linux-stable/drivers/phy/broadcom/phy-brcm-sata.c

861 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Broadcom SATA3 AHCI Controller PHY Driver
*
* Copyright (C) 2016 Broadcom
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#define SATA_PCB_BANK_OFFSET 0x23c
#define SATA_PCB_REG_OFFSET(ofs) ((ofs) * 4)
#define MAX_PORTS 2
/* Register offset between PHYs in PCB space */
#define SATA_PCB_REG_28NM_SPACE_SIZE 0x1000
/* The older SATA PHY registers duplicated per port registers within the map,
* rather than having a separate map per port.
*/
#define SATA_PCB_REG_40NM_SPACE_SIZE 0x10
/* Register offset between PHYs in PHY control space */
#define SATA_PHY_CTRL_REG_28NM_SPACE_SIZE 0x8
enum brcm_sata_phy_version {
BRCM_SATA_PHY_STB_16NM,
BRCM_SATA_PHY_STB_28NM,
BRCM_SATA_PHY_STB_40NM,
BRCM_SATA_PHY_IPROC_NS2,
BRCM_SATA_PHY_IPROC_NSP,
BRCM_SATA_PHY_IPROC_SR,
BRCM_SATA_PHY_DSL_28NM,
};
enum brcm_sata_phy_rxaeq_mode {
RXAEQ_MODE_OFF = 0,
RXAEQ_MODE_AUTO,
RXAEQ_MODE_MANUAL,
};
static enum brcm_sata_phy_rxaeq_mode rxaeq_to_val(const char *m)
{
if (!strcmp(m, "auto"))
return RXAEQ_MODE_AUTO;
else if (!strcmp(m, "manual"))
return RXAEQ_MODE_MANUAL;
else
return RXAEQ_MODE_OFF;
}
struct brcm_sata_port {
int portnum;
struct phy *phy;
struct brcm_sata_phy *phy_priv;
bool ssc_en;
enum brcm_sata_phy_rxaeq_mode rxaeq_mode;
u32 rxaeq_val;
u32 tx_amplitude_val;
};
struct brcm_sata_phy {
struct device *dev;
void __iomem *phy_base;
void __iomem *ctrl_base;
enum brcm_sata_phy_version version;
struct brcm_sata_port phys[MAX_PORTS];
};
enum sata_phy_regs {
BLOCK0_REG_BANK = 0x000,
BLOCK0_XGXSSTATUS = 0x81,
BLOCK0_XGXSSTATUS_PLL_LOCK = BIT(12),
BLOCK0_SPARE = 0x8d,
BLOCK0_SPARE_OOB_CLK_SEL_MASK = 0x3,
BLOCK0_SPARE_OOB_CLK_SEL_REFBY2 = 0x1,
BLOCK1_REG_BANK = 0x10,
BLOCK1_TEST_TX = 0x83,
BLOCK1_TEST_TX_AMP_SHIFT = 12,
PLL_REG_BANK_0 = 0x050,
PLL_REG_BANK_0_PLLCONTROL_0 = 0x81,
PLLCONTROL_0_FREQ_DET_RESTART = BIT(13),
PLLCONTROL_0_FREQ_MONITOR = BIT(12),
PLLCONTROL_0_SEQ_START = BIT(15),
PLL_CAP_CHARGE_TIME = 0x83,
PLL_VCO_CAL_THRESH = 0x84,
PLL_CAP_CONTROL = 0x85,
PLL_FREQ_DET_TIME = 0x86,
PLL_ACTRL2 = 0x8b,
PLL_ACTRL2_SELDIV_MASK = 0x1f,
PLL_ACTRL2_SELDIV_SHIFT = 9,
PLL_ACTRL6 = 0x86,
PLL1_REG_BANK = 0x060,
PLL1_ACTRL2 = 0x82,
PLL1_ACTRL3 = 0x83,
PLL1_ACTRL4 = 0x84,
PLL1_ACTRL5 = 0x85,
PLL1_ACTRL6 = 0x86,
PLL1_ACTRL7 = 0x87,
PLL1_ACTRL8 = 0x88,
TX_REG_BANK = 0x070,
TX_ACTRL0 = 0x80,
TX_ACTRL0_TXPOL_FLIP = BIT(6),
TX_ACTRL5 = 0x85,
TX_ACTRL5_SSC_EN = BIT(11),
AEQRX_REG_BANK_0 = 0xd0,
AEQ_CONTROL1 = 0x81,
AEQ_CONTROL1_ENABLE = BIT(2),
AEQ_CONTROL1_FREEZE = BIT(3),
AEQ_FRC_EQ = 0x83,
AEQ_FRC_EQ_FORCE = BIT(0),
AEQ_FRC_EQ_FORCE_VAL = BIT(1),
AEQ_RFZ_FRC_VAL = BIT(8),
AEQRX_REG_BANK_1 = 0xe0,
AEQRX_SLCAL0_CTRL0 = 0x82,
AEQRX_SLCAL1_CTRL0 = 0x86,
OOB_REG_BANK = 0x150,
OOB1_REG_BANK = 0x160,
OOB_CTRL1 = 0x80,
OOB_CTRL1_BURST_MAX_MASK = 0xf,
OOB_CTRL1_BURST_MAX_SHIFT = 12,
OOB_CTRL1_BURST_MIN_MASK = 0xf,
OOB_CTRL1_BURST_MIN_SHIFT = 8,
OOB_CTRL1_WAKE_IDLE_MAX_MASK = 0xf,
OOB_CTRL1_WAKE_IDLE_MAX_SHIFT = 4,
OOB_CTRL1_WAKE_IDLE_MIN_MASK = 0xf,
OOB_CTRL1_WAKE_IDLE_MIN_SHIFT = 0,
OOB_CTRL2 = 0x81,
OOB_CTRL2_SEL_ENA_SHIFT = 15,
OOB_CTRL2_SEL_ENA_RC_SHIFT = 14,
OOB_CTRL2_RESET_IDLE_MAX_MASK = 0x3f,
OOB_CTRL2_RESET_IDLE_MAX_SHIFT = 8,
OOB_CTRL2_BURST_CNT_MASK = 0x3,
OOB_CTRL2_BURST_CNT_SHIFT = 6,
OOB_CTRL2_RESET_IDLE_MIN_MASK = 0x3f,
OOB_CTRL2_RESET_IDLE_MIN_SHIFT = 0,
TXPMD_REG_BANK = 0x1a0,
TXPMD_CONTROL1 = 0x81,
TXPMD_CONTROL1_TX_SSC_EN_FRC = BIT(0),
TXPMD_CONTROL1_TX_SSC_EN_FRC_VAL = BIT(1),
TXPMD_TX_FREQ_CTRL_CONTROL1 = 0x82,
TXPMD_TX_FREQ_CTRL_CONTROL2 = 0x83,
TXPMD_TX_FREQ_CTRL_CONTROL2_FMIN_MASK = 0x3ff,
TXPMD_TX_FREQ_CTRL_CONTROL3 = 0x84,
TXPMD_TX_FREQ_CTRL_CONTROL3_FMAX_MASK = 0x3ff,
RXPMD_REG_BANK = 0x1c0,
RXPMD_RX_CDR_CONTROL1 = 0x81,
RXPMD_RX_PPM_VAL_MASK = 0x1ff,
RXPMD_RXPMD_EN_FRC = BIT(12),
RXPMD_RXPMD_EN_FRC_VAL = BIT(13),
RXPMD_RX_CDR_CDR_PROP_BW = 0x82,
RXPMD_G_CDR_PROP_BW_MASK = 0x7,
RXPMD_G1_CDR_PROP_BW_SHIFT = 0,
RXPMD_G2_CDR_PROP_BW_SHIFT = 3,
RXPMD_G3_CDR_PROB_BW_SHIFT = 6,
RXPMD_RX_CDR_CDR_ACQ_INTEG_BW = 0x83,
RXPMD_G_CDR_ACQ_INT_BW_MASK = 0x7,
RXPMD_G1_CDR_ACQ_INT_BW_SHIFT = 0,
RXPMD_G2_CDR_ACQ_INT_BW_SHIFT = 3,
RXPMD_G3_CDR_ACQ_INT_BW_SHIFT = 6,
RXPMD_RX_CDR_CDR_LOCK_INTEG_BW = 0x84,
RXPMD_G_CDR_LOCK_INT_BW_MASK = 0x7,
RXPMD_G1_CDR_LOCK_INT_BW_SHIFT = 0,
RXPMD_G2_CDR_LOCK_INT_BW_SHIFT = 3,
RXPMD_G3_CDR_LOCK_INT_BW_SHIFT = 6,
RXPMD_RX_FREQ_MON_CONTROL1 = 0x87,
RXPMD_MON_CORRECT_EN = BIT(8),
RXPMD_MON_MARGIN_VAL_MASK = 0xff,
};
enum sata_phy_ctrl_regs {
PHY_CTRL_1 = 0x0,
PHY_CTRL_1_RESET = BIT(0),
};
static inline void __iomem *brcm_sata_ctrl_base(struct brcm_sata_port *port)
{
struct brcm_sata_phy *priv = port->phy_priv;
u32 size = 0;
switch (priv->version) {
case BRCM_SATA_PHY_IPROC_NS2:
size = SATA_PHY_CTRL_REG_28NM_SPACE_SIZE;
break;
default:
dev_err(priv->dev, "invalid phy version\n");
break;
}
return priv->ctrl_base + (port->portnum * size);
}
static void brcm_sata_phy_wr(struct brcm_sata_port *port, u32 bank,
u32 ofs, u32 msk, u32 value)
{
struct brcm_sata_phy *priv = port->phy_priv;
void __iomem *pcb_base = priv->phy_base;
u32 tmp;
if (priv->version == BRCM_SATA_PHY_STB_40NM)
bank += (port->portnum * SATA_PCB_REG_40NM_SPACE_SIZE);
else
pcb_base += (port->portnum * SATA_PCB_REG_28NM_SPACE_SIZE);
writel(bank, pcb_base + SATA_PCB_BANK_OFFSET);
tmp = readl(pcb_base + SATA_PCB_REG_OFFSET(ofs));
tmp = (tmp & msk) | value;
writel(tmp, pcb_base + SATA_PCB_REG_OFFSET(ofs));
}
static u32 brcm_sata_phy_rd(struct brcm_sata_port *port, u32 bank, u32 ofs)
{
struct brcm_sata_phy *priv = port->phy_priv;
void __iomem *pcb_base = priv->phy_base;
if (priv->version == BRCM_SATA_PHY_STB_40NM)
bank += (port->portnum * SATA_PCB_REG_40NM_SPACE_SIZE);
else
pcb_base += (port->portnum * SATA_PCB_REG_28NM_SPACE_SIZE);
writel(bank, pcb_base + SATA_PCB_BANK_OFFSET);
return readl(pcb_base + SATA_PCB_REG_OFFSET(ofs));
}
/* These defaults were characterized by H/W group */
#define STB_FMIN_VAL_DEFAULT 0x3df
#define STB_FMAX_VAL_DEFAULT 0x3df
#define STB_FMAX_VAL_SSC 0x83
static void brcm_stb_sata_ssc_init(struct brcm_sata_port *port)
{
struct brcm_sata_phy *priv = port->phy_priv;
u32 tmp;
/* override the TX spread spectrum setting */
tmp = TXPMD_CONTROL1_TX_SSC_EN_FRC_VAL | TXPMD_CONTROL1_TX_SSC_EN_FRC;
brcm_sata_phy_wr(port, TXPMD_REG_BANK, TXPMD_CONTROL1, ~tmp, tmp);
/* set fixed min freq */
brcm_sata_phy_wr(port, TXPMD_REG_BANK, TXPMD_TX_FREQ_CTRL_CONTROL2,
~TXPMD_TX_FREQ_CTRL_CONTROL2_FMIN_MASK,
STB_FMIN_VAL_DEFAULT);
/* set fixed max freq depending on SSC config */
if (port->ssc_en) {
dev_info(priv->dev, "enabling SSC on port%d\n", port->portnum);
tmp = STB_FMAX_VAL_SSC;
} else {
tmp = STB_FMAX_VAL_DEFAULT;
}
brcm_sata_phy_wr(port, TXPMD_REG_BANK, TXPMD_TX_FREQ_CTRL_CONTROL3,
~TXPMD_TX_FREQ_CTRL_CONTROL3_FMAX_MASK, tmp);
}
#define AEQ_FRC_EQ_VAL_SHIFT 2
#define AEQ_FRC_EQ_VAL_MASK 0x3f
static int brcm_stb_sata_rxaeq_init(struct brcm_sata_port *port)
{
u32 tmp = 0, reg = 0;
switch (port->rxaeq_mode) {
case RXAEQ_MODE_OFF:
return 0;
case RXAEQ_MODE_AUTO:
reg = AEQ_CONTROL1;
tmp = AEQ_CONTROL1_ENABLE | AEQ_CONTROL1_FREEZE;
break;
case RXAEQ_MODE_MANUAL:
reg = AEQ_FRC_EQ;
tmp = AEQ_FRC_EQ_FORCE | AEQ_FRC_EQ_FORCE_VAL;
if (port->rxaeq_val > AEQ_FRC_EQ_VAL_MASK)
return -EINVAL;
tmp |= port->rxaeq_val << AEQ_FRC_EQ_VAL_SHIFT;
break;
}
brcm_sata_phy_wr(port, AEQRX_REG_BANK_0, reg, ~tmp, tmp);
brcm_sata_phy_wr(port, AEQRX_REG_BANK_1, reg, ~tmp, tmp);
return 0;
}
static int brcm_stb_sata_init(struct brcm_sata_port *port)
{
brcm_stb_sata_ssc_init(port);
return brcm_stb_sata_rxaeq_init(port);
}
static int brcm_stb_sata_16nm_ssc_init(struct brcm_sata_port *port)
{
u32 tmp, value;
/* Reduce CP tail current to 1/16th of its default value */
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL6, 0, 0x141);
/* Turn off CP tail current boost */
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL8, 0, 0xc006);
/* Set a specific AEQ equalizer value */
tmp = AEQ_FRC_EQ_FORCE_VAL | AEQ_FRC_EQ_FORCE;
brcm_sata_phy_wr(port, AEQRX_REG_BANK_0, AEQ_FRC_EQ,
~(tmp | AEQ_RFZ_FRC_VAL |
AEQ_FRC_EQ_VAL_MASK << AEQ_FRC_EQ_VAL_SHIFT),
tmp | 32 << AEQ_FRC_EQ_VAL_SHIFT);
/* Set RX PPM val center frequency */
if (port->ssc_en)
value = 0x52;
else
value = 0;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CONTROL1,
~RXPMD_RX_PPM_VAL_MASK, value);
/* Set proportional loop bandwith Gen1/2/3 */
tmp = RXPMD_G_CDR_PROP_BW_MASK << RXPMD_G1_CDR_PROP_BW_SHIFT |
RXPMD_G_CDR_PROP_BW_MASK << RXPMD_G2_CDR_PROP_BW_SHIFT |
RXPMD_G_CDR_PROP_BW_MASK << RXPMD_G3_CDR_PROB_BW_SHIFT;
if (port->ssc_en)
value = 2 << RXPMD_G1_CDR_PROP_BW_SHIFT |
2 << RXPMD_G2_CDR_PROP_BW_SHIFT |
2 << RXPMD_G3_CDR_PROB_BW_SHIFT;
else
value = 1 << RXPMD_G1_CDR_PROP_BW_SHIFT |
1 << RXPMD_G2_CDR_PROP_BW_SHIFT |
1 << RXPMD_G3_CDR_PROB_BW_SHIFT;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CDR_PROP_BW, ~tmp,
value);
/* Set CDR integral loop acquisition bandwidth for Gen1/2/3 */
tmp = RXPMD_G_CDR_ACQ_INT_BW_MASK << RXPMD_G1_CDR_ACQ_INT_BW_SHIFT |
RXPMD_G_CDR_ACQ_INT_BW_MASK << RXPMD_G2_CDR_ACQ_INT_BW_SHIFT |
RXPMD_G_CDR_ACQ_INT_BW_MASK << RXPMD_G3_CDR_ACQ_INT_BW_SHIFT;
if (port->ssc_en)
value = 1 << RXPMD_G1_CDR_ACQ_INT_BW_SHIFT |
1 << RXPMD_G2_CDR_ACQ_INT_BW_SHIFT |
1 << RXPMD_G3_CDR_ACQ_INT_BW_SHIFT;
else
value = 0;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CDR_ACQ_INTEG_BW,
~tmp, value);
/* Set CDR integral loop locking bandwidth to 1 for Gen 1/2/3 */
tmp = RXPMD_G_CDR_LOCK_INT_BW_MASK << RXPMD_G1_CDR_LOCK_INT_BW_SHIFT |
RXPMD_G_CDR_LOCK_INT_BW_MASK << RXPMD_G2_CDR_LOCK_INT_BW_SHIFT |
RXPMD_G_CDR_LOCK_INT_BW_MASK << RXPMD_G3_CDR_LOCK_INT_BW_SHIFT;
if (port->ssc_en)
value = 1 << RXPMD_G1_CDR_LOCK_INT_BW_SHIFT |
1 << RXPMD_G2_CDR_LOCK_INT_BW_SHIFT |
1 << RXPMD_G3_CDR_LOCK_INT_BW_SHIFT;
else
value = 0;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_CDR_CDR_LOCK_INTEG_BW,
~tmp, value);
/* Set no guard band and clamp CDR */
tmp = RXPMD_MON_CORRECT_EN | RXPMD_MON_MARGIN_VAL_MASK;
if (port->ssc_en)
value = 0x51;
else
value = 0;
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_FREQ_MON_CONTROL1,
~tmp, RXPMD_MON_CORRECT_EN | value);
tmp = GENMASK(15, 12);
switch (port->tx_amplitude_val) {
case 400:
value = BIT(12) | BIT(13);
break;
case 500:
value = BIT(13);
break;
case 600:
value = BIT(12);
break;
case 800:
value = 0;
break;
default:
value = tmp;
break;
}
if (value != tmp)
brcm_sata_phy_wr(port, BLOCK1_REG_BANK, BLOCK1_TEST_TX, ~tmp,
value);
/* Turn on/off SSC */
brcm_sata_phy_wr(port, TX_REG_BANK, TX_ACTRL5, ~TX_ACTRL5_SSC_EN,
port->ssc_en ? TX_ACTRL5_SSC_EN : 0);
return 0;
}
static int brcm_stb_sata_16nm_init(struct brcm_sata_port *port)
{
return brcm_stb_sata_16nm_ssc_init(port);
}
/* NS2 SATA PLL1 defaults were characterized by H/W group */
#define NS2_PLL1_ACTRL2_MAGIC 0x1df8
#define NS2_PLL1_ACTRL3_MAGIC 0x2b00
#define NS2_PLL1_ACTRL4_MAGIC 0x8824
static int brcm_ns2_sata_init(struct brcm_sata_port *port)
{
int try;
unsigned int val;
void __iomem *ctrl_base = brcm_sata_ctrl_base(port);
struct device *dev = port->phy_priv->dev;
/* Configure OOB control */
val = 0x0;
val |= (0xc << OOB_CTRL1_BURST_MAX_SHIFT);
val |= (0x4 << OOB_CTRL1_BURST_MIN_SHIFT);
val |= (0x9 << OOB_CTRL1_WAKE_IDLE_MAX_SHIFT);
val |= (0x3 << OOB_CTRL1_WAKE_IDLE_MIN_SHIFT);
brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL1, 0x0, val);
val = 0x0;
val |= (0x1b << OOB_CTRL2_RESET_IDLE_MAX_SHIFT);
val |= (0x2 << OOB_CTRL2_BURST_CNT_SHIFT);
val |= (0x9 << OOB_CTRL2_RESET_IDLE_MIN_SHIFT);
brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL2, 0x0, val);
/* Configure PHY PLL register bank 1 */
val = NS2_PLL1_ACTRL2_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL2, 0x0, val);
val = NS2_PLL1_ACTRL3_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL3, 0x0, val);
val = NS2_PLL1_ACTRL4_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL4, 0x0, val);
/* Configure PHY BLOCK0 register bank */
/* Set oob_clk_sel to refclk/2 */
brcm_sata_phy_wr(port, BLOCK0_REG_BANK, BLOCK0_SPARE,
~BLOCK0_SPARE_OOB_CLK_SEL_MASK,
BLOCK0_SPARE_OOB_CLK_SEL_REFBY2);
/* Strobe PHY reset using PHY control register */
writel(PHY_CTRL_1_RESET, ctrl_base + PHY_CTRL_1);
mdelay(1);
writel(0x0, ctrl_base + PHY_CTRL_1);
mdelay(1);
/* Wait for PHY PLL lock by polling pll_lock bit */
try = 50;
while (try) {
val = brcm_sata_phy_rd(port, BLOCK0_REG_BANK,
BLOCK0_XGXSSTATUS);
if (val & BLOCK0_XGXSSTATUS_PLL_LOCK)
break;
msleep(20);
try--;
}
if (!try) {
/* PLL did not lock; give up */
dev_err(dev, "port%d PLL did not lock\n", port->portnum);
return -ETIMEDOUT;
}
dev_dbg(dev, "port%d initialized\n", port->portnum);
return 0;
}
static int brcm_nsp_sata_init(struct brcm_sata_port *port)
{
struct device *dev = port->phy_priv->dev;
unsigned int oob_bank;
unsigned int val, try;
/* Configure OOB control */
if (port->portnum == 0)
oob_bank = OOB_REG_BANK;
else if (port->portnum == 1)
oob_bank = OOB1_REG_BANK;
else
return -EINVAL;
val = 0x0;
val |= (0x0f << OOB_CTRL1_BURST_MAX_SHIFT);
val |= (0x06 << OOB_CTRL1_BURST_MIN_SHIFT);
val |= (0x0f << OOB_CTRL1_WAKE_IDLE_MAX_SHIFT);
val |= (0x06 << OOB_CTRL1_WAKE_IDLE_MIN_SHIFT);
brcm_sata_phy_wr(port, oob_bank, OOB_CTRL1, 0x0, val);
val = 0x0;
val |= (0x2e << OOB_CTRL2_RESET_IDLE_MAX_SHIFT);
val |= (0x02 << OOB_CTRL2_BURST_CNT_SHIFT);
val |= (0x16 << OOB_CTRL2_RESET_IDLE_MIN_SHIFT);
brcm_sata_phy_wr(port, oob_bank, OOB_CTRL2, 0x0, val);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_ACTRL2,
~(PLL_ACTRL2_SELDIV_MASK << PLL_ACTRL2_SELDIV_SHIFT),
0x0c << PLL_ACTRL2_SELDIV_SHIFT);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_CAP_CONTROL,
0xff0, 0x4f0);
val = PLLCONTROL_0_FREQ_DET_RESTART | PLLCONTROL_0_FREQ_MONITOR;
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
~val, val);
val = PLLCONTROL_0_SEQ_START;
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
~val, 0);
mdelay(10);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
~val, val);
/* Wait for pll_seq_done bit */
try = 50;
while (--try) {
val = brcm_sata_phy_rd(port, BLOCK0_REG_BANK,
BLOCK0_XGXSSTATUS);
if (val & BLOCK0_XGXSSTATUS_PLL_LOCK)
break;
msleep(20);
}
if (!try) {
/* PLL did not lock; give up */
dev_err(dev, "port%d PLL did not lock\n", port->portnum);
return -ETIMEDOUT;
}
dev_dbg(dev, "port%d initialized\n", port->portnum);
return 0;
}
/* SR PHY PLL0 registers */
#define SR_PLL0_ACTRL6_MAGIC 0xa
/* SR PHY PLL1 registers */
#define SR_PLL1_ACTRL2_MAGIC 0x32
#define SR_PLL1_ACTRL3_MAGIC 0x2
#define SR_PLL1_ACTRL4_MAGIC 0x3e8
static int brcm_sr_sata_init(struct brcm_sata_port *port)
{
struct device *dev = port->phy_priv->dev;
unsigned int val, try;
/* Configure PHY PLL register bank 1 */
val = SR_PLL1_ACTRL2_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL2, 0x0, val);
val = SR_PLL1_ACTRL3_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL3, 0x0, val);
val = SR_PLL1_ACTRL4_MAGIC;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL4, 0x0, val);
/* Configure PHY PLL register bank 0 */
val = SR_PLL0_ACTRL6_MAGIC;
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_ACTRL6, 0x0, val);
/* Wait for PHY PLL lock by polling pll_lock bit */
try = 50;
do {
val = brcm_sata_phy_rd(port, BLOCK0_REG_BANK,
BLOCK0_XGXSSTATUS);
if (val & BLOCK0_XGXSSTATUS_PLL_LOCK)
break;
msleep(20);
try--;
} while (try);
if ((val & BLOCK0_XGXSSTATUS_PLL_LOCK) == 0) {
/* PLL did not lock; give up */
dev_err(dev, "port%d PLL did not lock\n", port->portnum);
return -ETIMEDOUT;
}
/* Invert Tx polarity */
brcm_sata_phy_wr(port, TX_REG_BANK, TX_ACTRL0,
~TX_ACTRL0_TXPOL_FLIP, TX_ACTRL0_TXPOL_FLIP);
/* Configure OOB control to handle 100MHz reference clock */
val = ((0xc << OOB_CTRL1_BURST_MAX_SHIFT) |
(0x4 << OOB_CTRL1_BURST_MIN_SHIFT) |
(0x8 << OOB_CTRL1_WAKE_IDLE_MAX_SHIFT) |
(0x3 << OOB_CTRL1_WAKE_IDLE_MIN_SHIFT));
brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL1, 0x0, val);
val = ((0x1b << OOB_CTRL2_RESET_IDLE_MAX_SHIFT) |
(0x2 << OOB_CTRL2_BURST_CNT_SHIFT) |
(0x9 << OOB_CTRL2_RESET_IDLE_MIN_SHIFT));
brcm_sata_phy_wr(port, OOB_REG_BANK, OOB_CTRL2, 0x0, val);
return 0;
}
static int brcm_dsl_sata_init(struct brcm_sata_port *port)
{
struct device *dev = port->phy_priv->dev;
unsigned int try;
u32 tmp;
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL7, 0, 0x873);
brcm_sata_phy_wr(port, PLL1_REG_BANK, PLL1_ACTRL6, 0, 0xc000);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
0, 0x3089);
usleep_range(1000, 2000);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_REG_BANK_0_PLLCONTROL_0,
0, 0x3088);
usleep_range(1000, 2000);
brcm_sata_phy_wr(port, AEQRX_REG_BANK_1, AEQRX_SLCAL0_CTRL0,
0, 0x3000);
brcm_sata_phy_wr(port, AEQRX_REG_BANK_1, AEQRX_SLCAL1_CTRL0,
0, 0x3000);
usleep_range(1000, 2000);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_CAP_CHARGE_TIME, 0, 0x32);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_VCO_CAL_THRESH, 0, 0xa);
brcm_sata_phy_wr(port, PLL_REG_BANK_0, PLL_FREQ_DET_TIME, 0, 0x64);
usleep_range(1000, 2000);
/* Acquire PLL lock */
try = 50;
while (try) {
tmp = brcm_sata_phy_rd(port, BLOCK0_REG_BANK,
BLOCK0_XGXSSTATUS);
if (tmp & BLOCK0_XGXSSTATUS_PLL_LOCK)
break;
msleep(20);
try--;
}
if (!try) {
/* PLL did not lock; give up */
dev_err(dev, "port%d PLL did not lock\n", port->portnum);
return -ETIMEDOUT;
}
dev_dbg(dev, "port%d initialized\n", port->portnum);
return 0;
}
static int brcm_sata_phy_init(struct phy *phy)
{
int rc;
struct brcm_sata_port *port = phy_get_drvdata(phy);
switch (port->phy_priv->version) {
case BRCM_SATA_PHY_STB_16NM:
rc = brcm_stb_sata_16nm_init(port);
break;
case BRCM_SATA_PHY_STB_28NM:
case BRCM_SATA_PHY_STB_40NM:
rc = brcm_stb_sata_init(port);
break;
case BRCM_SATA_PHY_IPROC_NS2:
rc = brcm_ns2_sata_init(port);
break;
case BRCM_SATA_PHY_IPROC_NSP:
rc = brcm_nsp_sata_init(port);
break;
case BRCM_SATA_PHY_IPROC_SR:
rc = brcm_sr_sata_init(port);
break;
case BRCM_SATA_PHY_DSL_28NM:
rc = brcm_dsl_sata_init(port);
break;
default:
rc = -ENODEV;
}
return rc;
}
static void brcm_stb_sata_calibrate(struct brcm_sata_port *port)
{
u32 tmp = BIT(8);
brcm_sata_phy_wr(port, RXPMD_REG_BANK, RXPMD_RX_FREQ_MON_CONTROL1,
~tmp, tmp);
}
static int brcm_sata_phy_calibrate(struct phy *phy)
{
struct brcm_sata_port *port = phy_get_drvdata(phy);
int rc = -EOPNOTSUPP;
switch (port->phy_priv->version) {
case BRCM_SATA_PHY_STB_28NM:
case BRCM_SATA_PHY_STB_40NM:
brcm_stb_sata_calibrate(port);
rc = 0;
break;
default:
break;
}
return rc;
}
static const struct phy_ops phy_ops = {
.init = brcm_sata_phy_init,
.calibrate = brcm_sata_phy_calibrate,
.owner = THIS_MODULE,
};
static const struct of_device_id brcm_sata_phy_of_match[] = {
{ .compatible = "brcm,bcm7216-sata-phy",
.data = (void *)BRCM_SATA_PHY_STB_16NM },
{ .compatible = "brcm,bcm7445-sata-phy",
.data = (void *)BRCM_SATA_PHY_STB_28NM },
{ .compatible = "brcm,bcm7425-sata-phy",
.data = (void *)BRCM_SATA_PHY_STB_40NM },
{ .compatible = "brcm,iproc-ns2-sata-phy",
.data = (void *)BRCM_SATA_PHY_IPROC_NS2 },
{ .compatible = "brcm,iproc-nsp-sata-phy",
.data = (void *)BRCM_SATA_PHY_IPROC_NSP },
{ .compatible = "brcm,iproc-sr-sata-phy",
.data = (void *)BRCM_SATA_PHY_IPROC_SR },
{ .compatible = "brcm,bcm63138-sata-phy",
.data = (void *)BRCM_SATA_PHY_DSL_28NM },
{},
};
MODULE_DEVICE_TABLE(of, brcm_sata_phy_of_match);
static int brcm_sata_phy_probe(struct platform_device *pdev)
{
const char *rxaeq_mode;
struct device *dev = &pdev->dev;
struct device_node *dn = dev->of_node, *child;
const struct of_device_id *of_id;
struct brcm_sata_phy *priv;
struct phy_provider *provider;
int ret, count = 0;
if (of_get_child_count(dn) == 0)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
priv->dev = dev;
priv->phy_base = devm_platform_ioremap_resource_byname(pdev, "phy");
if (IS_ERR(priv->phy_base))
return PTR_ERR(priv->phy_base);
of_id = of_match_node(brcm_sata_phy_of_match, dn);
if (of_id)
priv->version = (enum brcm_sata_phy_version)of_id->data;
else
priv->version = BRCM_SATA_PHY_STB_28NM;
if (priv->version == BRCM_SATA_PHY_IPROC_NS2) {
priv->ctrl_base = devm_platform_ioremap_resource_byname(pdev, "phy-ctrl");
if (IS_ERR(priv->ctrl_base))
return PTR_ERR(priv->ctrl_base);
}
for_each_available_child_of_node(dn, child) {
unsigned int id;
struct brcm_sata_port *port;
if (of_property_read_u32(child, "reg", &id)) {
dev_err(dev, "missing reg property in node %pOFn\n",
child);
ret = -EINVAL;
goto put_child;
}
if (id >= MAX_PORTS) {
dev_err(dev, "invalid reg: %u\n", id);
ret = -EINVAL;
goto put_child;
}
if (priv->phys[id].phy) {
dev_err(dev, "already registered port %u\n", id);
ret = -EINVAL;
goto put_child;
}
port = &priv->phys[id];
port->portnum = id;
port->phy_priv = priv;
port->phy = devm_phy_create(dev, child, &phy_ops);
port->rxaeq_mode = RXAEQ_MODE_OFF;
if (!of_property_read_string(child, "brcm,rxaeq-mode",
&rxaeq_mode))
port->rxaeq_mode = rxaeq_to_val(rxaeq_mode);
if (port->rxaeq_mode == RXAEQ_MODE_MANUAL)
of_property_read_u32(child, "brcm,rxaeq-value",
&port->rxaeq_val);
of_property_read_u32(child, "brcm,tx-amplitude-millivolt",
&port->tx_amplitude_val);
port->ssc_en = of_property_read_bool(child, "brcm,enable-ssc");
if (IS_ERR(port->phy)) {
dev_err(dev, "failed to create PHY\n");
ret = PTR_ERR(port->phy);
goto put_child;
}
phy_set_drvdata(port->phy, port);
count++;
}
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider)) {
dev_err(dev, "could not register PHY provider\n");
return PTR_ERR(provider);
}
dev_info(dev, "registered %d port(s)\n", count);
return 0;
put_child:
of_node_put(child);
return ret;
}
static struct platform_driver brcm_sata_phy_driver = {
.probe = brcm_sata_phy_probe,
.driver = {
.of_match_table = brcm_sata_phy_of_match,
.name = "brcm-sata-phy",
}
};
module_platform_driver(brcm_sata_phy_driver);
MODULE_DESCRIPTION("Broadcom SATA PHY driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Marc Carino");
MODULE_AUTHOR("Brian Norris");
MODULE_ALIAS("platform:phy-brcm-sata");