linux-stable/arch/arm64/include/asm/sysreg.h

1126 lines
42 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Macros for accessing system registers with older binutils.
*
* Copyright (C) 2014 ARM Ltd.
* Author: Catalin Marinas <catalin.marinas@arm.com>
*/
#ifndef __ASM_SYSREG_H
#define __ASM_SYSREG_H
#include <linux/bits.h>
#include <linux/stringify.h>
arm64: kasan: mte: use a constant kernel GCR_EL1 value When KASAN_HW_TAGS is selected, KASAN is enabled at boot time, and the hardware supports MTE, we'll initialize `kernel_gcr_excl` with a value dependent on KASAN_TAG_MAX. While the resulting value is a constant which depends on KASAN_TAG_MAX, we have to perform some runtime work to generate the value, and have to read the value from memory during the exception entry path. It would be better if we could generate this as a constant at compile-time, and use it as such directly. Early in boot within __cpu_setup(), we initialize GCR_EL1 to a safe value, and later override this with the value required by KASAN. If CONFIG_KASAN_HW_TAGS is not selected, or if KASAN is disabeld at boot time, the kernel will not use IRG instructions, and so the initial value of GCR_EL1 is does not matter to the kernel. Thus, we can instead have __cpu_setup() initialize GCR_EL1 to a value consistent with KASAN_TAG_MAX, and avoid the need to re-initialize it during hotplug and resume form suspend. This patch makes arem64 use a compile-time constant KERNEL_GCR_EL1 value, which is compatible with KASAN_HW_TAGS when this is selected. This removes the need to re-initialize GCR_EL1 dynamically, and acts as an optimization to the entry assembly, which no longer needs to load this value from memory. The redundant initialization hooks are removed. In order to do this, KASAN_TAG_MAX needs to be visible outside of the core KASAN code. To do this, I've moved the KASAN_TAG_* values into <linux/kasan-tags.h>. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Tested-by: Andrey Konovalov <andreyknvl@gmail.com> Link: https://lore.kernel.org/r/20210714143843.56537-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-07-14 14:38:42 +00:00
#include <linux/kasan-tags.h>
#include <asm/gpr-num.h>
/*
* ARMv8 ARM reserves the following encoding for system registers:
* (Ref: ARMv8 ARM, Section: "System instruction class encoding overview",
* C5.2, version:ARM DDI 0487A.f)
* [20-19] : Op0
* [18-16] : Op1
* [15-12] : CRn
* [11-8] : CRm
* [7-5] : Op2
*/
#define Op0_shift 19
#define Op0_mask 0x3
#define Op1_shift 16
#define Op1_mask 0x7
#define CRn_shift 12
#define CRn_mask 0xf
#define CRm_shift 8
#define CRm_mask 0xf
#define Op2_shift 5
#define Op2_mask 0x7
#define sys_reg(op0, op1, crn, crm, op2) \
(((op0) << Op0_shift) | ((op1) << Op1_shift) | \
((crn) << CRn_shift) | ((crm) << CRm_shift) | \
((op2) << Op2_shift))
#define sys_insn sys_reg
#define sys_reg_Op0(id) (((id) >> Op0_shift) & Op0_mask)
#define sys_reg_Op1(id) (((id) >> Op1_shift) & Op1_mask)
#define sys_reg_CRn(id) (((id) >> CRn_shift) & CRn_mask)
#define sys_reg_CRm(id) (((id) >> CRm_shift) & CRm_mask)
#define sys_reg_Op2(id) (((id) >> Op2_shift) & Op2_mask)
#ifndef CONFIG_BROKEN_GAS_INST
#ifdef __ASSEMBLY__
arm64: Delete the space separator in __emit_inst In assembly, many instances of __emit_inst(x) expand to a directive. In a few places __emit_inst(x) is used as an assembler macro argument. For example, in arch/arm64/kvm/hyp/entry.S ALTERNATIVE(nop, SET_PSTATE_PAN(1), ARM64_HAS_PAN, CONFIG_ARM64_PAN) expands to the following by the C preprocessor: alternative_insn nop, .inst (0xd500401f | ((0) << 16 | (4) << 5) | ((!!1) << 8)), 4, 1 Both comma and space are separators, with an exception that content inside a pair of parentheses/quotes is not split, so the clang integrated assembler splits the arguments to: nop, .inst, (0xd500401f | ((0) << 16 | (4) << 5) | ((!!1) << 8)), 4, 1 GNU as preprocesses the input with do_scrub_chars(). Its arm64 backend (along with many other non-x86 backends) sees: alternative_insn nop,.inst(0xd500401f|((0)<<16|(4)<<5)|((!!1)<<8)),4,1 # .inst(...) is parsed as one argument while its x86 backend sees: alternative_insn nop,.inst (0xd500401f|((0)<<16|(4)<<5)|((!!1)<<8)),4,1 # The extra space before '(' makes the whole .inst (...) parsed as two arguments The non-x86 backend's behavior is considered unintentional (https://sourceware.org/bugzilla/show_bug.cgi?id=25750). So drop the space separator inside `.inst (...)` to make the clang integrated assembler work. Suggested-by: Ilie Halip <ilie.halip@gmail.com> Signed-off-by: Fangrui Song <maskray@google.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Link: https://github.com/ClangBuiltLinux/linux/issues/939 Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-04-14 16:32:55 +00:00
// The space separator is omitted so that __emit_inst(x) can be parsed as
// either an assembler directive or an assembler macro argument.
#define __emit_inst(x) .inst(x)
#else
#define __emit_inst(x) ".inst " __stringify((x)) "\n\t"
#endif
#else /* CONFIG_BROKEN_GAS_INST */
#ifndef CONFIG_CPU_BIG_ENDIAN
#define __INSTR_BSWAP(x) (x)
#else /* CONFIG_CPU_BIG_ENDIAN */
#define __INSTR_BSWAP(x) ((((x) << 24) & 0xff000000) | \
(((x) << 8) & 0x00ff0000) | \
(((x) >> 8) & 0x0000ff00) | \
(((x) >> 24) & 0x000000ff))
#endif /* CONFIG_CPU_BIG_ENDIAN */
#ifdef __ASSEMBLY__
#define __emit_inst(x) .long __INSTR_BSWAP(x)
#else /* __ASSEMBLY__ */
#define __emit_inst(x) ".long " __stringify(__INSTR_BSWAP(x)) "\n\t"
#endif /* __ASSEMBLY__ */
#endif /* CONFIG_BROKEN_GAS_INST */
/*
* Instructions for modifying PSTATE fields.
* As per Arm ARM for v8-A, Section "C.5.1.3 op0 == 0b00, architectural hints,
* barriers and CLREX, and PSTATE access", ARM DDI 0487 C.a, system instructions
* for accessing PSTATE fields have the following encoding:
* Op0 = 0, CRn = 4
* Op1, Op2 encodes the PSTATE field modified and defines the constraints.
* CRm = Imm4 for the instruction.
* Rt = 0x1f
*/
#define pstate_field(op1, op2) ((op1) << Op1_shift | (op2) << Op2_shift)
#define PSTATE_Imm_shift CRm_shift
arm64: Enable data independent timing (DIT) in the kernel The ARM architecture revision v8.4 introduces a data independent timing control (DIT) which can be set at any exception level, and instructs the CPU to avoid optimizations that may result in a correlation between the execution time of certain instructions and the value of the data they operate on. The DIT bit is part of PSTATE, and is therefore context switched as usual, given that it becomes part of the saved program state (SPSR) when taking an exception. We have also defined a hwcap for DIT, and so user space can discover already whether or nor DIT is available. This means that, as far as user space is concerned, DIT is wired up and fully functional. In the kernel, however, we never bothered with DIT: we disable at it boot (i.e., INIT_PSTATE_EL1 has DIT cleared) and ignore the fact that we might run with DIT enabled if user space happened to set it. Currently, we have no idea whether or not running privileged code with DIT disabled on a CPU that implements support for it may result in a side channel that exposes privileged data to unprivileged user space processes, so let's be cautious and just enable DIT while running in the kernel if supported by all CPUs. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Adam Langley <agl@google.com> Link: https://lore.kernel.org/all/YwgCrqutxmX0W72r@gmail.com/ Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20221107172400.1851434-1-ardb@kernel.org [will: Removed cpu_has_dit() as per Mark's suggestion on the list] Signed-off-by: Will Deacon <will@kernel.org>
2022-11-07 17:24:00 +00:00
#define SET_PSTATE(x, r) __emit_inst(0xd500401f | PSTATE_ ## r | ((!!x) << PSTATE_Imm_shift))
#define PSTATE_PAN pstate_field(0, 4)
#define PSTATE_UAO pstate_field(0, 3)
#define PSTATE_SSBS pstate_field(3, 1)
arm64: Enable data independent timing (DIT) in the kernel The ARM architecture revision v8.4 introduces a data independent timing control (DIT) which can be set at any exception level, and instructs the CPU to avoid optimizations that may result in a correlation between the execution time of certain instructions and the value of the data they operate on. The DIT bit is part of PSTATE, and is therefore context switched as usual, given that it becomes part of the saved program state (SPSR) when taking an exception. We have also defined a hwcap for DIT, and so user space can discover already whether or nor DIT is available. This means that, as far as user space is concerned, DIT is wired up and fully functional. In the kernel, however, we never bothered with DIT: we disable at it boot (i.e., INIT_PSTATE_EL1 has DIT cleared) and ignore the fact that we might run with DIT enabled if user space happened to set it. Currently, we have no idea whether or not running privileged code with DIT disabled on a CPU that implements support for it may result in a side channel that exposes privileged data to unprivileged user space processes, so let's be cautious and just enable DIT while running in the kernel if supported by all CPUs. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Adam Langley <agl@google.com> Link: https://lore.kernel.org/all/YwgCrqutxmX0W72r@gmail.com/ Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20221107172400.1851434-1-ardb@kernel.org [will: Removed cpu_has_dit() as per Mark's suggestion on the list] Signed-off-by: Will Deacon <will@kernel.org>
2022-11-07 17:24:00 +00:00
#define PSTATE_DIT pstate_field(3, 2)
#define PSTATE_TCO pstate_field(3, 4)
arm64: Enable data independent timing (DIT) in the kernel The ARM architecture revision v8.4 introduces a data independent timing control (DIT) which can be set at any exception level, and instructs the CPU to avoid optimizations that may result in a correlation between the execution time of certain instructions and the value of the data they operate on. The DIT bit is part of PSTATE, and is therefore context switched as usual, given that it becomes part of the saved program state (SPSR) when taking an exception. We have also defined a hwcap for DIT, and so user space can discover already whether or nor DIT is available. This means that, as far as user space is concerned, DIT is wired up and fully functional. In the kernel, however, we never bothered with DIT: we disable at it boot (i.e., INIT_PSTATE_EL1 has DIT cleared) and ignore the fact that we might run with DIT enabled if user space happened to set it. Currently, we have no idea whether or not running privileged code with DIT disabled on a CPU that implements support for it may result in a side channel that exposes privileged data to unprivileged user space processes, so let's be cautious and just enable DIT while running in the kernel if supported by all CPUs. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Adam Langley <agl@google.com> Link: https://lore.kernel.org/all/YwgCrqutxmX0W72r@gmail.com/ Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20221107172400.1851434-1-ardb@kernel.org [will: Removed cpu_has_dit() as per Mark's suggestion on the list] Signed-off-by: Will Deacon <will@kernel.org>
2022-11-07 17:24:00 +00:00
#define SET_PSTATE_PAN(x) SET_PSTATE((x), PAN)
#define SET_PSTATE_UAO(x) SET_PSTATE((x), UAO)
#define SET_PSTATE_SSBS(x) SET_PSTATE((x), SSBS)
#define SET_PSTATE_DIT(x) SET_PSTATE((x), DIT)
#define SET_PSTATE_TCO(x) SET_PSTATE((x), TCO)
#define set_pstate_pan(x) asm volatile(SET_PSTATE_PAN(x))
#define set_pstate_uao(x) asm volatile(SET_PSTATE_UAO(x))
#define set_pstate_ssbs(x) asm volatile(SET_PSTATE_SSBS(x))
arm64: Enable data independent timing (DIT) in the kernel The ARM architecture revision v8.4 introduces a data independent timing control (DIT) which can be set at any exception level, and instructs the CPU to avoid optimizations that may result in a correlation between the execution time of certain instructions and the value of the data they operate on. The DIT bit is part of PSTATE, and is therefore context switched as usual, given that it becomes part of the saved program state (SPSR) when taking an exception. We have also defined a hwcap for DIT, and so user space can discover already whether or nor DIT is available. This means that, as far as user space is concerned, DIT is wired up and fully functional. In the kernel, however, we never bothered with DIT: we disable at it boot (i.e., INIT_PSTATE_EL1 has DIT cleared) and ignore the fact that we might run with DIT enabled if user space happened to set it. Currently, we have no idea whether or not running privileged code with DIT disabled on a CPU that implements support for it may result in a side channel that exposes privileged data to unprivileged user space processes, so let's be cautious and just enable DIT while running in the kernel if supported by all CPUs. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Adam Langley <agl@google.com> Link: https://lore.kernel.org/all/YwgCrqutxmX0W72r@gmail.com/ Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20221107172400.1851434-1-ardb@kernel.org [will: Removed cpu_has_dit() as per Mark's suggestion on the list] Signed-off-by: Will Deacon <will@kernel.org>
2022-11-07 17:24:00 +00:00
#define set_pstate_dit(x) asm volatile(SET_PSTATE_DIT(x))
#define __SYS_BARRIER_INSN(CRm, op2, Rt) \
__emit_inst(0xd5000000 | sys_insn(0, 3, 3, (CRm), (op2)) | ((Rt) & 0x1f))
#define SB_BARRIER_INSN __SYS_BARRIER_INSN(0, 7, 31)
#define SYS_DC_ISW sys_insn(1, 0, 7, 6, 2)
#define SYS_DC_IGSW sys_insn(1, 0, 7, 6, 4)
#define SYS_DC_IGDSW sys_insn(1, 0, 7, 6, 6)
#define SYS_DC_CSW sys_insn(1, 0, 7, 10, 2)
#define SYS_DC_CGSW sys_insn(1, 0, 7, 10, 4)
#define SYS_DC_CGDSW sys_insn(1, 0, 7, 10, 6)
#define SYS_DC_CISW sys_insn(1, 0, 7, 14, 2)
#define SYS_DC_CIGSW sys_insn(1, 0, 7, 14, 4)
#define SYS_DC_CIGDSW sys_insn(1, 0, 7, 14, 6)
#define SYS_IC_IALLUIS sys_insn(1, 0, 7, 1, 0)
#define SYS_IC_IALLU sys_insn(1, 0, 7, 5, 0)
#define SYS_IC_IVAU sys_insn(1, 3, 7, 5, 1)
#define SYS_DC_IVAC sys_insn(1, 0, 7, 6, 1)
#define SYS_DC_IGVAC sys_insn(1, 0, 7, 6, 3)
#define SYS_DC_IGDVAC sys_insn(1, 0, 7, 6, 5)
#define SYS_DC_CVAC sys_insn(1, 3, 7, 10, 1)
#define SYS_DC_CGVAC sys_insn(1, 3, 7, 10, 3)
#define SYS_DC_CGDVAC sys_insn(1, 3, 7, 10, 5)
#define SYS_DC_CVAU sys_insn(1, 3, 7, 11, 1)
#define SYS_DC_CVAP sys_insn(1, 3, 7, 12, 1)
#define SYS_DC_CGVAP sys_insn(1, 3, 7, 12, 3)
#define SYS_DC_CGDVAP sys_insn(1, 3, 7, 12, 5)
#define SYS_DC_CVADP sys_insn(1, 3, 7, 13, 1)
#define SYS_DC_CGVADP sys_insn(1, 3, 7, 13, 3)
#define SYS_DC_CGDVADP sys_insn(1, 3, 7, 13, 5)
#define SYS_DC_CIVAC sys_insn(1, 3, 7, 14, 1)
#define SYS_DC_CIGVAC sys_insn(1, 3, 7, 14, 3)
#define SYS_DC_CIGDVAC sys_insn(1, 3, 7, 14, 5)
/* Data cache zero operations */
#define SYS_DC_ZVA sys_insn(1, 3, 7, 4, 1)
#define SYS_DC_GVA sys_insn(1, 3, 7, 4, 3)
#define SYS_DC_GZVA sys_insn(1, 3, 7, 4, 4)
/*
* Automatically generated definitions for system registers, the
* manual encodings below are in the process of being converted to
* come from here. The header relies on the definition of sys_reg()
* earlier in this file.
*/
#include "asm/sysreg-defs.h"
/*
* System registers, organised loosely by encoding but grouped together
* where the architected name contains an index. e.g. ID_MMFR<n>_EL1.
*/
#define SYS_SVCR_SMSTOP_SM_EL0 sys_reg(0, 3, 4, 2, 3)
#define SYS_SVCR_SMSTART_SM_EL0 sys_reg(0, 3, 4, 3, 3)
#define SYS_SVCR_SMSTOP_SMZA_EL0 sys_reg(0, 3, 4, 6, 3)
#define SYS_DBGBVRn_EL1(n) sys_reg(2, 0, 0, n, 4)
#define SYS_DBGBCRn_EL1(n) sys_reg(2, 0, 0, n, 5)
#define SYS_DBGWVRn_EL1(n) sys_reg(2, 0, 0, n, 6)
#define SYS_DBGWCRn_EL1(n) sys_reg(2, 0, 0, n, 7)
#define SYS_MDRAR_EL1 sys_reg(2, 0, 1, 0, 0)
#define SYS_OSLSR_EL1 sys_reg(2, 0, 1, 1, 4)
#define OSLSR_EL1_OSLM_MASK (BIT(3) | BIT(0))
#define OSLSR_EL1_OSLM_NI 0
#define OSLSR_EL1_OSLM_IMPLEMENTED BIT(3)
#define OSLSR_EL1_OSLK BIT(1)
#define SYS_OSDLR_EL1 sys_reg(2, 0, 1, 3, 4)
#define SYS_DBGPRCR_EL1 sys_reg(2, 0, 1, 4, 4)
#define SYS_DBGCLAIMSET_EL1 sys_reg(2, 0, 7, 8, 6)
#define SYS_DBGCLAIMCLR_EL1 sys_reg(2, 0, 7, 9, 6)
#define SYS_DBGAUTHSTATUS_EL1 sys_reg(2, 0, 7, 14, 6)
#define SYS_MDCCSR_EL0 sys_reg(2, 3, 0, 1, 0)
#define SYS_DBGDTR_EL0 sys_reg(2, 3, 0, 4, 0)
#define SYS_DBGDTRRX_EL0 sys_reg(2, 3, 0, 5, 0)
#define SYS_DBGDTRTX_EL0 sys_reg(2, 3, 0, 5, 0)
#define SYS_DBGVCR32_EL2 sys_reg(2, 4, 0, 7, 0)
#define SYS_BRBINF_EL1(n) sys_reg(2, 1, 8, (n & 15), (((n & 16) >> 2) | 0))
#define SYS_BRBINFINJ_EL1 sys_reg(2, 1, 9, 1, 0)
#define SYS_BRBSRC_EL1(n) sys_reg(2, 1, 8, (n & 15), (((n & 16) >> 2) | 1))
#define SYS_BRBSRCINJ_EL1 sys_reg(2, 1, 9, 1, 1)
#define SYS_BRBTGT_EL1(n) sys_reg(2, 1, 8, (n & 15), (((n & 16) >> 2) | 2))
#define SYS_BRBTGTINJ_EL1 sys_reg(2, 1, 9, 1, 2)
#define SYS_BRBTS_EL1 sys_reg(2, 1, 9, 0, 2)
#define SYS_BRBCR_EL1 sys_reg(2, 1, 9, 0, 0)
#define SYS_BRBFCR_EL1 sys_reg(2, 1, 9, 0, 1)
#define SYS_BRBIDR0_EL1 sys_reg(2, 1, 9, 2, 0)
#define SYS_TRCITECR_EL1 sys_reg(3, 0, 1, 2, 3)
#define SYS_TRCACATR(m) sys_reg(2, 1, 2, ((m & 7) << 1), (2 | (m >> 3)))
#define SYS_TRCACVR(m) sys_reg(2, 1, 2, ((m & 7) << 1), (0 | (m >> 3)))
#define SYS_TRCAUTHSTATUS sys_reg(2, 1, 7, 14, 6)
#define SYS_TRCAUXCTLR sys_reg(2, 1, 0, 6, 0)
#define SYS_TRCBBCTLR sys_reg(2, 1, 0, 15, 0)
#define SYS_TRCCCCTLR sys_reg(2, 1, 0, 14, 0)
#define SYS_TRCCIDCCTLR0 sys_reg(2, 1, 3, 0, 2)
#define SYS_TRCCIDCCTLR1 sys_reg(2, 1, 3, 1, 2)
#define SYS_TRCCIDCVR(m) sys_reg(2, 1, 3, ((m & 7) << 1), 0)
#define SYS_TRCCLAIMCLR sys_reg(2, 1, 7, 9, 6)
#define SYS_TRCCLAIMSET sys_reg(2, 1, 7, 8, 6)
#define SYS_TRCCNTCTLR(m) sys_reg(2, 1, 0, (4 | (m & 3)), 5)
#define SYS_TRCCNTRLDVR(m) sys_reg(2, 1, 0, (0 | (m & 3)), 5)
#define SYS_TRCCNTVR(m) sys_reg(2, 1, 0, (8 | (m & 3)), 5)
#define SYS_TRCCONFIGR sys_reg(2, 1, 0, 4, 0)
#define SYS_TRCDEVARCH sys_reg(2, 1, 7, 15, 6)
#define SYS_TRCDEVID sys_reg(2, 1, 7, 2, 7)
#define SYS_TRCEVENTCTL0R sys_reg(2, 1, 0, 8, 0)
#define SYS_TRCEVENTCTL1R sys_reg(2, 1, 0, 9, 0)
#define SYS_TRCEXTINSELR(m) sys_reg(2, 1, 0, (8 | (m & 3)), 4)
#define SYS_TRCIDR0 sys_reg(2, 1, 0, 8, 7)
#define SYS_TRCIDR10 sys_reg(2, 1, 0, 2, 6)
#define SYS_TRCIDR11 sys_reg(2, 1, 0, 3, 6)
#define SYS_TRCIDR12 sys_reg(2, 1, 0, 4, 6)
#define SYS_TRCIDR13 sys_reg(2, 1, 0, 5, 6)
#define SYS_TRCIDR1 sys_reg(2, 1, 0, 9, 7)
#define SYS_TRCIDR2 sys_reg(2, 1, 0, 10, 7)
#define SYS_TRCIDR3 sys_reg(2, 1, 0, 11, 7)
#define SYS_TRCIDR4 sys_reg(2, 1, 0, 12, 7)
#define SYS_TRCIDR5 sys_reg(2, 1, 0, 13, 7)
#define SYS_TRCIDR6 sys_reg(2, 1, 0, 14, 7)
#define SYS_TRCIDR7 sys_reg(2, 1, 0, 15, 7)
#define SYS_TRCIDR8 sys_reg(2, 1, 0, 0, 6)
#define SYS_TRCIDR9 sys_reg(2, 1, 0, 1, 6)
#define SYS_TRCIMSPEC(m) sys_reg(2, 1, 0, (m & 7), 7)
#define SYS_TRCITEEDCR sys_reg(2, 1, 0, 2, 1)
#define SYS_TRCOSLSR sys_reg(2, 1, 1, 1, 4)
#define SYS_TRCPRGCTLR sys_reg(2, 1, 0, 1, 0)
#define SYS_TRCQCTLR sys_reg(2, 1, 0, 1, 1)
#define SYS_TRCRSCTLR(m) sys_reg(2, 1, 1, (m & 15), (0 | (m >> 4)))
#define SYS_TRCRSR sys_reg(2, 1, 0, 10, 0)
#define SYS_TRCSEQEVR(m) sys_reg(2, 1, 0, (m & 3), 4)
#define SYS_TRCSEQRSTEVR sys_reg(2, 1, 0, 6, 4)
#define SYS_TRCSEQSTR sys_reg(2, 1, 0, 7, 4)
#define SYS_TRCSSCCR(m) sys_reg(2, 1, 1, (m & 7), 2)
#define SYS_TRCSSCSR(m) sys_reg(2, 1, 1, (8 | (m & 7)), 2)
#define SYS_TRCSSPCICR(m) sys_reg(2, 1, 1, (m & 7), 3)
#define SYS_TRCSTALLCTLR sys_reg(2, 1, 0, 11, 0)
#define SYS_TRCSTATR sys_reg(2, 1, 0, 3, 0)
#define SYS_TRCSYNCPR sys_reg(2, 1, 0, 13, 0)
#define SYS_TRCTRACEIDR sys_reg(2, 1, 0, 0, 1)
#define SYS_TRCTSCTLR sys_reg(2, 1, 0, 12, 0)
#define SYS_TRCVICTLR sys_reg(2, 1, 0, 0, 2)
#define SYS_TRCVIIECTLR sys_reg(2, 1, 0, 1, 2)
#define SYS_TRCVIPCSSCTLR sys_reg(2, 1, 0, 3, 2)
#define SYS_TRCVISSCTLR sys_reg(2, 1, 0, 2, 2)
#define SYS_TRCVMIDCCTLR0 sys_reg(2, 1, 3, 2, 2)
#define SYS_TRCVMIDCCTLR1 sys_reg(2, 1, 3, 3, 2)
#define SYS_TRCVMIDCVR(m) sys_reg(2, 1, 3, ((m & 7) << 1), 1)
/* ETM */
#define SYS_TRCOSLAR sys_reg(2, 1, 1, 0, 4)
#define SYS_MIDR_EL1 sys_reg(3, 0, 0, 0, 0)
#define SYS_MPIDR_EL1 sys_reg(3, 0, 0, 0, 5)
#define SYS_REVIDR_EL1 sys_reg(3, 0, 0, 0, 6)
#define SYS_ACTLR_EL1 sys_reg(3, 0, 1, 0, 1)
#define SYS_RGSR_EL1 sys_reg(3, 0, 1, 0, 5)
#define SYS_GCR_EL1 sys_reg(3, 0, 1, 0, 6)
#define SYS_TRFCR_EL1 sys_reg(3, 0, 1, 2, 1)
#define SYS_TCR_EL1 sys_reg(3, 0, 2, 0, 2)
#define SYS_APIAKEYLO_EL1 sys_reg(3, 0, 2, 1, 0)
#define SYS_APIAKEYHI_EL1 sys_reg(3, 0, 2, 1, 1)
#define SYS_APIBKEYLO_EL1 sys_reg(3, 0, 2, 1, 2)
#define SYS_APIBKEYHI_EL1 sys_reg(3, 0, 2, 1, 3)
#define SYS_APDAKEYLO_EL1 sys_reg(3, 0, 2, 2, 0)
#define SYS_APDAKEYHI_EL1 sys_reg(3, 0, 2, 2, 1)
#define SYS_APDBKEYLO_EL1 sys_reg(3, 0, 2, 2, 2)
#define SYS_APDBKEYHI_EL1 sys_reg(3, 0, 2, 2, 3)
#define SYS_APGAKEYLO_EL1 sys_reg(3, 0, 2, 3, 0)
#define SYS_APGAKEYHI_EL1 sys_reg(3, 0, 2, 3, 1)
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 10:29:40 +00:00
#define SYS_SPSR_EL1 sys_reg(3, 0, 4, 0, 0)
#define SYS_ELR_EL1 sys_reg(3, 0, 4, 0, 1)
#define SYS_ICC_PMR_EL1 sys_reg(3, 0, 4, 6, 0)
#define SYS_AFSR0_EL1 sys_reg(3, 0, 5, 1, 0)
#define SYS_AFSR1_EL1 sys_reg(3, 0, 5, 1, 1)
#define SYS_ESR_EL1 sys_reg(3, 0, 5, 2, 0)
#define SYS_ERRIDR_EL1 sys_reg(3, 0, 5, 3, 0)
#define SYS_ERRSELR_EL1 sys_reg(3, 0, 5, 3, 1)
#define SYS_ERXFR_EL1 sys_reg(3, 0, 5, 4, 0)
#define SYS_ERXCTLR_EL1 sys_reg(3, 0, 5, 4, 1)
#define SYS_ERXSTATUS_EL1 sys_reg(3, 0, 5, 4, 2)
#define SYS_ERXADDR_EL1 sys_reg(3, 0, 5, 4, 3)
#define SYS_ERXPFGF_EL1 sys_reg(3, 0, 5, 4, 4)
#define SYS_ERXPFGCTL_EL1 sys_reg(3, 0, 5, 4, 5)
#define SYS_ERXPFGCDN_EL1 sys_reg(3, 0, 5, 4, 6)
#define SYS_ERXMISC0_EL1 sys_reg(3, 0, 5, 5, 0)
#define SYS_ERXMISC1_EL1 sys_reg(3, 0, 5, 5, 1)
#define SYS_ERXMISC2_EL1 sys_reg(3, 0, 5, 5, 2)
#define SYS_ERXMISC3_EL1 sys_reg(3, 0, 5, 5, 3)
#define SYS_TFSR_EL1 sys_reg(3, 0, 5, 6, 0)
#define SYS_TFSRE0_EL1 sys_reg(3, 0, 5, 6, 1)
#define SYS_PAR_EL1 sys_reg(3, 0, 7, 4, 0)
#define SYS_PAR_EL1_F BIT(0)
#define SYS_PAR_EL1_FST GENMASK(6, 1)
/*** Statistical Profiling Extension ***/
#define PMSEVFR_EL1_RES0_IMP \
(GENMASK_ULL(47, 32) | GENMASK_ULL(23, 16) | GENMASK_ULL(11, 8) |\
BIT_ULL(6) | BIT_ULL(4) | BIT_ULL(2) | BIT_ULL(0))
#define PMSEVFR_EL1_RES0_V1P1 \
(PMSEVFR_EL1_RES0_IMP & ~(BIT_ULL(18) | BIT_ULL(17) | BIT_ULL(11)))
#define PMSEVFR_EL1_RES0_V1P2 \
(PMSEVFR_EL1_RES0_V1P1 & ~BIT_ULL(6))
/* Buffer error reporting */
#define PMBSR_EL1_FAULT_FSC_SHIFT PMBSR_EL1_MSS_SHIFT
#define PMBSR_EL1_FAULT_FSC_MASK PMBSR_EL1_MSS_MASK
#define PMBSR_EL1_BUF_BSC_SHIFT PMBSR_EL1_MSS_SHIFT
#define PMBSR_EL1_BUF_BSC_MASK PMBSR_EL1_MSS_MASK
#define PMBSR_EL1_BUF_BSC_FULL 0x1UL
/*** End of Statistical Profiling Extension ***/
#define TRBSR_EL1_BSC_MASK GENMASK(5, 0)
#define TRBSR_EL1_BSC_SHIFT 0
#define SYS_PMINTENSET_EL1 sys_reg(3, 0, 9, 14, 1)
#define SYS_PMINTENCLR_EL1 sys_reg(3, 0, 9, 14, 2)
#define SYS_PMMIR_EL1 sys_reg(3, 0, 9, 14, 6)
#define SYS_MAIR_EL1 sys_reg(3, 0, 10, 2, 0)
#define SYS_AMAIR_EL1 sys_reg(3, 0, 10, 3, 0)
#define SYS_VBAR_EL1 sys_reg(3, 0, 12, 0, 0)
#define SYS_DISR_EL1 sys_reg(3, 0, 12, 1, 1)
#define SYS_ICC_IAR0_EL1 sys_reg(3, 0, 12, 8, 0)
#define SYS_ICC_EOIR0_EL1 sys_reg(3, 0, 12, 8, 1)
#define SYS_ICC_HPPIR0_EL1 sys_reg(3, 0, 12, 8, 2)
#define SYS_ICC_BPR0_EL1 sys_reg(3, 0, 12, 8, 3)
#define SYS_ICC_AP0Rn_EL1(n) sys_reg(3, 0, 12, 8, 4 | n)
#define SYS_ICC_AP0R0_EL1 SYS_ICC_AP0Rn_EL1(0)
#define SYS_ICC_AP0R1_EL1 SYS_ICC_AP0Rn_EL1(1)
#define SYS_ICC_AP0R2_EL1 SYS_ICC_AP0Rn_EL1(2)
#define SYS_ICC_AP0R3_EL1 SYS_ICC_AP0Rn_EL1(3)
#define SYS_ICC_AP1Rn_EL1(n) sys_reg(3, 0, 12, 9, n)
#define SYS_ICC_AP1R0_EL1 SYS_ICC_AP1Rn_EL1(0)
#define SYS_ICC_AP1R1_EL1 SYS_ICC_AP1Rn_EL1(1)
#define SYS_ICC_AP1R2_EL1 SYS_ICC_AP1Rn_EL1(2)
#define SYS_ICC_AP1R3_EL1 SYS_ICC_AP1Rn_EL1(3)
#define SYS_ICC_DIR_EL1 sys_reg(3, 0, 12, 11, 1)
#define SYS_ICC_RPR_EL1 sys_reg(3, 0, 12, 11, 3)
#define SYS_ICC_SGI1R_EL1 sys_reg(3, 0, 12, 11, 5)
#define SYS_ICC_ASGI1R_EL1 sys_reg(3, 0, 12, 11, 6)
#define SYS_ICC_SGI0R_EL1 sys_reg(3, 0, 12, 11, 7)
#define SYS_ICC_IAR1_EL1 sys_reg(3, 0, 12, 12, 0)
#define SYS_ICC_EOIR1_EL1 sys_reg(3, 0, 12, 12, 1)
#define SYS_ICC_HPPIR1_EL1 sys_reg(3, 0, 12, 12, 2)
#define SYS_ICC_BPR1_EL1 sys_reg(3, 0, 12, 12, 3)
#define SYS_ICC_CTLR_EL1 sys_reg(3, 0, 12, 12, 4)
#define SYS_ICC_SRE_EL1 sys_reg(3, 0, 12, 12, 5)
#define SYS_ICC_IGRPEN0_EL1 sys_reg(3, 0, 12, 12, 6)
#define SYS_ICC_IGRPEN1_EL1 sys_reg(3, 0, 12, 12, 7)
#define SYS_ACCDATA_EL1 sys_reg(3, 0, 13, 0, 5)
#define SYS_CNTKCTL_EL1 sys_reg(3, 0, 14, 1, 0)
#define SYS_AIDR_EL1 sys_reg(3, 1, 0, 0, 7)
#define SYS_RNDR_EL0 sys_reg(3, 3, 2, 4, 0)
#define SYS_RNDRRS_EL0 sys_reg(3, 3, 2, 4, 1)
#define SYS_PMCR_EL0 sys_reg(3, 3, 9, 12, 0)
#define SYS_PMCNTENSET_EL0 sys_reg(3, 3, 9, 12, 1)
#define SYS_PMCNTENCLR_EL0 sys_reg(3, 3, 9, 12, 2)
#define SYS_PMOVSCLR_EL0 sys_reg(3, 3, 9, 12, 3)
#define SYS_PMSWINC_EL0 sys_reg(3, 3, 9, 12, 4)
#define SYS_PMSELR_EL0 sys_reg(3, 3, 9, 12, 5)
#define SYS_PMCEID0_EL0 sys_reg(3, 3, 9, 12, 6)
#define SYS_PMCEID1_EL0 sys_reg(3, 3, 9, 12, 7)
#define SYS_PMCCNTR_EL0 sys_reg(3, 3, 9, 13, 0)
#define SYS_PMXEVTYPER_EL0 sys_reg(3, 3, 9, 13, 1)
#define SYS_PMXEVCNTR_EL0 sys_reg(3, 3, 9, 13, 2)
#define SYS_PMUSERENR_EL0 sys_reg(3, 3, 9, 14, 0)
#define SYS_PMOVSSET_EL0 sys_reg(3, 3, 9, 14, 3)
#define SYS_TPIDR_EL0 sys_reg(3, 3, 13, 0, 2)
#define SYS_TPIDRRO_EL0 sys_reg(3, 3, 13, 0, 3)
#define SYS_TPIDR2_EL0 sys_reg(3, 3, 13, 0, 5)
#define SYS_SCXTNUM_EL0 sys_reg(3, 3, 13, 0, 7)
/* Definitions for system register interface to AMU for ARMv8.4 onwards */
#define SYS_AM_EL0(crm, op2) sys_reg(3, 3, 13, (crm), (op2))
#define SYS_AMCR_EL0 SYS_AM_EL0(2, 0)
#define SYS_AMCFGR_EL0 SYS_AM_EL0(2, 1)
#define SYS_AMCGCR_EL0 SYS_AM_EL0(2, 2)
#define SYS_AMUSERENR_EL0 SYS_AM_EL0(2, 3)
#define SYS_AMCNTENCLR0_EL0 SYS_AM_EL0(2, 4)
#define SYS_AMCNTENSET0_EL0 SYS_AM_EL0(2, 5)
#define SYS_AMCNTENCLR1_EL0 SYS_AM_EL0(3, 0)
#define SYS_AMCNTENSET1_EL0 SYS_AM_EL0(3, 1)
/*
* Group 0 of activity monitors (architected):
* op0 op1 CRn CRm op2
* Counter: 11 011 1101 010:n<3> n<2:0>
* Type: 11 011 1101 011:n<3> n<2:0>
* n: 0-15
*
* Group 1 of activity monitors (auxiliary):
* op0 op1 CRn CRm op2
* Counter: 11 011 1101 110:n<3> n<2:0>
* Type: 11 011 1101 111:n<3> n<2:0>
* n: 0-15
*/
#define SYS_AMEVCNTR0_EL0(n) SYS_AM_EL0(4 + ((n) >> 3), (n) & 7)
#define SYS_AMEVTYPER0_EL0(n) SYS_AM_EL0(6 + ((n) >> 3), (n) & 7)
#define SYS_AMEVCNTR1_EL0(n) SYS_AM_EL0(12 + ((n) >> 3), (n) & 7)
#define SYS_AMEVTYPER1_EL0(n) SYS_AM_EL0(14 + ((n) >> 3), (n) & 7)
/* AMU v1: Fixed (architecturally defined) activity monitors */
#define SYS_AMEVCNTR0_CORE_EL0 SYS_AMEVCNTR0_EL0(0)
#define SYS_AMEVCNTR0_CONST_EL0 SYS_AMEVCNTR0_EL0(1)
#define SYS_AMEVCNTR0_INST_RET_EL0 SYS_AMEVCNTR0_EL0(2)
#define SYS_AMEVCNTR0_MEM_STALL SYS_AMEVCNTR0_EL0(3)
#define SYS_CNTFRQ_EL0 sys_reg(3, 3, 14, 0, 0)
#define SYS_CNTPCT_EL0 sys_reg(3, 3, 14, 0, 1)
#define SYS_CNTPCTSS_EL0 sys_reg(3, 3, 14, 0, 5)
#define SYS_CNTVCTSS_EL0 sys_reg(3, 3, 14, 0, 6)
#define SYS_CNTP_TVAL_EL0 sys_reg(3, 3, 14, 2, 0)
#define SYS_CNTP_CTL_EL0 sys_reg(3, 3, 14, 2, 1)
#define SYS_CNTP_CVAL_EL0 sys_reg(3, 3, 14, 2, 2)
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 10:29:40 +00:00
#define SYS_CNTV_CTL_EL0 sys_reg(3, 3, 14, 3, 1)
#define SYS_CNTV_CVAL_EL0 sys_reg(3, 3, 14, 3, 2)
#define SYS_AARCH32_CNTP_TVAL sys_reg(0, 0, 14, 2, 0)
#define SYS_AARCH32_CNTP_CTL sys_reg(0, 0, 14, 2, 1)
#define SYS_AARCH32_CNTPCT sys_reg(0, 0, 0, 14, 0)
#define SYS_AARCH32_CNTP_CVAL sys_reg(0, 2, 0, 14, 0)
#define SYS_AARCH32_CNTPCTSS sys_reg(0, 8, 0, 14, 0)
#define __PMEV_op2(n) ((n) & 0x7)
#define __CNTR_CRm(n) (0x8 | (((n) >> 3) & 0x3))
#define SYS_PMEVCNTRn_EL0(n) sys_reg(3, 3, 14, __CNTR_CRm(n), __PMEV_op2(n))
#define __TYPER_CRm(n) (0xc | (((n) >> 3) & 0x3))
#define SYS_PMEVTYPERn_EL0(n) sys_reg(3, 3, 14, __TYPER_CRm(n), __PMEV_op2(n))
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 10:29:40 +00:00
#define SYS_PMCCFILTR_EL0 sys_reg(3, 3, 14, 15, 7)
#define SYS_VPIDR_EL2 sys_reg(3, 4, 0, 0, 0)
#define SYS_VMPIDR_EL2 sys_reg(3, 4, 0, 0, 5)
#define SYS_SCTLR_EL2 sys_reg(3, 4, 1, 0, 0)
#define SYS_ACTLR_EL2 sys_reg(3, 4, 1, 0, 1)
#define SYS_HCR_EL2 sys_reg(3, 4, 1, 1, 0)
#define SYS_MDCR_EL2 sys_reg(3, 4, 1, 1, 1)
#define SYS_CPTR_EL2 sys_reg(3, 4, 1, 1, 2)
#define SYS_HSTR_EL2 sys_reg(3, 4, 1, 1, 3)
#define SYS_HACR_EL2 sys_reg(3, 4, 1, 1, 7)
#define SYS_TTBR0_EL2 sys_reg(3, 4, 2, 0, 0)
#define SYS_TTBR1_EL2 sys_reg(3, 4, 2, 0, 1)
#define SYS_TCR_EL2 sys_reg(3, 4, 2, 0, 2)
#define SYS_VTTBR_EL2 sys_reg(3, 4, 2, 1, 0)
#define SYS_VTCR_EL2 sys_reg(3, 4, 2, 1, 2)
#define SYS_TRFCR_EL2 sys_reg(3, 4, 1, 2, 1)
#define SYS_HAFGRTR_EL2 sys_reg(3, 4, 3, 1, 6)
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 10:29:40 +00:00
#define SYS_SPSR_EL2 sys_reg(3, 4, 4, 0, 0)
#define SYS_ELR_EL2 sys_reg(3, 4, 4, 0, 1)
#define SYS_SP_EL1 sys_reg(3, 4, 4, 1, 0)
#define SYS_IFSR32_EL2 sys_reg(3, 4, 5, 0, 1)
#define SYS_AFSR0_EL2 sys_reg(3, 4, 5, 1, 0)
#define SYS_AFSR1_EL2 sys_reg(3, 4, 5, 1, 1)
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 10:29:40 +00:00
#define SYS_ESR_EL2 sys_reg(3, 4, 5, 2, 0)
#define SYS_VSESR_EL2 sys_reg(3, 4, 5, 2, 3)
#define SYS_FPEXC32_EL2 sys_reg(3, 4, 5, 3, 0)
#define SYS_TFSR_EL2 sys_reg(3, 4, 5, 6, 0)
#define SYS_FAR_EL2 sys_reg(3, 4, 6, 0, 0)
#define SYS_HPFAR_EL2 sys_reg(3, 4, 6, 0, 4)
#define SYS_MAIR_EL2 sys_reg(3, 4, 10, 2, 0)
#define SYS_AMAIR_EL2 sys_reg(3, 4, 10, 3, 0)
#define SYS_VBAR_EL2 sys_reg(3, 4, 12, 0, 0)
#define SYS_RVBAR_EL2 sys_reg(3, 4, 12, 0, 1)
#define SYS_RMR_EL2 sys_reg(3, 4, 12, 0, 2)
#define SYS_VDISR_EL2 sys_reg(3, 4, 12, 1, 1)
#define __SYS__AP0Rx_EL2(x) sys_reg(3, 4, 12, 8, x)
#define SYS_ICH_AP0R0_EL2 __SYS__AP0Rx_EL2(0)
#define SYS_ICH_AP0R1_EL2 __SYS__AP0Rx_EL2(1)
#define SYS_ICH_AP0R2_EL2 __SYS__AP0Rx_EL2(2)
#define SYS_ICH_AP0R3_EL2 __SYS__AP0Rx_EL2(3)
#define __SYS__AP1Rx_EL2(x) sys_reg(3, 4, 12, 9, x)
#define SYS_ICH_AP1R0_EL2 __SYS__AP1Rx_EL2(0)
#define SYS_ICH_AP1R1_EL2 __SYS__AP1Rx_EL2(1)
#define SYS_ICH_AP1R2_EL2 __SYS__AP1Rx_EL2(2)
#define SYS_ICH_AP1R3_EL2 __SYS__AP1Rx_EL2(3)
#define SYS_ICH_VSEIR_EL2 sys_reg(3, 4, 12, 9, 4)
#define SYS_ICC_SRE_EL2 sys_reg(3, 4, 12, 9, 5)
#define SYS_ICH_HCR_EL2 sys_reg(3, 4, 12, 11, 0)
#define SYS_ICH_VTR_EL2 sys_reg(3, 4, 12, 11, 1)
#define SYS_ICH_MISR_EL2 sys_reg(3, 4, 12, 11, 2)
#define SYS_ICH_EISR_EL2 sys_reg(3, 4, 12, 11, 3)
#define SYS_ICH_ELRSR_EL2 sys_reg(3, 4, 12, 11, 5)
#define SYS_ICH_VMCR_EL2 sys_reg(3, 4, 12, 11, 7)
#define __SYS__LR0_EL2(x) sys_reg(3, 4, 12, 12, x)
#define SYS_ICH_LR0_EL2 __SYS__LR0_EL2(0)
#define SYS_ICH_LR1_EL2 __SYS__LR0_EL2(1)
#define SYS_ICH_LR2_EL2 __SYS__LR0_EL2(2)
#define SYS_ICH_LR3_EL2 __SYS__LR0_EL2(3)
#define SYS_ICH_LR4_EL2 __SYS__LR0_EL2(4)
#define SYS_ICH_LR5_EL2 __SYS__LR0_EL2(5)
#define SYS_ICH_LR6_EL2 __SYS__LR0_EL2(6)
#define SYS_ICH_LR7_EL2 __SYS__LR0_EL2(7)
#define __SYS__LR8_EL2(x) sys_reg(3, 4, 12, 13, x)
#define SYS_ICH_LR8_EL2 __SYS__LR8_EL2(0)
#define SYS_ICH_LR9_EL2 __SYS__LR8_EL2(1)
#define SYS_ICH_LR10_EL2 __SYS__LR8_EL2(2)
#define SYS_ICH_LR11_EL2 __SYS__LR8_EL2(3)
#define SYS_ICH_LR12_EL2 __SYS__LR8_EL2(4)
#define SYS_ICH_LR13_EL2 __SYS__LR8_EL2(5)
#define SYS_ICH_LR14_EL2 __SYS__LR8_EL2(6)
#define SYS_ICH_LR15_EL2 __SYS__LR8_EL2(7)
#define SYS_CONTEXTIDR_EL2 sys_reg(3, 4, 13, 0, 1)
#define SYS_TPIDR_EL2 sys_reg(3, 4, 13, 0, 2)
#define SYS_CNTVOFF_EL2 sys_reg(3, 4, 14, 0, 3)
#define SYS_CNTHCTL_EL2 sys_reg(3, 4, 14, 1, 0)
KVM: arm64/sve: System register context switch and access support This patch adds the necessary support for context switching ZCR_EL1 for each vcpu. ZCR_EL1 is trapped alongside the FPSIMD/SVE registers, so it makes sense for it to be handled as part of the guest FPSIMD/SVE context for context switch purposes instead of handling it as a general system register. This means that it can be switched in lazily at the appropriate time. No effort is made to track host context for this register, since SVE requires VHE: thus the hosts's value for this register lives permanently in ZCR_EL2 and does not alias the guest's value at any time. The Hyp switch and fpsimd context handling code is extended appropriately. Accessors are added in sys_regs.c to expose the SVE system registers and ID register fields. Because these need to be conditionally visible based on the guest configuration, they are implemented separately for now rather than by use of the generic system register helpers. This may be abstracted better later on when/if there are more features requiring this model. ID_AA64ZFR0_EL1 is RO-RAZ for MRS/MSR when SVE is disabled for the guest, but for compatibility with non-SVE aware KVM implementations the register should not be enumerated at all for KVM_GET_REG_LIST in this case. For consistency we also reject ioctl access to the register. This ensures that a non-SVE-enabled guest looks the same to userspace, irrespective of whether the kernel KVM implementation supports SVE. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-09-28 13:39:16 +00:00
/* VHE encodings for architectural EL0/1 system registers */
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 10:29:40 +00:00
#define SYS_SCTLR_EL12 sys_reg(3, 5, 1, 0, 0)
#define SYS_TTBR0_EL12 sys_reg(3, 5, 2, 0, 0)
#define SYS_TTBR1_EL12 sys_reg(3, 5, 2, 0, 1)
#define SYS_TCR_EL12 sys_reg(3, 5, 2, 0, 2)
#define SYS_SPSR_EL12 sys_reg(3, 5, 4, 0, 0)
#define SYS_ELR_EL12 sys_reg(3, 5, 4, 0, 1)
#define SYS_AFSR0_EL12 sys_reg(3, 5, 5, 1, 0)
#define SYS_AFSR1_EL12 sys_reg(3, 5, 5, 1, 1)
#define SYS_ESR_EL12 sys_reg(3, 5, 5, 2, 0)
#define SYS_TFSR_EL12 sys_reg(3, 5, 5, 6, 0)
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 10:29:40 +00:00
#define SYS_MAIR_EL12 sys_reg(3, 5, 10, 2, 0)
#define SYS_AMAIR_EL12 sys_reg(3, 5, 10, 3, 0)
#define SYS_VBAR_EL12 sys_reg(3, 5, 12, 0, 0)
#define SYS_CNTKCTL_EL12 sys_reg(3, 5, 14, 1, 0)
#define SYS_CNTP_TVAL_EL02 sys_reg(3, 5, 14, 2, 0)
#define SYS_CNTP_CTL_EL02 sys_reg(3, 5, 14, 2, 1)
#define SYS_CNTP_CVAL_EL02 sys_reg(3, 5, 14, 2, 2)
#define SYS_CNTV_TVAL_EL02 sys_reg(3, 5, 14, 3, 0)
#define SYS_CNTV_CTL_EL02 sys_reg(3, 5, 14, 3, 1)
#define SYS_CNTV_CVAL_EL02 sys_reg(3, 5, 14, 3, 2)
KVM: arm64/sve: System register context switch and access support This patch adds the necessary support for context switching ZCR_EL1 for each vcpu. ZCR_EL1 is trapped alongside the FPSIMD/SVE registers, so it makes sense for it to be handled as part of the guest FPSIMD/SVE context for context switch purposes instead of handling it as a general system register. This means that it can be switched in lazily at the appropriate time. No effort is made to track host context for this register, since SVE requires VHE: thus the hosts's value for this register lives permanently in ZCR_EL2 and does not alias the guest's value at any time. The Hyp switch and fpsimd context handling code is extended appropriately. Accessors are added in sys_regs.c to expose the SVE system registers and ID register fields. Because these need to be conditionally visible based on the guest configuration, they are implemented separately for now rather than by use of the generic system register helpers. This may be abstracted better later on when/if there are more features requiring this model. ID_AA64ZFR0_EL1 is RO-RAZ for MRS/MSR when SVE is disabled for the guest, but for compatibility with non-SVE aware KVM implementations the register should not be enumerated at all for KVM_GET_REG_LIST in this case. For consistency we also reject ioctl access to the register. This ensures that a non-SVE-enabled guest looks the same to userspace, irrespective of whether the kernel KVM implementation supports SVE. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-09-28 13:39:16 +00:00
#define SYS_SP_EL2 sys_reg(3, 6, 4, 1, 0)
/* AT instructions */
#define AT_Op0 1
#define AT_CRn 7
#define OP_AT_S1E1R sys_insn(AT_Op0, 0, AT_CRn, 8, 0)
#define OP_AT_S1E1W sys_insn(AT_Op0, 0, AT_CRn, 8, 1)
#define OP_AT_S1E0R sys_insn(AT_Op0, 0, AT_CRn, 8, 2)
#define OP_AT_S1E0W sys_insn(AT_Op0, 0, AT_CRn, 8, 3)
#define OP_AT_S1E1RP sys_insn(AT_Op0, 0, AT_CRn, 9, 0)
#define OP_AT_S1E1WP sys_insn(AT_Op0, 0, AT_CRn, 9, 1)
#define OP_AT_S1E2R sys_insn(AT_Op0, 4, AT_CRn, 8, 0)
#define OP_AT_S1E2W sys_insn(AT_Op0, 4, AT_CRn, 8, 1)
#define OP_AT_S12E1R sys_insn(AT_Op0, 4, AT_CRn, 8, 4)
#define OP_AT_S12E1W sys_insn(AT_Op0, 4, AT_CRn, 8, 5)
#define OP_AT_S12E0R sys_insn(AT_Op0, 4, AT_CRn, 8, 6)
#define OP_AT_S12E0W sys_insn(AT_Op0, 4, AT_CRn, 8, 7)
/* TLBI instructions */
#define OP_TLBI_VMALLE1OS sys_insn(1, 0, 8, 1, 0)
#define OP_TLBI_VAE1OS sys_insn(1, 0, 8, 1, 1)
#define OP_TLBI_ASIDE1OS sys_insn(1, 0, 8, 1, 2)
#define OP_TLBI_VAAE1OS sys_insn(1, 0, 8, 1, 3)
#define OP_TLBI_VALE1OS sys_insn(1, 0, 8, 1, 5)
#define OP_TLBI_VAALE1OS sys_insn(1, 0, 8, 1, 7)
#define OP_TLBI_RVAE1IS sys_insn(1, 0, 8, 2, 1)
#define OP_TLBI_RVAAE1IS sys_insn(1, 0, 8, 2, 3)
#define OP_TLBI_RVALE1IS sys_insn(1, 0, 8, 2, 5)
#define OP_TLBI_RVAALE1IS sys_insn(1, 0, 8, 2, 7)
#define OP_TLBI_VMALLE1IS sys_insn(1, 0, 8, 3, 0)
#define OP_TLBI_VAE1IS sys_insn(1, 0, 8, 3, 1)
#define OP_TLBI_ASIDE1IS sys_insn(1, 0, 8, 3, 2)
#define OP_TLBI_VAAE1IS sys_insn(1, 0, 8, 3, 3)
#define OP_TLBI_VALE1IS sys_insn(1, 0, 8, 3, 5)
#define OP_TLBI_VAALE1IS sys_insn(1, 0, 8, 3, 7)
#define OP_TLBI_RVAE1OS sys_insn(1, 0, 8, 5, 1)
#define OP_TLBI_RVAAE1OS sys_insn(1, 0, 8, 5, 3)
#define OP_TLBI_RVALE1OS sys_insn(1, 0, 8, 5, 5)
#define OP_TLBI_RVAALE1OS sys_insn(1, 0, 8, 5, 7)
#define OP_TLBI_RVAE1 sys_insn(1, 0, 8, 6, 1)
#define OP_TLBI_RVAAE1 sys_insn(1, 0, 8, 6, 3)
#define OP_TLBI_RVALE1 sys_insn(1, 0, 8, 6, 5)
#define OP_TLBI_RVAALE1 sys_insn(1, 0, 8, 6, 7)
#define OP_TLBI_VMALLE1 sys_insn(1, 0, 8, 7, 0)
#define OP_TLBI_VAE1 sys_insn(1, 0, 8, 7, 1)
#define OP_TLBI_ASIDE1 sys_insn(1, 0, 8, 7, 2)
#define OP_TLBI_VAAE1 sys_insn(1, 0, 8, 7, 3)
#define OP_TLBI_VALE1 sys_insn(1, 0, 8, 7, 5)
#define OP_TLBI_VAALE1 sys_insn(1, 0, 8, 7, 7)
#define OP_TLBI_VMALLE1OSNXS sys_insn(1, 0, 9, 1, 0)
#define OP_TLBI_VAE1OSNXS sys_insn(1, 0, 9, 1, 1)
#define OP_TLBI_ASIDE1OSNXS sys_insn(1, 0, 9, 1, 2)
#define OP_TLBI_VAAE1OSNXS sys_insn(1, 0, 9, 1, 3)
#define OP_TLBI_VALE1OSNXS sys_insn(1, 0, 9, 1, 5)
#define OP_TLBI_VAALE1OSNXS sys_insn(1, 0, 9, 1, 7)
#define OP_TLBI_RVAE1ISNXS sys_insn(1, 0, 9, 2, 1)
#define OP_TLBI_RVAAE1ISNXS sys_insn(1, 0, 9, 2, 3)
#define OP_TLBI_RVALE1ISNXS sys_insn(1, 0, 9, 2, 5)
#define OP_TLBI_RVAALE1ISNXS sys_insn(1, 0, 9, 2, 7)
#define OP_TLBI_VMALLE1ISNXS sys_insn(1, 0, 9, 3, 0)
#define OP_TLBI_VAE1ISNXS sys_insn(1, 0, 9, 3, 1)
#define OP_TLBI_ASIDE1ISNXS sys_insn(1, 0, 9, 3, 2)
#define OP_TLBI_VAAE1ISNXS sys_insn(1, 0, 9, 3, 3)
#define OP_TLBI_VALE1ISNXS sys_insn(1, 0, 9, 3, 5)
#define OP_TLBI_VAALE1ISNXS sys_insn(1, 0, 9, 3, 7)
#define OP_TLBI_RVAE1OSNXS sys_insn(1, 0, 9, 5, 1)
#define OP_TLBI_RVAAE1OSNXS sys_insn(1, 0, 9, 5, 3)
#define OP_TLBI_RVALE1OSNXS sys_insn(1, 0, 9, 5, 5)
#define OP_TLBI_RVAALE1OSNXS sys_insn(1, 0, 9, 5, 7)
#define OP_TLBI_RVAE1NXS sys_insn(1, 0, 9, 6, 1)
#define OP_TLBI_RVAAE1NXS sys_insn(1, 0, 9, 6, 3)
#define OP_TLBI_RVALE1NXS sys_insn(1, 0, 9, 6, 5)
#define OP_TLBI_RVAALE1NXS sys_insn(1, 0, 9, 6, 7)
#define OP_TLBI_VMALLE1NXS sys_insn(1, 0, 9, 7, 0)
#define OP_TLBI_VAE1NXS sys_insn(1, 0, 9, 7, 1)
#define OP_TLBI_ASIDE1NXS sys_insn(1, 0, 9, 7, 2)
#define OP_TLBI_VAAE1NXS sys_insn(1, 0, 9, 7, 3)
#define OP_TLBI_VALE1NXS sys_insn(1, 0, 9, 7, 5)
#define OP_TLBI_VAALE1NXS sys_insn(1, 0, 9, 7, 7)
#define OP_TLBI_IPAS2E1IS sys_insn(1, 4, 8, 0, 1)
#define OP_TLBI_RIPAS2E1IS sys_insn(1, 4, 8, 0, 2)
#define OP_TLBI_IPAS2LE1IS sys_insn(1, 4, 8, 0, 5)
#define OP_TLBI_RIPAS2LE1IS sys_insn(1, 4, 8, 0, 6)
#define OP_TLBI_ALLE2OS sys_insn(1, 4, 8, 1, 0)
#define OP_TLBI_VAE2OS sys_insn(1, 4, 8, 1, 1)
#define OP_TLBI_ALLE1OS sys_insn(1, 4, 8, 1, 4)
#define OP_TLBI_VALE2OS sys_insn(1, 4, 8, 1, 5)
#define OP_TLBI_VMALLS12E1OS sys_insn(1, 4, 8, 1, 6)
#define OP_TLBI_RVAE2IS sys_insn(1, 4, 8, 2, 1)
#define OP_TLBI_RVALE2IS sys_insn(1, 4, 8, 2, 5)
#define OP_TLBI_ALLE2IS sys_insn(1, 4, 8, 3, 0)
#define OP_TLBI_VAE2IS sys_insn(1, 4, 8, 3, 1)
#define OP_TLBI_ALLE1IS sys_insn(1, 4, 8, 3, 4)
#define OP_TLBI_VALE2IS sys_insn(1, 4, 8, 3, 5)
#define OP_TLBI_VMALLS12E1IS sys_insn(1, 4, 8, 3, 6)
#define OP_TLBI_IPAS2E1OS sys_insn(1, 4, 8, 4, 0)
#define OP_TLBI_IPAS2E1 sys_insn(1, 4, 8, 4, 1)
#define OP_TLBI_RIPAS2E1 sys_insn(1, 4, 8, 4, 2)
#define OP_TLBI_RIPAS2E1OS sys_insn(1, 4, 8, 4, 3)
#define OP_TLBI_IPAS2LE1OS sys_insn(1, 4, 8, 4, 4)
#define OP_TLBI_IPAS2LE1 sys_insn(1, 4, 8, 4, 5)
#define OP_TLBI_RIPAS2LE1 sys_insn(1, 4, 8, 4, 6)
#define OP_TLBI_RIPAS2LE1OS sys_insn(1, 4, 8, 4, 7)
#define OP_TLBI_RVAE2OS sys_insn(1, 4, 8, 5, 1)
#define OP_TLBI_RVALE2OS sys_insn(1, 4, 8, 5, 5)
#define OP_TLBI_RVAE2 sys_insn(1, 4, 8, 6, 1)
#define OP_TLBI_RVALE2 sys_insn(1, 4, 8, 6, 5)
#define OP_TLBI_ALLE2 sys_insn(1, 4, 8, 7, 0)
#define OP_TLBI_VAE2 sys_insn(1, 4, 8, 7, 1)
#define OP_TLBI_ALLE1 sys_insn(1, 4, 8, 7, 4)
#define OP_TLBI_VALE2 sys_insn(1, 4, 8, 7, 5)
#define OP_TLBI_VMALLS12E1 sys_insn(1, 4, 8, 7, 6)
#define OP_TLBI_IPAS2E1ISNXS sys_insn(1, 4, 9, 0, 1)
#define OP_TLBI_RIPAS2E1ISNXS sys_insn(1, 4, 9, 0, 2)
#define OP_TLBI_IPAS2LE1ISNXS sys_insn(1, 4, 9, 0, 5)
#define OP_TLBI_RIPAS2LE1ISNXS sys_insn(1, 4, 9, 0, 6)
#define OP_TLBI_ALLE2OSNXS sys_insn(1, 4, 9, 1, 0)
#define OP_TLBI_VAE2OSNXS sys_insn(1, 4, 9, 1, 1)
#define OP_TLBI_ALLE1OSNXS sys_insn(1, 4, 9, 1, 4)
#define OP_TLBI_VALE2OSNXS sys_insn(1, 4, 9, 1, 5)
#define OP_TLBI_VMALLS12E1OSNXS sys_insn(1, 4, 9, 1, 6)
#define OP_TLBI_RVAE2ISNXS sys_insn(1, 4, 9, 2, 1)
#define OP_TLBI_RVALE2ISNXS sys_insn(1, 4, 9, 2, 5)
#define OP_TLBI_ALLE2ISNXS sys_insn(1, 4, 9, 3, 0)
#define OP_TLBI_VAE2ISNXS sys_insn(1, 4, 9, 3, 1)
#define OP_TLBI_ALLE1ISNXS sys_insn(1, 4, 9, 3, 4)
#define OP_TLBI_VALE2ISNXS sys_insn(1, 4, 9, 3, 5)
#define OP_TLBI_VMALLS12E1ISNXS sys_insn(1, 4, 9, 3, 6)
#define OP_TLBI_IPAS2E1OSNXS sys_insn(1, 4, 9, 4, 0)
#define OP_TLBI_IPAS2E1NXS sys_insn(1, 4, 9, 4, 1)
#define OP_TLBI_RIPAS2E1NXS sys_insn(1, 4, 9, 4, 2)
#define OP_TLBI_RIPAS2E1OSNXS sys_insn(1, 4, 9, 4, 3)
#define OP_TLBI_IPAS2LE1OSNXS sys_insn(1, 4, 9, 4, 4)
#define OP_TLBI_IPAS2LE1NXS sys_insn(1, 4, 9, 4, 5)
#define OP_TLBI_RIPAS2LE1NXS sys_insn(1, 4, 9, 4, 6)
#define OP_TLBI_RIPAS2LE1OSNXS sys_insn(1, 4, 9, 4, 7)
#define OP_TLBI_RVAE2OSNXS sys_insn(1, 4, 9, 5, 1)
#define OP_TLBI_RVALE2OSNXS sys_insn(1, 4, 9, 5, 5)
#define OP_TLBI_RVAE2NXS sys_insn(1, 4, 9, 6, 1)
#define OP_TLBI_RVALE2NXS sys_insn(1, 4, 9, 6, 5)
#define OP_TLBI_ALLE2NXS sys_insn(1, 4, 9, 7, 0)
#define OP_TLBI_VAE2NXS sys_insn(1, 4, 9, 7, 1)
#define OP_TLBI_ALLE1NXS sys_insn(1, 4, 9, 7, 4)
#define OP_TLBI_VALE2NXS sys_insn(1, 4, 9, 7, 5)
#define OP_TLBI_VMALLS12E1NXS sys_insn(1, 4, 9, 7, 6)
/* Misc instructions */
#define OP_BRB_IALL sys_insn(1, 1, 7, 2, 4)
#define OP_BRB_INJ sys_insn(1, 1, 7, 2, 5)
#define OP_CFP_RCTX sys_insn(1, 3, 7, 3, 4)
#define OP_DVP_RCTX sys_insn(1, 3, 7, 3, 5)
#define OP_CPP_RCTX sys_insn(1, 3, 7, 3, 7)
/* Common SCTLR_ELx flags. */
#define SCTLR_ELx_ENTP2 (BIT(60))
#define SCTLR_ELx_DSSBS (BIT(44))
#define SCTLR_ELx_ATA (BIT(43))
#define SCTLR_ELx_EE_SHIFT 25
arm64: Introduce prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) This change introduces a prctl that allows the user program to control which PAC keys are enabled in a particular task. The main reason why this is useful is to enable a userspace ABI that uses PAC to sign and authenticate function pointers and other pointers exposed outside of the function, while still allowing binaries conforming to the ABI to interoperate with legacy binaries that do not sign or authenticate pointers. The idea is that a dynamic loader or early startup code would issue this prctl very early after establishing that a process may load legacy binaries, but before executing any PAC instructions. This change adds a small amount of overhead to kernel entry and exit due to additional required instruction sequences. On a DragonBoard 845c (Cortex-A75) with the powersave governor, the overhead of similar instruction sequences was measured as 4.9ns when simulating the common case where IA is left enabled, or 43.7ns when simulating the uncommon case where IA is disabled. These numbers can be seen as the worst case scenario, since in more realistic scenarios a better performing governor would be used and a newer chip would be used that would support PAC unlike Cortex-A75 and would be expected to be faster than Cortex-A75. On an Apple M1 under a hypervisor, the overhead of the entry/exit instruction sequences introduced by this patch was measured as 0.3ns in the case where IA is left enabled, and 33.0ns in the case where IA is disabled. Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Link: https://linux-review.googlesource.com/id/Ibc41a5e6a76b275efbaa126b31119dc197b927a5 Link: https://lore.kernel.org/r/d6609065f8f40397a4124654eb68c9f490b4d477.1616123271.git.pcc@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-03-19 03:10:53 +00:00
#define SCTLR_ELx_ENIA_SHIFT 31
#define SCTLR_ELx_ITFSB (BIT(37))
#define SCTLR_ELx_ENIA (BIT(SCTLR_ELx_ENIA_SHIFT))
#define SCTLR_ELx_ENIB (BIT(30))
#define SCTLR_ELx_LSMAOE (BIT(29))
#define SCTLR_ELx_nTLSMD (BIT(28))
#define SCTLR_ELx_ENDA (BIT(27))
#define SCTLR_ELx_EE (BIT(SCTLR_ELx_EE_SHIFT))
#define SCTLR_ELx_EIS (BIT(22))
#define SCTLR_ELx_IESB (BIT(21))
#define SCTLR_ELx_TSCXT (BIT(20))
#define SCTLR_ELx_WXN (BIT(19))
#define SCTLR_ELx_ENDB (BIT(13))
#define SCTLR_ELx_I (BIT(12))
#define SCTLR_ELx_EOS (BIT(11))
#define SCTLR_ELx_SA (BIT(3))
#define SCTLR_ELx_C (BIT(2))
#define SCTLR_ELx_A (BIT(1))
#define SCTLR_ELx_M (BIT(0))
/* SCTLR_EL2 specific flags. */
#define SCTLR_EL2_RES1 ((BIT(4)) | (BIT(5)) | (BIT(11)) | (BIT(16)) | \
(BIT(18)) | (BIT(22)) | (BIT(23)) | (BIT(28)) | \
(BIT(29)))
#define SCTLR_EL2_BT (BIT(36))
#ifdef CONFIG_CPU_BIG_ENDIAN
#define ENDIAN_SET_EL2 SCTLR_ELx_EE
#else
#define ENDIAN_SET_EL2 0
#endif
#define INIT_SCTLR_EL2_MMU_ON \
(SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_SA | SCTLR_ELx_I | \
SCTLR_ELx_IESB | SCTLR_ELx_WXN | ENDIAN_SET_EL2 | \
SCTLR_ELx_ITFSB | SCTLR_EL2_RES1)
#define INIT_SCTLR_EL2_MMU_OFF \
(SCTLR_EL2_RES1 | ENDIAN_SET_EL2)
/* SCTLR_EL1 specific flags. */
#ifdef CONFIG_CPU_BIG_ENDIAN
#define ENDIAN_SET_EL1 (SCTLR_EL1_E0E | SCTLR_ELx_EE)
#else
#define ENDIAN_SET_EL1 0
#endif
#define INIT_SCTLR_EL1_MMU_OFF \
(ENDIAN_SET_EL1 | SCTLR_EL1_LSMAOE | SCTLR_EL1_nTLSMD | \
SCTLR_EL1_EIS | SCTLR_EL1_TSCXT | SCTLR_EL1_EOS)
#define INIT_SCTLR_EL1_MMU_ON \
(SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_SA | \
SCTLR_EL1_SA0 | SCTLR_EL1_SED | SCTLR_ELx_I | \
SCTLR_EL1_DZE | SCTLR_EL1_UCT | SCTLR_EL1_nTWE | \
SCTLR_ELx_IESB | SCTLR_EL1_SPAN | SCTLR_ELx_ITFSB | \
ENDIAN_SET_EL1 | SCTLR_EL1_UCI | SCTLR_EL1_EPAN | \
SCTLR_EL1_LSMAOE | SCTLR_EL1_nTLSMD | SCTLR_EL1_EIS | \
SCTLR_EL1_TSCXT | SCTLR_EL1_EOS)
/* MAIR_ELx memory attributes (used by Linux) */
#define MAIR_ATTR_DEVICE_nGnRnE UL(0x00)
#define MAIR_ATTR_DEVICE_nGnRE UL(0x04)
#define MAIR_ATTR_NORMAL_NC UL(0x44)
#define MAIR_ATTR_NORMAL_TAGGED UL(0xf0)
#define MAIR_ATTR_NORMAL UL(0xff)
#define MAIR_ATTR_MASK UL(0xff)
/* Position the attr at the correct index */
#define MAIR_ATTRIDX(attr, idx) ((attr) << ((idx) * 8))
/* id_aa64pfr0 */
#define ID_AA64PFR0_EL1_ELx_64BIT_ONLY 0x1
#define ID_AA64PFR0_EL1_ELx_32BIT_64BIT 0x2
/* id_aa64mmfr0 */
#define ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN 0x0
#define ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX 0x7
#define ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN 0x0
#define ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX 0x7
#define ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN 0x1
#define ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX 0xf
#define ARM64_MIN_PARANGE_BITS 32
#define ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_DEFAULT 0x0
#define ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_NONE 0x1
#define ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MIN 0x2
#define ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MAX 0x7
#ifdef CONFIG_ARM64_PA_BITS_52
#define ID_AA64MMFR0_EL1_PARANGE_MAX ID_AA64MMFR0_EL1_PARANGE_52
#else
#define ID_AA64MMFR0_EL1_PARANGE_MAX ID_AA64MMFR0_EL1_PARANGE_48
#endif
#if defined(CONFIG_ARM64_4K_PAGES)
#define ID_AA64MMFR0_EL1_TGRAN_SHIFT ID_AA64MMFR0_EL1_TGRAN4_SHIFT
#define ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN
#define ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX
#define ID_AA64MMFR0_EL1_TGRAN_2_SHIFT ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT
#elif defined(CONFIG_ARM64_16K_PAGES)
#define ID_AA64MMFR0_EL1_TGRAN_SHIFT ID_AA64MMFR0_EL1_TGRAN16_SHIFT
#define ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN
#define ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX
#define ID_AA64MMFR0_EL1_TGRAN_2_SHIFT ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT
#elif defined(CONFIG_ARM64_64K_PAGES)
#define ID_AA64MMFR0_EL1_TGRAN_SHIFT ID_AA64MMFR0_EL1_TGRAN64_SHIFT
#define ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN
#define ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX
#define ID_AA64MMFR0_EL1_TGRAN_2_SHIFT ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT
#endif
#define CPACR_EL1_FPEN_EL1EN (BIT(20)) /* enable EL1 access */
#define CPACR_EL1_FPEN_EL0EN (BIT(21)) /* enable EL0 access, if EL1EN set */
#define CPACR_EL1_SMEN_EL1EN (BIT(24)) /* enable EL1 access */
#define CPACR_EL1_SMEN_EL0EN (BIT(25)) /* enable EL0 access, if EL1EN set */
#define CPACR_EL1_ZEN_EL1EN (BIT(16)) /* enable EL1 access */
#define CPACR_EL1_ZEN_EL0EN (BIT(17)) /* enable EL0 access, if EL1EN set */
/* GCR_EL1 Definitions */
#define SYS_GCR_EL1_RRND (BIT(16))
#define SYS_GCR_EL1_EXCL_MASK 0xffffUL
arm64: kasan: mte: use a constant kernel GCR_EL1 value When KASAN_HW_TAGS is selected, KASAN is enabled at boot time, and the hardware supports MTE, we'll initialize `kernel_gcr_excl` with a value dependent on KASAN_TAG_MAX. While the resulting value is a constant which depends on KASAN_TAG_MAX, we have to perform some runtime work to generate the value, and have to read the value from memory during the exception entry path. It would be better if we could generate this as a constant at compile-time, and use it as such directly. Early in boot within __cpu_setup(), we initialize GCR_EL1 to a safe value, and later override this with the value required by KASAN. If CONFIG_KASAN_HW_TAGS is not selected, or if KASAN is disabeld at boot time, the kernel will not use IRG instructions, and so the initial value of GCR_EL1 is does not matter to the kernel. Thus, we can instead have __cpu_setup() initialize GCR_EL1 to a value consistent with KASAN_TAG_MAX, and avoid the need to re-initialize it during hotplug and resume form suspend. This patch makes arem64 use a compile-time constant KERNEL_GCR_EL1 value, which is compatible with KASAN_HW_TAGS when this is selected. This removes the need to re-initialize GCR_EL1 dynamically, and acts as an optimization to the entry assembly, which no longer needs to load this value from memory. The redundant initialization hooks are removed. In order to do this, KASAN_TAG_MAX needs to be visible outside of the core KASAN code. To do this, I've moved the KASAN_TAG_* values into <linux/kasan-tags.h>. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Tested-by: Andrey Konovalov <andreyknvl@gmail.com> Link: https://lore.kernel.org/r/20210714143843.56537-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-07-14 14:38:42 +00:00
#ifdef CONFIG_KASAN_HW_TAGS
/*
* KASAN always uses a whole byte for its tags. With CONFIG_KASAN_HW_TAGS it
* only uses tags in the range 0xF0-0xFF, which we map to MTE tags 0x0-0xF.
*/
#define __MTE_TAG_MIN (KASAN_TAG_MIN & 0xf)
#define __MTE_TAG_MAX (KASAN_TAG_MAX & 0xf)
#define __MTE_TAG_INCL GENMASK(__MTE_TAG_MAX, __MTE_TAG_MIN)
#define KERNEL_GCR_EL1_EXCL (SYS_GCR_EL1_EXCL_MASK & ~__MTE_TAG_INCL)
#else
#define KERNEL_GCR_EL1_EXCL SYS_GCR_EL1_EXCL_MASK
#endif
#define KERNEL_GCR_EL1 (SYS_GCR_EL1_RRND | KERNEL_GCR_EL1_EXCL)
/* RGSR_EL1 Definitions */
#define SYS_RGSR_EL1_TAG_MASK 0xfUL
#define SYS_RGSR_EL1_SEED_SHIFT 8
#define SYS_RGSR_EL1_SEED_MASK 0xffffUL
/* TFSR{,E0}_EL1 bit definitions */
#define SYS_TFSR_EL1_TF0_SHIFT 0
#define SYS_TFSR_EL1_TF1_SHIFT 1
#define SYS_TFSR_EL1_TF0 (UL(1) << SYS_TFSR_EL1_TF0_SHIFT)
#define SYS_TFSR_EL1_TF1 (UL(1) << SYS_TFSR_EL1_TF1_SHIFT)
/* Safe value for MPIDR_EL1: Bit31:RES1, Bit30:U:0, Bit24:MT:0 */
#define SYS_MPIDR_SAFE_VAL (BIT(31))
#define TRFCR_ELx_TS_SHIFT 5
#define TRFCR_ELx_TS_MASK ((0x3UL) << TRFCR_ELx_TS_SHIFT)
#define TRFCR_ELx_TS_VIRTUAL ((0x1UL) << TRFCR_ELx_TS_SHIFT)
#define TRFCR_ELx_TS_GUEST_PHYSICAL ((0x2UL) << TRFCR_ELx_TS_SHIFT)
#define TRFCR_ELx_TS_PHYSICAL ((0x3UL) << TRFCR_ELx_TS_SHIFT)
#define TRFCR_EL2_CX BIT(3)
#define TRFCR_ELx_ExTRE BIT(1)
#define TRFCR_ELx_E0TRE BIT(0)
/* GIC Hypervisor interface registers */
/* ICH_MISR_EL2 bit definitions */
#define ICH_MISR_EOI (1 << 0)
#define ICH_MISR_U (1 << 1)
/* ICH_LR*_EL2 bit definitions */
#define ICH_LR_VIRTUAL_ID_MASK ((1ULL << 32) - 1)
#define ICH_LR_EOI (1ULL << 41)
#define ICH_LR_GROUP (1ULL << 60)
#define ICH_LR_HW (1ULL << 61)
#define ICH_LR_STATE (3ULL << 62)
#define ICH_LR_PENDING_BIT (1ULL << 62)
#define ICH_LR_ACTIVE_BIT (1ULL << 63)
#define ICH_LR_PHYS_ID_SHIFT 32
#define ICH_LR_PHYS_ID_MASK (0x3ffULL << ICH_LR_PHYS_ID_SHIFT)
#define ICH_LR_PRIORITY_SHIFT 48
#define ICH_LR_PRIORITY_MASK (0xffULL << ICH_LR_PRIORITY_SHIFT)
/* ICH_HCR_EL2 bit definitions */
#define ICH_HCR_EN (1 << 0)
#define ICH_HCR_UIE (1 << 1)
#define ICH_HCR_NPIE (1 << 3)
#define ICH_HCR_TC (1 << 10)
#define ICH_HCR_TALL0 (1 << 11)
#define ICH_HCR_TALL1 (1 << 12)
KVM: arm64: vgic-v3: Reduce common group trapping to ICV_DIR_EL1 when possible On systems that advertise ICH_VTR_EL2.SEIS, we trap all GICv3 sysreg accesses from the guest. From a performance perspective, this is OK as long as the guest doesn't hammer the GICv3 CPU interface. In most cases, this is fine, unless the guest actively uses priorities and switches PMR_EL1 very often. Which is exactly what happens when a Linux guest runs with irqchip.gicv3_pseudo_nmi=1. In these condition, the performance plumets as we hit PMR each time we mask/unmask interrupts. Not good. There is however an opportunity for improvement. Careful reading of the architecture specification indicates that the only GICv3 sysreg belonging to the common group (which contains the SGI registers, PMR, DIR, CTLR and RPR) that is allowed to generate a SError is DIR. Everything else is safe. It is thus possible to substitute the trapping of all the common group with just that of DIR if it supported by the implementation. Yes, that's yet another optional bit of the architecture. So let's just do that, as it leads to some impressive result on the M1: Without this change: bash-5.1# /host/home/maz/hackbench 100 process 1000 Running with 100*40 (== 4000) tasks. Time: 56.596 With this change: bash-5.1# /host/home/maz/hackbench 100 process 1000 Running with 100*40 (== 4000) tasks. Time: 8.649 which is a pretty convincing result. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com> Link: https://lore.kernel.org/r/20211010150910.2911495-4-maz@kernel.org
2021-10-10 15:09:08 +00:00
#define ICH_HCR_TDIR (1 << 14)
#define ICH_HCR_EOIcount_SHIFT 27
#define ICH_HCR_EOIcount_MASK (0x1f << ICH_HCR_EOIcount_SHIFT)
/* ICH_VMCR_EL2 bit definitions */
#define ICH_VMCR_ACK_CTL_SHIFT 2
#define ICH_VMCR_ACK_CTL_MASK (1 << ICH_VMCR_ACK_CTL_SHIFT)
#define ICH_VMCR_FIQ_EN_SHIFT 3
#define ICH_VMCR_FIQ_EN_MASK (1 << ICH_VMCR_FIQ_EN_SHIFT)
#define ICH_VMCR_CBPR_SHIFT 4
#define ICH_VMCR_CBPR_MASK (1 << ICH_VMCR_CBPR_SHIFT)
#define ICH_VMCR_EOIM_SHIFT 9
#define ICH_VMCR_EOIM_MASK (1 << ICH_VMCR_EOIM_SHIFT)
#define ICH_VMCR_BPR1_SHIFT 18
#define ICH_VMCR_BPR1_MASK (7 << ICH_VMCR_BPR1_SHIFT)
#define ICH_VMCR_BPR0_SHIFT 21
#define ICH_VMCR_BPR0_MASK (7 << ICH_VMCR_BPR0_SHIFT)
#define ICH_VMCR_PMR_SHIFT 24
#define ICH_VMCR_PMR_MASK (0xffUL << ICH_VMCR_PMR_SHIFT)
#define ICH_VMCR_ENG0_SHIFT 0
#define ICH_VMCR_ENG0_MASK (1 << ICH_VMCR_ENG0_SHIFT)
#define ICH_VMCR_ENG1_SHIFT 1
#define ICH_VMCR_ENG1_MASK (1 << ICH_VMCR_ENG1_SHIFT)
/* ICH_VTR_EL2 bit definitions */
#define ICH_VTR_PRI_BITS_SHIFT 29
#define ICH_VTR_PRI_BITS_MASK (7 << ICH_VTR_PRI_BITS_SHIFT)
#define ICH_VTR_ID_BITS_SHIFT 23
#define ICH_VTR_ID_BITS_MASK (7 << ICH_VTR_ID_BITS_SHIFT)
#define ICH_VTR_SEIS_SHIFT 22
#define ICH_VTR_SEIS_MASK (1 << ICH_VTR_SEIS_SHIFT)
#define ICH_VTR_A3V_SHIFT 21
#define ICH_VTR_A3V_MASK (1 << ICH_VTR_A3V_SHIFT)
KVM: arm64: vgic-v3: Reduce common group trapping to ICV_DIR_EL1 when possible On systems that advertise ICH_VTR_EL2.SEIS, we trap all GICv3 sysreg accesses from the guest. From a performance perspective, this is OK as long as the guest doesn't hammer the GICv3 CPU interface. In most cases, this is fine, unless the guest actively uses priorities and switches PMR_EL1 very often. Which is exactly what happens when a Linux guest runs with irqchip.gicv3_pseudo_nmi=1. In these condition, the performance plumets as we hit PMR each time we mask/unmask interrupts. Not good. There is however an opportunity for improvement. Careful reading of the architecture specification indicates that the only GICv3 sysreg belonging to the common group (which contains the SGI registers, PMR, DIR, CTLR and RPR) that is allowed to generate a SError is DIR. Everything else is safe. It is thus possible to substitute the trapping of all the common group with just that of DIR if it supported by the implementation. Yes, that's yet another optional bit of the architecture. So let's just do that, as it leads to some impressive result on the M1: Without this change: bash-5.1# /host/home/maz/hackbench 100 process 1000 Running with 100*40 (== 4000) tasks. Time: 56.596 With this change: bash-5.1# /host/home/maz/hackbench 100 process 1000 Running with 100*40 (== 4000) tasks. Time: 8.649 which is a pretty convincing result. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com> Link: https://lore.kernel.org/r/20211010150910.2911495-4-maz@kernel.org
2021-10-10 15:09:08 +00:00
#define ICH_VTR_TDS_SHIFT 19
#define ICH_VTR_TDS_MASK (1 << ICH_VTR_TDS_SHIFT)
/*
* Permission Indirection Extension (PIE) permission encodings.
* Encodings with the _O suffix, have overlays applied (Permission Overlay Extension).
*/
#define PIE_NONE_O 0x0
#define PIE_R_O 0x1
#define PIE_X_O 0x2
#define PIE_RX_O 0x3
#define PIE_RW_O 0x5
#define PIE_RWnX_O 0x6
#define PIE_RWX_O 0x7
#define PIE_R 0x8
#define PIE_GCS 0x9
#define PIE_RX 0xa
#define PIE_RW 0xc
#define PIE_RWX 0xe
#define PIRx_ELx_PERM(idx, perm) ((perm) << ((idx) * 4))
#define ARM64_FEATURE_FIELD_BITS 4
/* Defined for compatibility only, do not add new users. */
#define ARM64_FEATURE_MASK(x) (x##_MASK)
#ifdef __ASSEMBLY__
.macro mrs_s, rt, sreg
__emit_inst(0xd5200000|(\sreg)|(.L__gpr_num_\rt))
.endm
.macro msr_s, sreg, rt
__emit_inst(0xd5000000|(\sreg)|(.L__gpr_num_\rt))
.endm
#else
#include <linux/bitfield.h>
#include <linux/build_bug.h>
#include <linux/types.h>
#include <asm/alternative.h>
arm64: sysreg: Make mrs_s and msr_s macros work with Clang and LTO Clang's integrated assembler does not allow assembly macros defined in one inline asm block using the .macro directive to be used across separate asm blocks. LLVM developers consider this a feature and not a bug, recommending code refactoring: https://bugs.llvm.org/show_bug.cgi?id=19749 As binutils doesn't allow macros to be redefined, this change uses UNDEFINE_MRS_S and UNDEFINE_MSR_S to define corresponding macros in-place and workaround gcc and clang limitations on redefining macros across different assembler blocks. Specifically, the current state after preprocessing looks like this: asm volatile(".macro mXX_s ... .endm"); void f() { asm volatile("mXX_s a, b"); } With GCC, it gives macro redefinition error because sysreg.h is included in multiple source files, and assembler code for all of them is later combined for LTO (I've seen an intermediate file with hundreds of identical definitions). With clang, it gives macro undefined error because clang doesn't allow sharing macros between inline asm statements. I also seem to remember catching another sort of undefined error with GCC due to reordering of macro definition asm statement and generated asm code for function that uses the macro. The solution with defining and undefining for each use, while certainly not elegant, satisfies both GCC and clang, LTO and non-LTO. Co-developed-by: Alex Matveev <alxmtvv@gmail.com> Co-developed-by: Yury Norov <ynorov@caviumnetworks.com> Co-developed-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-24 16:55:37 +00:00
#define DEFINE_MRS_S \
__DEFINE_ASM_GPR_NUMS \
arm64: sysreg: Make mrs_s and msr_s macros work with Clang and LTO Clang's integrated assembler does not allow assembly macros defined in one inline asm block using the .macro directive to be used across separate asm blocks. LLVM developers consider this a feature and not a bug, recommending code refactoring: https://bugs.llvm.org/show_bug.cgi?id=19749 As binutils doesn't allow macros to be redefined, this change uses UNDEFINE_MRS_S and UNDEFINE_MSR_S to define corresponding macros in-place and workaround gcc and clang limitations on redefining macros across different assembler blocks. Specifically, the current state after preprocessing looks like this: asm volatile(".macro mXX_s ... .endm"); void f() { asm volatile("mXX_s a, b"); } With GCC, it gives macro redefinition error because sysreg.h is included in multiple source files, and assembler code for all of them is later combined for LTO (I've seen an intermediate file with hundreds of identical definitions). With clang, it gives macro undefined error because clang doesn't allow sharing macros between inline asm statements. I also seem to remember catching another sort of undefined error with GCC due to reordering of macro definition asm statement and generated asm code for function that uses the macro. The solution with defining and undefining for each use, while certainly not elegant, satisfies both GCC and clang, LTO and non-LTO. Co-developed-by: Alex Matveev <alxmtvv@gmail.com> Co-developed-by: Yury Norov <ynorov@caviumnetworks.com> Co-developed-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-24 16:55:37 +00:00
" .macro mrs_s, rt, sreg\n" \
__emit_inst(0xd5200000|(\\sreg)|(.L__gpr_num_\\rt)) \
" .endm\n"
arm64: sysreg: Make mrs_s and msr_s macros work with Clang and LTO Clang's integrated assembler does not allow assembly macros defined in one inline asm block using the .macro directive to be used across separate asm blocks. LLVM developers consider this a feature and not a bug, recommending code refactoring: https://bugs.llvm.org/show_bug.cgi?id=19749 As binutils doesn't allow macros to be redefined, this change uses UNDEFINE_MRS_S and UNDEFINE_MSR_S to define corresponding macros in-place and workaround gcc and clang limitations on redefining macros across different assembler blocks. Specifically, the current state after preprocessing looks like this: asm volatile(".macro mXX_s ... .endm"); void f() { asm volatile("mXX_s a, b"); } With GCC, it gives macro redefinition error because sysreg.h is included in multiple source files, and assembler code for all of them is later combined for LTO (I've seen an intermediate file with hundreds of identical definitions). With clang, it gives macro undefined error because clang doesn't allow sharing macros between inline asm statements. I also seem to remember catching another sort of undefined error with GCC due to reordering of macro definition asm statement and generated asm code for function that uses the macro. The solution with defining and undefining for each use, while certainly not elegant, satisfies both GCC and clang, LTO and non-LTO. Co-developed-by: Alex Matveev <alxmtvv@gmail.com> Co-developed-by: Yury Norov <ynorov@caviumnetworks.com> Co-developed-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-24 16:55:37 +00:00
#define DEFINE_MSR_S \
__DEFINE_ASM_GPR_NUMS \
arm64: sysreg: Make mrs_s and msr_s macros work with Clang and LTO Clang's integrated assembler does not allow assembly macros defined in one inline asm block using the .macro directive to be used across separate asm blocks. LLVM developers consider this a feature and not a bug, recommending code refactoring: https://bugs.llvm.org/show_bug.cgi?id=19749 As binutils doesn't allow macros to be redefined, this change uses UNDEFINE_MRS_S and UNDEFINE_MSR_S to define corresponding macros in-place and workaround gcc and clang limitations on redefining macros across different assembler blocks. Specifically, the current state after preprocessing looks like this: asm volatile(".macro mXX_s ... .endm"); void f() { asm volatile("mXX_s a, b"); } With GCC, it gives macro redefinition error because sysreg.h is included in multiple source files, and assembler code for all of them is later combined for LTO (I've seen an intermediate file with hundreds of identical definitions). With clang, it gives macro undefined error because clang doesn't allow sharing macros between inline asm statements. I also seem to remember catching another sort of undefined error with GCC due to reordering of macro definition asm statement and generated asm code for function that uses the macro. The solution with defining and undefining for each use, while certainly not elegant, satisfies both GCC and clang, LTO and non-LTO. Co-developed-by: Alex Matveev <alxmtvv@gmail.com> Co-developed-by: Yury Norov <ynorov@caviumnetworks.com> Co-developed-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-24 16:55:37 +00:00
" .macro msr_s, sreg, rt\n" \
__emit_inst(0xd5000000|(\\sreg)|(.L__gpr_num_\\rt)) \
" .endm\n"
arm64: sysreg: Make mrs_s and msr_s macros work with Clang and LTO Clang's integrated assembler does not allow assembly macros defined in one inline asm block using the .macro directive to be used across separate asm blocks. LLVM developers consider this a feature and not a bug, recommending code refactoring: https://bugs.llvm.org/show_bug.cgi?id=19749 As binutils doesn't allow macros to be redefined, this change uses UNDEFINE_MRS_S and UNDEFINE_MSR_S to define corresponding macros in-place and workaround gcc and clang limitations on redefining macros across different assembler blocks. Specifically, the current state after preprocessing looks like this: asm volatile(".macro mXX_s ... .endm"); void f() { asm volatile("mXX_s a, b"); } With GCC, it gives macro redefinition error because sysreg.h is included in multiple source files, and assembler code for all of them is later combined for LTO (I've seen an intermediate file with hundreds of identical definitions). With clang, it gives macro undefined error because clang doesn't allow sharing macros between inline asm statements. I also seem to remember catching another sort of undefined error with GCC due to reordering of macro definition asm statement and generated asm code for function that uses the macro. The solution with defining and undefining for each use, while certainly not elegant, satisfies both GCC and clang, LTO and non-LTO. Co-developed-by: Alex Matveev <alxmtvv@gmail.com> Co-developed-by: Yury Norov <ynorov@caviumnetworks.com> Co-developed-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-24 16:55:37 +00:00
#define UNDEFINE_MRS_S \
" .purgem mrs_s\n"
#define UNDEFINE_MSR_S \
" .purgem msr_s\n"
#define __mrs_s(v, r) \
DEFINE_MRS_S \
" mrs_s " v ", " __stringify(r) "\n" \
UNDEFINE_MRS_S
#define __msr_s(r, v) \
DEFINE_MSR_S \
" msr_s " __stringify(r) ", " v "\n" \
UNDEFINE_MSR_S
/*
* Unlike read_cpuid, calls to read_sysreg are never expected to be
* optimized away or replaced with synthetic values.
*/
#define read_sysreg(r) ({ \
u64 __val; \
asm volatile("mrs %0, " __stringify(r) : "=r" (__val)); \
__val; \
})
/*
* The "Z" constraint normally means a zero immediate, but when combined with
* the "%x0" template means XZR.
*/
#define write_sysreg(v, r) do { \
u64 __val = (u64)(v); \
asm volatile("msr " __stringify(r) ", %x0" \
: : "rZ" (__val)); \
} while (0)
/*
* For registers without architectural names, or simply unsupported by
* GAS.
*
* __check_r forces warnings to be generated by the compiler when
* evaluating r which wouldn't normally happen due to being passed to
* the assembler via __stringify(r).
*/
#define read_sysreg_s(r) ({ \
u64 __val; \
u32 __maybe_unused __check_r = (u32)(r); \
arm64: sysreg: Make mrs_s and msr_s macros work with Clang and LTO Clang's integrated assembler does not allow assembly macros defined in one inline asm block using the .macro directive to be used across separate asm blocks. LLVM developers consider this a feature and not a bug, recommending code refactoring: https://bugs.llvm.org/show_bug.cgi?id=19749 As binutils doesn't allow macros to be redefined, this change uses UNDEFINE_MRS_S and UNDEFINE_MSR_S to define corresponding macros in-place and workaround gcc and clang limitations on redefining macros across different assembler blocks. Specifically, the current state after preprocessing looks like this: asm volatile(".macro mXX_s ... .endm"); void f() { asm volatile("mXX_s a, b"); } With GCC, it gives macro redefinition error because sysreg.h is included in multiple source files, and assembler code for all of them is later combined for LTO (I've seen an intermediate file with hundreds of identical definitions). With clang, it gives macro undefined error because clang doesn't allow sharing macros between inline asm statements. I also seem to remember catching another sort of undefined error with GCC due to reordering of macro definition asm statement and generated asm code for function that uses the macro. The solution with defining and undefining for each use, while certainly not elegant, satisfies both GCC and clang, LTO and non-LTO. Co-developed-by: Alex Matveev <alxmtvv@gmail.com> Co-developed-by: Yury Norov <ynorov@caviumnetworks.com> Co-developed-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-24 16:55:37 +00:00
asm volatile(__mrs_s("%0", r) : "=r" (__val)); \
__val; \
})
#define write_sysreg_s(v, r) do { \
u64 __val = (u64)(v); \
u32 __maybe_unused __check_r = (u32)(r); \
arm64: sysreg: Make mrs_s and msr_s macros work with Clang and LTO Clang's integrated assembler does not allow assembly macros defined in one inline asm block using the .macro directive to be used across separate asm blocks. LLVM developers consider this a feature and not a bug, recommending code refactoring: https://bugs.llvm.org/show_bug.cgi?id=19749 As binutils doesn't allow macros to be redefined, this change uses UNDEFINE_MRS_S and UNDEFINE_MSR_S to define corresponding macros in-place and workaround gcc and clang limitations on redefining macros across different assembler blocks. Specifically, the current state after preprocessing looks like this: asm volatile(".macro mXX_s ... .endm"); void f() { asm volatile("mXX_s a, b"); } With GCC, it gives macro redefinition error because sysreg.h is included in multiple source files, and assembler code for all of them is later combined for LTO (I've seen an intermediate file with hundreds of identical definitions). With clang, it gives macro undefined error because clang doesn't allow sharing macros between inline asm statements. I also seem to remember catching another sort of undefined error with GCC due to reordering of macro definition asm statement and generated asm code for function that uses the macro. The solution with defining and undefining for each use, while certainly not elegant, satisfies both GCC and clang, LTO and non-LTO. Co-developed-by: Alex Matveev <alxmtvv@gmail.com> Co-developed-by: Yury Norov <ynorov@caviumnetworks.com> Co-developed-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-24 16:55:37 +00:00
asm volatile(__msr_s(r, "%x0") : : "rZ" (__val)); \
} while (0)
/*
* Modify bits in a sysreg. Bits in the clear mask are zeroed, then bits in the
* set mask are set. Other bits are left as-is.
*/
#define sysreg_clear_set(sysreg, clear, set) do { \
u64 __scs_val = read_sysreg(sysreg); \
u64 __scs_new = (__scs_val & ~(u64)(clear)) | (set); \
if (__scs_new != __scs_val) \
write_sysreg(__scs_new, sysreg); \
} while (0)
#define sysreg_clear_set_s(sysreg, clear, set) do { \
u64 __scs_val = read_sysreg_s(sysreg); \
u64 __scs_new = (__scs_val & ~(u64)(clear)) | (set); \
if (__scs_new != __scs_val) \
write_sysreg_s(__scs_new, sysreg); \
} while (0)
#define read_sysreg_par() ({ \
u64 par; \
asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); \
par = read_sysreg(par_el1); \
asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); \
par; \
})
#define SYS_FIELD_GET(reg, field, val) \
FIELD_GET(reg##_##field##_MASK, val)
#define SYS_FIELD_PREP(reg, field, val) \
FIELD_PREP(reg##_##field##_MASK, val)
#define SYS_FIELD_PREP_ENUM(reg, field, val) \
FIELD_PREP(reg##_##field##_MASK, reg##_##field##_##val)
#endif
#endif /* __ASM_SYSREG_H */