github.com/vathpela/efibootmgr>
efi: Work around ia64 build problem with ESRT driver So, I'm told this problem exists in the world: > Subject: Build error in -next due to 'efi: Add esrt support' > > Building ia64:defconfig ... failed > -------------- > Error log: > > drivers/firmware/efi/esrt.c:28:31: fatal error: asm/early_ioremap.h: No such file or directory > I'm not really sure how it's okay that we have things in asm-generic on some platforms but not others - is having it the same everywhere not the whole point of asm-generic? That said, ia64 doesn't have early_ioremap.h . So instead, since it's difficult to imagine new IA64 machines with UEFI 2.5, just don't build this code there. To me this looks like a workaround - doing something like: generic-y += early_ioremap.h in arch/ia64/include/asm/Kbuild would appear to be more correct, but ia64 has its own early_memremap() decl in arch/ia64/include/asm/io.h , and it's a macro. So adding the above /and/ requiring that asm/io.h be included /after/ asm/early_ioremap.h in all cases would fix it, but that's pretty ugly as well. Since I'm not going to spend the rest of my life rectifying ia64 headers vs "generic" headers that aren't generic, it's much simpler to just not build there. Note that I've only actually tried to build this patch on x86_64, but esrt.o still gets built there, and that would seem to demonstrate that the conditional building is working correctly at all the places the code built before. I no longer have any ia64 machines handy to test that the exclusion actually works there. Signed-off-by: Peter Jones <pjones@redhat.com> Acked-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Guenter Roeck <linux@roeck-us.net> (Compile-)Tested-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-06-05 19:14:54 +00:00
config EFI_ESRT
bool
depends on EFI && !IA64
default y
config EFI_VARS_PSTORE
tristate "Register efivars backend for pstore"
depends on EFI_VARS && PSTORE
default y
help
Say Y here to enable use efivars as a backend to pstore. This
will allow writing console messages, crash dumps, or anything
else supported by pstore to EFI variables.
config EFI_VARS_PSTORE_DEFAULT_DISABLE
bool "Disable using efivars as a pstore backend by default"
depends on EFI_VARS_PSTORE
default n
help
Saying Y here will disable the use of efivars as a storage
backend for pstore by default. This setting can be overridden
using the efivars module's pstore_disable parameter.
config EFI_RUNTIME_MAP
bool "Export efi runtime maps to sysfs"
depends on X86 && EFI && KEXEC
default y
help
Export efi runtime memory maps to /sys/firmware/efi/runtime-map.
That memory map is used for example by kexec to set up efi virtual
mapping the 2nd kernel, but can also be used for debugging purposes.
See also Documentation/ABI/testing/sysfs-firmware-efi-runtime-map.
config EFI_PARAMS_FROM_FDT
bool
help
Select this config option from the architecture Kconfig if
the EFI runtime support gets system table address, memory
map address, and other parameters from the device tree.
config EFI_RUNTIME_WRAPPERS
bool
config EFI_ARMSTUB
bool
endmenu
config UEFI_CPER
bool