License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2006-07-03 07:24:29 +00:00
|
|
|
/* kernel/rwsem.c: R/W semaphores, public implementation
|
|
|
|
*
|
|
|
|
* Written by David Howells (dhowells@redhat.com).
|
|
|
|
* Derived from asm-i386/semaphore.h
|
2019-05-20 20:59:03 +00:00
|
|
|
*
|
|
|
|
* Writer lock-stealing by Alex Shi <alex.shi@intel.com>
|
|
|
|
* and Michel Lespinasse <walken@google.com>
|
|
|
|
*
|
|
|
|
* Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
|
|
|
|
* and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
|
|
|
|
*
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
* Rwsem count bit fields re-definition and rwsem rearchitecture by
|
|
|
|
* Waiman Long <longman@redhat.com> and
|
|
|
|
* Peter Zijlstra <peterz@infradead.org>.
|
2006-07-03 07:24:29 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
2007-12-18 14:21:13 +00:00
|
|
|
#include <linux/sched.h>
|
2019-05-20 20:59:03 +00:00
|
|
|
#include <linux/sched/rt.h>
|
|
|
|
#include <linux/sched/task.h>
|
2017-02-08 17:51:35 +00:00
|
|
|
#include <linux/sched/debug.h>
|
2019-05-20 20:59:03 +00:00
|
|
|
#include <linux/sched/wake_q.h>
|
|
|
|
#include <linux/sched/signal.h>
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
#include <linux/sched/clock.h>
|
2011-05-23 18:51:41 +00:00
|
|
|
#include <linux/export.h>
|
2006-07-03 07:24:29 +00:00
|
|
|
#include <linux/rwsem.h>
|
2011-07-26 23:09:06 +00:00
|
|
|
#include <linux/atomic.h>
|
2006-07-03 07:24:29 +00:00
|
|
|
|
2015-01-30 09:14:25 +00:00
|
|
|
#include "rwsem.h"
|
2019-05-20 20:59:03 +00:00
|
|
|
#include "lock_events.h"
|
|
|
|
|
|
|
|
/*
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
* The least significant 3 bits of the owner value has the following
|
2019-05-20 20:59:03 +00:00
|
|
|
* meanings when set.
|
2019-05-20 20:59:10 +00:00
|
|
|
* - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
* - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock.
|
|
|
|
* - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock.
|
2019-05-20 20:59:03 +00:00
|
|
|
*
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
* When the rwsem is either owned by an anonymous writer, or it is
|
|
|
|
* reader-owned, but a spinning writer has timed out, both nonspinnable
|
|
|
|
* bits will be set to disable optimistic spinning by readers and writers.
|
|
|
|
* In the later case, the last unlocking reader should then check the
|
|
|
|
* writer nonspinnable bit and clear it only to give writers preference
|
|
|
|
* to acquire the lock via optimistic spinning, but not readers. Similar
|
|
|
|
* action is also done in the reader slowpath.
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
* When a writer acquires a rwsem, it puts its task_struct pointer
|
|
|
|
* into the owner field. It is cleared after an unlock.
|
|
|
|
*
|
|
|
|
* When a reader acquires a rwsem, it will also puts its task_struct
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
* pointer into the owner field with the RWSEM_READER_OWNED bit set.
|
|
|
|
* On unlock, the owner field will largely be left untouched. So
|
|
|
|
* for a free or reader-owned rwsem, the owner value may contain
|
|
|
|
* information about the last reader that acquires the rwsem.
|
2019-05-20 20:59:03 +00:00
|
|
|
*
|
|
|
|
* That information may be helpful in debugging cases where the system
|
|
|
|
* seems to hang on a reader owned rwsem especially if only one reader
|
|
|
|
* is involved. Ideally we would like to track all the readers that own
|
|
|
|
* a rwsem, but the overhead is simply too big.
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
*
|
|
|
|
* Reader optimistic spinning is helpful when the reader critical section
|
|
|
|
* is short and there aren't that many readers around. It makes readers
|
|
|
|
* relatively more preferred than writers. When a writer times out spinning
|
|
|
|
* on a reader-owned lock and set the nospinnable bits, there are two main
|
|
|
|
* reasons for that.
|
|
|
|
*
|
|
|
|
* 1) The reader critical section is long, perhaps the task sleeps after
|
|
|
|
* acquiring the read lock.
|
|
|
|
* 2) There are just too many readers contending the lock causing it to
|
|
|
|
* take a while to service all of them.
|
|
|
|
*
|
|
|
|
* In the former case, long reader critical section will impede the progress
|
|
|
|
* of writers which is usually more important for system performance. In
|
|
|
|
* the later case, reader optimistic spinning tends to make the reader
|
|
|
|
* groups that contain readers that acquire the lock together smaller
|
|
|
|
* leading to more of them. That may hurt performance in some cases. In
|
|
|
|
* other words, the setting of nonspinnable bits indicates that reader
|
|
|
|
* optimistic spinning may not be helpful for those workloads that cause
|
|
|
|
* it.
|
|
|
|
*
|
|
|
|
* Therefore, any writers that had observed the setting of the writer
|
|
|
|
* nonspinnable bit for a given rwsem after they fail to acquire the lock
|
|
|
|
* via optimistic spinning will set the reader nonspinnable bit once they
|
|
|
|
* acquire the write lock. Similarly, readers that observe the setting
|
|
|
|
* of reader nonspinnable bit at slowpath entry will set the reader
|
|
|
|
* nonspinnable bits when they acquire the read lock via the wakeup path.
|
|
|
|
*
|
|
|
|
* Once the reader nonspinnable bit is on, it will only be reset when
|
|
|
|
* a writer is able to acquire the rwsem in the fast path or somehow a
|
|
|
|
* reader or writer in the slowpath doesn't observe the nonspinable bit.
|
|
|
|
*
|
|
|
|
* This is to discourage reader optmistic spinning on that particular
|
|
|
|
* rwsem and make writers more preferred. This adaptive disabling of reader
|
|
|
|
* optimistic spinning will alleviate the negative side effect of this
|
|
|
|
* feature.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
|
|
|
#define RWSEM_READER_OWNED (1UL << 0)
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
#define RWSEM_RD_NONSPINNABLE (1UL << 1)
|
|
|
|
#define RWSEM_WR_NONSPINNABLE (1UL << 2)
|
|
|
|
#define RWSEM_NONSPINNABLE (RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE)
|
2019-05-20 20:59:10 +00:00
|
|
|
#define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_RWSEMS
|
|
|
|
# define DEBUG_RWSEMS_WARN_ON(c, sem) do { \
|
|
|
|
if (!debug_locks_silent && \
|
2019-07-29 04:47:35 +00:00
|
|
|
WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
|
2019-05-20 20:59:03 +00:00
|
|
|
#c, atomic_long_read(&(sem)->count), \
|
2019-07-29 04:47:35 +00:00
|
|
|
(unsigned long) sem->magic, \
|
2019-05-20 20:59:12 +00:00
|
|
|
atomic_long_read(&(sem)->owner), (long)current, \
|
2019-05-20 20:59:03 +00:00
|
|
|
list_empty(&(sem)->wait_list) ? "" : "not ")) \
|
|
|
|
debug_locks_off(); \
|
|
|
|
} while (0)
|
|
|
|
#else
|
|
|
|
# define DEBUG_RWSEMS_WARN_ON(c, sem)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
2019-05-20 20:59:15 +00:00
|
|
|
* On 64-bit architectures, the bit definitions of the count are:
|
2019-05-20 20:59:03 +00:00
|
|
|
*
|
2019-05-20 20:59:15 +00:00
|
|
|
* Bit 0 - writer locked bit
|
|
|
|
* Bit 1 - waiters present bit
|
|
|
|
* Bit 2 - lock handoff bit
|
|
|
|
* Bits 3-7 - reserved
|
|
|
|
* Bits 8-62 - 55-bit reader count
|
|
|
|
* Bit 63 - read fail bit
|
|
|
|
*
|
|
|
|
* On 32-bit architectures, the bit definitions of the count are:
|
|
|
|
*
|
|
|
|
* Bit 0 - writer locked bit
|
|
|
|
* Bit 1 - waiters present bit
|
|
|
|
* Bit 2 - lock handoff bit
|
|
|
|
* Bits 3-7 - reserved
|
|
|
|
* Bits 8-30 - 23-bit reader count
|
|
|
|
* Bit 31 - read fail bit
|
|
|
|
*
|
|
|
|
* It is not likely that the most significant bit (read fail bit) will ever
|
|
|
|
* be set. This guard bit is still checked anyway in the down_read() fastpath
|
|
|
|
* just in case we need to use up more of the reader bits for other purpose
|
|
|
|
* in the future.
|
2019-05-20 20:59:03 +00:00
|
|
|
*
|
|
|
|
* atomic_long_fetch_add() is used to obtain reader lock, whereas
|
|
|
|
* atomic_long_cmpxchg() will be used to obtain writer lock.
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
*
|
|
|
|
* There are three places where the lock handoff bit may be set or cleared.
|
|
|
|
* 1) rwsem_mark_wake() for readers.
|
|
|
|
* 2) rwsem_try_write_lock() for writers.
|
|
|
|
* 3) Error path of rwsem_down_write_slowpath().
|
|
|
|
*
|
|
|
|
* For all the above cases, wait_lock will be held. A writer must also
|
|
|
|
* be the first one in the wait_list to be eligible for setting the handoff
|
|
|
|
* bit. So concurrent setting/clearing of handoff bit is not possible.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
|
|
|
#define RWSEM_WRITER_LOCKED (1UL << 0)
|
|
|
|
#define RWSEM_FLAG_WAITERS (1UL << 1)
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
#define RWSEM_FLAG_HANDOFF (1UL << 2)
|
2019-05-20 20:59:15 +00:00
|
|
|
#define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1))
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
#define RWSEM_READER_SHIFT 8
|
|
|
|
#define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT)
|
|
|
|
#define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1))
|
|
|
|
#define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED
|
|
|
|
#define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
#define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
|
2019-05-20 20:59:15 +00:00
|
|
|
RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* All writes to owner are protected by WRITE_ONCE() to make sure that
|
|
|
|
* store tearing can't happen as optimistic spinners may read and use
|
|
|
|
* the owner value concurrently without lock. Read from owner, however,
|
|
|
|
* may not need READ_ONCE() as long as the pointer value is only used
|
|
|
|
* for comparison and isn't being dereferenced.
|
|
|
|
*/
|
|
|
|
static inline void rwsem_set_owner(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-05-20 20:59:12 +00:00
|
|
|
atomic_long_set(&sem->owner, (long)current);
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void rwsem_clear_owner(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-05-20 20:59:12 +00:00
|
|
|
atomic_long_set(&sem->owner, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test the flags in the owner field.
|
|
|
|
*/
|
|
|
|
static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
|
|
|
|
{
|
|
|
|
return atomic_long_read(&sem->owner) & flags;
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The task_struct pointer of the last owning reader will be left in
|
|
|
|
* the owner field.
|
|
|
|
*
|
|
|
|
* Note that the owner value just indicates the task has owned the rwsem
|
|
|
|
* previously, it may not be the real owner or one of the real owners
|
|
|
|
* anymore when that field is examined, so take it with a grain of salt.
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
*
|
|
|
|
* The reader non-spinnable bit is preserved.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
|
|
|
static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
|
|
|
|
struct task_struct *owner)
|
|
|
|
{
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
|
|
|
|
(atomic_long_read(&sem->owner) & RWSEM_RD_NONSPINNABLE);
|
2019-05-20 20:59:03 +00:00
|
|
|
|
2019-05-20 20:59:12 +00:00
|
|
|
atomic_long_set(&sem->owner, val);
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
__rwsem_set_reader_owned(sem, current);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2019-05-20 20:59:12 +00:00
|
|
|
* Return true if the rwsem is owned by a reader.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
2019-05-20 20:59:12 +00:00
|
|
|
static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
2019-05-20 20:59:12 +00:00
|
|
|
#ifdef CONFIG_DEBUG_RWSEMS
|
|
|
|
/*
|
|
|
|
* Check the count to see if it is write-locked.
|
|
|
|
*/
|
|
|
|
long count = atomic_long_read(&sem->count);
|
|
|
|
|
|
|
|
if (count & RWSEM_WRITER_MASK)
|
|
|
|
return false;
|
|
|
|
#endif
|
|
|
|
return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_RWSEMS
|
|
|
|
/*
|
|
|
|
* With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
|
|
|
|
* is a task pointer in owner of a reader-owned rwsem, it will be the
|
|
|
|
* real owner or one of the real owners. The only exception is when the
|
|
|
|
* unlock is done by up_read_non_owner().
|
|
|
|
*/
|
|
|
|
static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-05-20 20:59:12 +00:00
|
|
|
unsigned long val = atomic_long_read(&sem->owner);
|
|
|
|
|
|
|
|
while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
|
|
|
|
if (atomic_long_try_cmpxchg(&sem->owner, &val,
|
|
|
|
val & RWSEM_OWNER_FLAGS_MASK))
|
|
|
|
return;
|
|
|
|
}
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
/*
|
|
|
|
* Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
|
|
|
|
* remains set. Otherwise, the operation will be aborted.
|
|
|
|
*/
|
|
|
|
static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
unsigned long owner = atomic_long_read(&sem->owner);
|
|
|
|
|
|
|
|
do {
|
|
|
|
if (!(owner & RWSEM_READER_OWNED))
|
|
|
|
break;
|
|
|
|
if (owner & RWSEM_NONSPINNABLE)
|
|
|
|
break;
|
|
|
|
} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
|
|
|
|
owner | RWSEM_NONSPINNABLE));
|
|
|
|
}
|
|
|
|
|
2019-05-20 20:59:15 +00:00
|
|
|
static inline bool rwsem_read_trylock(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
long cnt = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
|
|
|
|
if (WARN_ON_ONCE(cnt < 0))
|
|
|
|
rwsem_set_nonspinnable(sem);
|
|
|
|
return !(cnt & RWSEM_READ_FAILED_MASK);
|
|
|
|
}
|
|
|
|
|
2019-05-20 20:59:12 +00:00
|
|
|
/*
|
|
|
|
* Return just the real task structure pointer of the owner
|
|
|
|
*/
|
|
|
|
static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
return (struct task_struct *)
|
|
|
|
(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the real task structure pointer of the owner and the embedded
|
|
|
|
* flags in the owner. pflags must be non-NULL.
|
|
|
|
*/
|
|
|
|
static inline struct task_struct *
|
|
|
|
rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
|
|
|
|
{
|
|
|
|
unsigned long owner = atomic_long_read(&sem->owner);
|
|
|
|
|
|
|
|
*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
|
|
|
|
return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
|
|
|
|
}
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* Guide to the rw_semaphore's count field.
|
|
|
|
*
|
|
|
|
* When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
|
|
|
|
* by a writer.
|
|
|
|
*
|
|
|
|
* The lock is owned by readers when
|
|
|
|
* (1) the RWSEM_WRITER_LOCKED isn't set in count,
|
|
|
|
* (2) some of the reader bits are set in count, and
|
|
|
|
* (3) the owner field has RWSEM_READ_OWNED bit set.
|
|
|
|
*
|
|
|
|
* Having some reader bits set is not enough to guarantee a readers owned
|
|
|
|
* lock as the readers may be in the process of backing out from the count
|
|
|
|
* and a writer has just released the lock. So another writer may steal
|
|
|
|
* the lock immediately after that.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize an rwsem:
|
|
|
|
*/
|
|
|
|
void __init_rwsem(struct rw_semaphore *sem, const char *name,
|
|
|
|
struct lock_class_key *key)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
|
|
/*
|
|
|
|
* Make sure we are not reinitializing a held semaphore:
|
|
|
|
*/
|
|
|
|
debug_check_no_locks_freed((void *)sem, sizeof(*sem));
|
|
|
|
lockdep_init_map(&sem->dep_map, name, key, 0);
|
2019-07-29 04:47:35 +00:00
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_RWSEMS
|
|
|
|
sem->magic = sem;
|
2019-05-20 20:59:03 +00:00
|
|
|
#endif
|
|
|
|
atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
|
|
|
|
raw_spin_lock_init(&sem->wait_lock);
|
|
|
|
INIT_LIST_HEAD(&sem->wait_list);
|
2019-05-20 20:59:12 +00:00
|
|
|
atomic_long_set(&sem->owner, 0L);
|
2019-05-20 20:59:03 +00:00
|
|
|
#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
|
|
|
|
osq_lock_init(&sem->osq);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__init_rwsem);
|
|
|
|
|
|
|
|
enum rwsem_waiter_type {
|
|
|
|
RWSEM_WAITING_FOR_WRITE,
|
|
|
|
RWSEM_WAITING_FOR_READ
|
|
|
|
};
|
|
|
|
|
|
|
|
struct rwsem_waiter {
|
|
|
|
struct list_head list;
|
|
|
|
struct task_struct *task;
|
|
|
|
enum rwsem_waiter_type type;
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
unsigned long timeout;
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
unsigned long last_rowner;
|
2019-05-20 20:59:03 +00:00
|
|
|
};
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
#define rwsem_first_waiter(sem) \
|
|
|
|
list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
enum rwsem_wake_type {
|
|
|
|
RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */
|
|
|
|
RWSEM_WAKE_READERS, /* Wake readers only */
|
|
|
|
RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */
|
|
|
|
};
|
|
|
|
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
enum writer_wait_state {
|
|
|
|
WRITER_NOT_FIRST, /* Writer is not first in wait list */
|
|
|
|
WRITER_FIRST, /* Writer is first in wait list */
|
|
|
|
WRITER_HANDOFF /* Writer is first & handoff needed */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The typical HZ value is either 250 or 1000. So set the minimum waiting
|
|
|
|
* time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
|
|
|
|
* queue before initiating the handoff protocol.
|
|
|
|
*/
|
|
|
|
#define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250)
|
|
|
|
|
locking/rwsem: Wake up almost all readers in wait queue
When the front of the wait queue is a reader, other readers
immediately following the first reader will also be woken up at the
same time. However, if there is a writer in between. Those readers
behind the writer will not be woken up.
Because of optimistic spinning, the lock acquisition order is not FIFO
anyway. The lock handoff mechanism will ensure that lock starvation
will not happen.
Assuming that the lock hold times of the other readers still in the
queue will be about the same as the readers that are being woken up,
there is really not much additional cost other than the additional
latency due to the wakeup of additional tasks by the waker. Therefore
all the readers up to a maximum of 256 in the queue are woken up when
the first waiter is a reader to improve reader throughput. This is
somewhat similar in concept to a phase-fair R/W lock.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-Patch Post-patch
------------ --------- ----------
4 1,641 1,674
8 731 1,062
16 564 924
32 78 300
64 38 195
240 50 149
There is no performance gain at low contention level. At high contention
level, however, this patch gives a pretty decent performance boost.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-11-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:09 +00:00
|
|
|
/*
|
|
|
|
* Magic number to batch-wakeup waiting readers, even when writers are
|
|
|
|
* also present in the queue. This both limits the amount of work the
|
|
|
|
* waking thread must do and also prevents any potential counter overflow,
|
|
|
|
* however unlikely.
|
|
|
|
*/
|
|
|
|
#define MAX_READERS_WAKEUP 0x100
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* handle the lock release when processes blocked on it that can now run
|
|
|
|
* - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
|
|
|
|
* have been set.
|
|
|
|
* - there must be someone on the queue
|
|
|
|
* - the wait_lock must be held by the caller
|
|
|
|
* - tasks are marked for wakeup, the caller must later invoke wake_up_q()
|
|
|
|
* to actually wakeup the blocked task(s) and drop the reference count,
|
|
|
|
* preferably when the wait_lock is released
|
|
|
|
* - woken process blocks are discarded from the list after having task zeroed
|
|
|
|
* - writers are only marked woken if downgrading is false
|
|
|
|
*/
|
2019-05-20 20:59:04 +00:00
|
|
|
static void rwsem_mark_wake(struct rw_semaphore *sem,
|
|
|
|
enum rwsem_wake_type wake_type,
|
|
|
|
struct wake_q_head *wake_q)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
|
|
|
struct rwsem_waiter *waiter, *tmp;
|
|
|
|
long oldcount, woken = 0, adjustment = 0;
|
|
|
|
struct list_head wlist;
|
|
|
|
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
lockdep_assert_held(&sem->wait_lock);
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* Take a peek at the queue head waiter such that we can determine
|
|
|
|
* the wakeup(s) to perform.
|
|
|
|
*/
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
waiter = rwsem_first_waiter(sem);
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
|
|
|
|
if (wake_type == RWSEM_WAKE_ANY) {
|
|
|
|
/*
|
|
|
|
* Mark writer at the front of the queue for wakeup.
|
|
|
|
* Until the task is actually later awoken later by
|
|
|
|
* the caller, other writers are able to steal it.
|
|
|
|
* Readers, on the other hand, will block as they
|
|
|
|
* will notice the queued writer.
|
|
|
|
*/
|
|
|
|
wake_q_add(wake_q, waiter->task);
|
|
|
|
lockevent_inc(rwsem_wake_writer);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2019-05-20 20:59:15 +00:00
|
|
|
/*
|
|
|
|
* No reader wakeup if there are too many of them already.
|
|
|
|
*/
|
|
|
|
if (unlikely(atomic_long_read(&sem->count) < 0))
|
|
|
|
return;
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* Writers might steal the lock before we grant it to the next reader.
|
|
|
|
* We prefer to do the first reader grant before counting readers
|
|
|
|
* so we can bail out early if a writer stole the lock.
|
|
|
|
*/
|
|
|
|
if (wake_type != RWSEM_WAKE_READ_OWNED) {
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
struct task_struct *owner;
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
adjustment = RWSEM_READER_BIAS;
|
|
|
|
oldcount = atomic_long_fetch_add(adjustment, &sem->count);
|
|
|
|
if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
/*
|
|
|
|
* When we've been waiting "too" long (for writers
|
|
|
|
* to give up the lock), request a HANDOFF to
|
|
|
|
* force the issue.
|
|
|
|
*/
|
|
|
|
if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
|
|
|
|
time_after(jiffies, waiter->timeout)) {
|
|
|
|
adjustment -= RWSEM_FLAG_HANDOFF;
|
|
|
|
lockevent_inc(rwsem_rlock_handoff);
|
|
|
|
}
|
|
|
|
|
|
|
|
atomic_long_add(-adjustment, &sem->count);
|
2019-05-20 20:59:03 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Set it to reader-owned to give spinners an early
|
|
|
|
* indication that readers now have the lock.
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
* The reader nonspinnable bit seen at slowpath entry of
|
|
|
|
* the reader is copied over.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
owner = waiter->task;
|
|
|
|
if (waiter->last_rowner & RWSEM_RD_NONSPINNABLE) {
|
|
|
|
owner = (void *)((unsigned long)owner | RWSEM_RD_NONSPINNABLE);
|
|
|
|
lockevent_inc(rwsem_opt_norspin);
|
|
|
|
}
|
|
|
|
__rwsem_set_reader_owned(sem, owner);
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
locking/rwsem: Wake up almost all readers in wait queue
When the front of the wait queue is a reader, other readers
immediately following the first reader will also be woken up at the
same time. However, if there is a writer in between. Those readers
behind the writer will not be woken up.
Because of optimistic spinning, the lock acquisition order is not FIFO
anyway. The lock handoff mechanism will ensure that lock starvation
will not happen.
Assuming that the lock hold times of the other readers still in the
queue will be about the same as the readers that are being woken up,
there is really not much additional cost other than the additional
latency due to the wakeup of additional tasks by the waker. Therefore
all the readers up to a maximum of 256 in the queue are woken up when
the first waiter is a reader to improve reader throughput. This is
somewhat similar in concept to a phase-fair R/W lock.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-Patch Post-patch
------------ --------- ----------
4 1,641 1,674
8 731 1,062
16 564 924
32 78 300
64 38 195
240 50 149
There is no performance gain at low contention level. At high contention
level, however, this patch gives a pretty decent performance boost.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-11-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:09 +00:00
|
|
|
* Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
|
|
|
|
* queue. We know that the woken will be at least 1 as we accounted
|
2019-05-20 20:59:03 +00:00
|
|
|
* for above. Note we increment the 'active part' of the count by the
|
|
|
|
* number of readers before waking any processes up.
|
|
|
|
*
|
locking/rwsem: Wake up almost all readers in wait queue
When the front of the wait queue is a reader, other readers
immediately following the first reader will also be woken up at the
same time. However, if there is a writer in between. Those readers
behind the writer will not be woken up.
Because of optimistic spinning, the lock acquisition order is not FIFO
anyway. The lock handoff mechanism will ensure that lock starvation
will not happen.
Assuming that the lock hold times of the other readers still in the
queue will be about the same as the readers that are being woken up,
there is really not much additional cost other than the additional
latency due to the wakeup of additional tasks by the waker. Therefore
all the readers up to a maximum of 256 in the queue are woken up when
the first waiter is a reader to improve reader throughput. This is
somewhat similar in concept to a phase-fair R/W lock.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-Patch Post-patch
------------ --------- ----------
4 1,641 1,674
8 731 1,062
16 564 924
32 78 300
64 38 195
240 50 149
There is no performance gain at low contention level. At high contention
level, however, this patch gives a pretty decent performance boost.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-11-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:09 +00:00
|
|
|
* This is an adaptation of the phase-fair R/W locks where at the
|
|
|
|
* reader phase (first waiter is a reader), all readers are eligible
|
|
|
|
* to acquire the lock at the same time irrespective of their order
|
|
|
|
* in the queue. The writers acquire the lock according to their
|
|
|
|
* order in the queue.
|
|
|
|
*
|
2019-05-20 20:59:03 +00:00
|
|
|
* We have to do wakeup in 2 passes to prevent the possibility that
|
|
|
|
* the reader count may be decremented before it is incremented. It
|
|
|
|
* is because the to-be-woken waiter may not have slept yet. So it
|
|
|
|
* may see waiter->task got cleared, finish its critical section and
|
|
|
|
* do an unlock before the reader count increment.
|
|
|
|
*
|
|
|
|
* 1) Collect the read-waiters in a separate list, count them and
|
|
|
|
* fully increment the reader count in rwsem.
|
|
|
|
* 2) For each waiters in the new list, clear waiter->task and
|
|
|
|
* put them into wake_q to be woken up later.
|
|
|
|
*/
|
locking/rwsem: Wake up almost all readers in wait queue
When the front of the wait queue is a reader, other readers
immediately following the first reader will also be woken up at the
same time. However, if there is a writer in between. Those readers
behind the writer will not be woken up.
Because of optimistic spinning, the lock acquisition order is not FIFO
anyway. The lock handoff mechanism will ensure that lock starvation
will not happen.
Assuming that the lock hold times of the other readers still in the
queue will be about the same as the readers that are being woken up,
there is really not much additional cost other than the additional
latency due to the wakeup of additional tasks by the waker. Therefore
all the readers up to a maximum of 256 in the queue are woken up when
the first waiter is a reader to improve reader throughput. This is
somewhat similar in concept to a phase-fair R/W lock.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-Patch Post-patch
------------ --------- ----------
4 1,641 1,674
8 731 1,062
16 564 924
32 78 300
64 38 195
240 50 149
There is no performance gain at low contention level. At high contention
level, however, this patch gives a pretty decent performance boost.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-11-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:09 +00:00
|
|
|
INIT_LIST_HEAD(&wlist);
|
|
|
|
list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
|
2019-05-20 20:59:03 +00:00
|
|
|
if (waiter->type == RWSEM_WAITING_FOR_WRITE)
|
locking/rwsem: Wake up almost all readers in wait queue
When the front of the wait queue is a reader, other readers
immediately following the first reader will also be woken up at the
same time. However, if there is a writer in between. Those readers
behind the writer will not be woken up.
Because of optimistic spinning, the lock acquisition order is not FIFO
anyway. The lock handoff mechanism will ensure that lock starvation
will not happen.
Assuming that the lock hold times of the other readers still in the
queue will be about the same as the readers that are being woken up,
there is really not much additional cost other than the additional
latency due to the wakeup of additional tasks by the waker. Therefore
all the readers up to a maximum of 256 in the queue are woken up when
the first waiter is a reader to improve reader throughput. This is
somewhat similar in concept to a phase-fair R/W lock.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-Patch Post-patch
------------ --------- ----------
4 1,641 1,674
8 731 1,062
16 564 924
32 78 300
64 38 195
240 50 149
There is no performance gain at low contention level. At high contention
level, however, this patch gives a pretty decent performance boost.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-11-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:09 +00:00
|
|
|
continue;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
woken++;
|
locking/rwsem: Wake up almost all readers in wait queue
When the front of the wait queue is a reader, other readers
immediately following the first reader will also be woken up at the
same time. However, if there is a writer in between. Those readers
behind the writer will not be woken up.
Because of optimistic spinning, the lock acquisition order is not FIFO
anyway. The lock handoff mechanism will ensure that lock starvation
will not happen.
Assuming that the lock hold times of the other readers still in the
queue will be about the same as the readers that are being woken up,
there is really not much additional cost other than the additional
latency due to the wakeup of additional tasks by the waker. Therefore
all the readers up to a maximum of 256 in the queue are woken up when
the first waiter is a reader to improve reader throughput. This is
somewhat similar in concept to a phase-fair R/W lock.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-Patch Post-patch
------------ --------- ----------
4 1,641 1,674
8 731 1,062
16 564 924
32 78 300
64 38 195
240 50 149
There is no performance gain at low contention level. At high contention
level, however, this patch gives a pretty decent performance boost.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-11-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:09 +00:00
|
|
|
list_move_tail(&waiter->list, &wlist);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Limit # of readers that can be woken up per wakeup call.
|
|
|
|
*/
|
|
|
|
if (woken >= MAX_READERS_WAKEUP)
|
|
|
|
break;
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
adjustment = woken * RWSEM_READER_BIAS - adjustment;
|
|
|
|
lockevent_cond_inc(rwsem_wake_reader, woken);
|
|
|
|
if (list_empty(&sem->wait_list)) {
|
|
|
|
/* hit end of list above */
|
|
|
|
adjustment -= RWSEM_FLAG_WAITERS;
|
|
|
|
}
|
|
|
|
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
/*
|
|
|
|
* When we've woken a reader, we no longer need to force writers
|
|
|
|
* to give up the lock and we can clear HANDOFF.
|
|
|
|
*/
|
|
|
|
if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
|
|
|
|
adjustment -= RWSEM_FLAG_HANDOFF;
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
if (adjustment)
|
|
|
|
atomic_long_add(adjustment, &sem->count);
|
|
|
|
|
|
|
|
/* 2nd pass */
|
|
|
|
list_for_each_entry_safe(waiter, tmp, &wlist, list) {
|
|
|
|
struct task_struct *tsk;
|
|
|
|
|
|
|
|
tsk = waiter->task;
|
|
|
|
get_task_struct(tsk);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ensure calling get_task_struct() before setting the reader
|
2019-05-20 20:59:04 +00:00
|
|
|
* waiter to nil such that rwsem_down_read_slowpath() cannot
|
2019-05-20 20:59:03 +00:00
|
|
|
* race with do_exit() by always holding a reference count
|
|
|
|
* to the task to wakeup.
|
|
|
|
*/
|
|
|
|
smp_store_release(&waiter->task, NULL);
|
|
|
|
/*
|
|
|
|
* Ensure issuing the wakeup (either by us or someone else)
|
|
|
|
* after setting the reader waiter to nil.
|
|
|
|
*/
|
|
|
|
wake_q_add_safe(wake_q, tsk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function must be called with the sem->wait_lock held to prevent
|
|
|
|
* race conditions between checking the rwsem wait list and setting the
|
|
|
|
* sem->count accordingly.
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
*
|
|
|
|
* If wstate is WRITER_HANDOFF, it will make sure that either the handoff
|
|
|
|
* bit is set or the lock is acquired with handoff bit cleared.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
2019-05-20 20:59:07 +00:00
|
|
|
static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
enum writer_wait_state wstate)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
2019-05-20 20:59:07 +00:00
|
|
|
long count, new;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
lockdep_assert_held(&sem->wait_lock);
|
2019-05-20 20:59:03 +00:00
|
|
|
|
2019-05-20 20:59:07 +00:00
|
|
|
count = atomic_long_read(&sem->count);
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
do {
|
|
|
|
bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
|
2019-05-20 20:59:03 +00:00
|
|
|
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
if (has_handoff && wstate == WRITER_NOT_FIRST)
|
|
|
|
return false;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
new = count;
|
|
|
|
|
|
|
|
if (count & RWSEM_LOCK_MASK) {
|
|
|
|
if (has_handoff || (wstate != WRITER_HANDOFF))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
new |= RWSEM_FLAG_HANDOFF;
|
|
|
|
} else {
|
|
|
|
new |= RWSEM_WRITER_LOCKED;
|
|
|
|
new &= ~RWSEM_FLAG_HANDOFF;
|
|
|
|
|
|
|
|
if (list_is_singular(&sem->wait_list))
|
|
|
|
new &= ~RWSEM_FLAG_WAITERS;
|
|
|
|
}
|
|
|
|
} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We have either acquired the lock with handoff bit cleared or
|
|
|
|
* set the handoff bit.
|
|
|
|
*/
|
|
|
|
if (new & RWSEM_FLAG_HANDOFF)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
rwsem_set_owner(sem);
|
|
|
|
return true;
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
|
2019-05-20 20:59:11 +00:00
|
|
|
/*
|
|
|
|
* Try to acquire read lock before the reader is put on wait queue.
|
|
|
|
* Lock acquisition isn't allowed if the rwsem is locked or a writer handoff
|
|
|
|
* is ongoing.
|
|
|
|
*/
|
|
|
|
static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
long count = atomic_long_read(&sem->count);
|
|
|
|
|
|
|
|
if (count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
count = atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, &sem->count);
|
|
|
|
if (!(count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
|
|
|
|
rwsem_set_reader_owned(sem);
|
|
|
|
lockevent_inc(rwsem_opt_rlock);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Back out the change */
|
|
|
|
atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* Try to acquire write lock before the writer has been put on wait queue.
|
|
|
|
*/
|
|
|
|
static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
long count = atomic_long_read(&sem->count);
|
|
|
|
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
|
2019-05-20 20:59:03 +00:00
|
|
|
if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
count | RWSEM_WRITER_LOCKED)) {
|
2019-05-20 20:59:03 +00:00
|
|
|
rwsem_set_owner(sem);
|
|
|
|
lockevent_inc(rwsem_opt_wlock);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool owner_on_cpu(struct task_struct *owner)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* As lock holder preemption issue, we both skip spinning if
|
|
|
|
* task is not on cpu or its cpu is preempted
|
|
|
|
*/
|
|
|
|
return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
|
|
|
|
}
|
|
|
|
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
|
|
|
|
unsigned long nonspinnable)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
|
|
|
struct task_struct *owner;
|
2019-05-20 20:59:12 +00:00
|
|
|
unsigned long flags;
|
2019-05-20 20:59:03 +00:00
|
|
|
bool ret = true;
|
|
|
|
|
2019-05-20 20:59:12 +00:00
|
|
|
BUILD_BUG_ON(!(RWSEM_OWNER_UNKNOWN & RWSEM_NONSPINNABLE));
|
2019-05-20 20:59:03 +00:00
|
|
|
|
2019-05-20 20:59:11 +00:00
|
|
|
if (need_resched()) {
|
|
|
|
lockevent_inc(rwsem_opt_fail);
|
2019-05-20 20:59:03 +00:00
|
|
|
return false;
|
2019-05-20 20:59:11 +00:00
|
|
|
}
|
2019-05-20 20:59:03 +00:00
|
|
|
|
2019-05-20 20:59:11 +00:00
|
|
|
preempt_disable();
|
2019-05-20 20:59:03 +00:00
|
|
|
rcu_read_lock();
|
2019-05-20 20:59:12 +00:00
|
|
|
owner = rwsem_owner_flags(sem, &flags);
|
2019-07-20 15:04:10 +00:00
|
|
|
/*
|
|
|
|
* Don't check the read-owner as the entry may be stale.
|
|
|
|
*/
|
|
|
|
if ((flags & nonspinnable) ||
|
|
|
|
(owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
|
2019-05-20 20:59:12 +00:00
|
|
|
ret = false;
|
2019-05-20 20:59:03 +00:00
|
|
|
rcu_read_unlock();
|
2019-05-20 20:59:11 +00:00
|
|
|
preempt_enable();
|
|
|
|
|
|
|
|
lockevent_cond_inc(rwsem_opt_fail, !ret);
|
2019-05-20 20:59:03 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2019-05-20 20:59:05 +00:00
|
|
|
* The rwsem_spin_on_owner() function returns the folowing 4 values
|
|
|
|
* depending on the lock owner state.
|
|
|
|
* OWNER_NULL : owner is currently NULL
|
|
|
|
* OWNER_WRITER: when owner changes and is a writer
|
|
|
|
* OWNER_READER: when owner changes and the new owner may be a reader.
|
|
|
|
* OWNER_NONSPINNABLE:
|
|
|
|
* when optimistic spinning has to stop because either the
|
|
|
|
* owner stops running, is unknown, or its timeslice has
|
|
|
|
* been used up.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
2019-05-20 20:59:05 +00:00
|
|
|
enum owner_state {
|
|
|
|
OWNER_NULL = 1 << 0,
|
|
|
|
OWNER_WRITER = 1 << 1,
|
|
|
|
OWNER_READER = 1 << 2,
|
|
|
|
OWNER_NONSPINNABLE = 1 << 3,
|
|
|
|
};
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
#define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER)
|
2019-05-20 20:59:05 +00:00
|
|
|
|
2019-05-20 20:59:12 +00:00
|
|
|
static inline enum owner_state
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
rwsem_owner_state(struct task_struct *owner, unsigned long flags, unsigned long nonspinnable)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
if (flags & nonspinnable)
|
2019-05-20 20:59:05 +00:00
|
|
|
return OWNER_NONSPINNABLE;
|
|
|
|
|
2019-05-20 20:59:12 +00:00
|
|
|
if (flags & RWSEM_READER_OWNED)
|
2019-05-20 20:59:05 +00:00
|
|
|
return OWNER_READER;
|
|
|
|
|
2019-05-20 20:59:12 +00:00
|
|
|
return owner ? OWNER_WRITER : OWNER_NULL;
|
2019-05-20 20:59:05 +00:00
|
|
|
}
|
|
|
|
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
static noinline enum owner_state
|
|
|
|
rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
|
2019-05-20 20:59:05 +00:00
|
|
|
{
|
2019-05-20 20:59:12 +00:00
|
|
|
struct task_struct *new, *owner;
|
|
|
|
unsigned long flags, new_flags;
|
|
|
|
enum owner_state state;
|
2019-05-20 20:59:05 +00:00
|
|
|
|
2019-05-20 20:59:12 +00:00
|
|
|
owner = rwsem_owner_flags(sem, &flags);
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
state = rwsem_owner_state(owner, flags, nonspinnable);
|
2019-05-20 20:59:05 +00:00
|
|
|
if (state != OWNER_WRITER)
|
|
|
|
return state;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
rcu_read_lock();
|
2019-05-20 20:59:05 +00:00
|
|
|
for (;;) {
|
locking/rwsem: Make handoff writer optimistically spin on owner
When the handoff bit is set by a writer, no other tasks other than
the setting writer itself is allowed to acquire the lock. If the
to-be-handoff'ed writer goes to sleep, there will be a wakeup latency
period where the lock is free, but no one can acquire it. That is less
than ideal.
To reduce that latency, the handoff writer will now optimistically spin
on the owner if it happens to be a on-cpu writer. It will spin until
it releases the lock and the to-be-handoff'ed writer can then acquire
the lock immediately without any delay. Of course, if the owner is not
a on-cpu writer, the to-be-handoff'ed writer will have to sleep anyway.
The optimistic spinning code is also modified to not stop spinning
when the handoff bit is set. This will prevent an occasional setting of
handoff bit from causing a bunch of optimistic spinners from entering
into the wait queue causing significant reduction in throughput.
On a 1-socket 22-core 44-thread Skylake system, the AIM7 shared_memory
workload was run with 7000 users. The throughput (jobs/min) of the
following kernels were as follows:
1) 5.2-rc6
- 8,092,486
2) 5.2-rc6 + tip's rwsem patches
- 7,567,568
3) 5.2-rc6 + tip's rwsem patches + this patch
- 7,954,545
Using perf-record(1), the %cpu time used by rwsem_down_write_slowpath(),
rwsem_down_write_failed() and their callees for the 3 kernels were 1.70%,
5.46% and 2.08% respectively.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: x86@kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190625143913.24154-1-longman@redhat.com
2019-06-25 14:39:13 +00:00
|
|
|
/*
|
|
|
|
* When a waiting writer set the handoff flag, it may spin
|
|
|
|
* on the owner as well. Once that writer acquires the lock,
|
|
|
|
* we can spin on it. So we don't need to quit even when the
|
|
|
|
* handoff bit is set.
|
|
|
|
*/
|
2019-05-20 20:59:12 +00:00
|
|
|
new = rwsem_owner_flags(sem, &new_flags);
|
|
|
|
if ((new != owner) || (new_flags != flags)) {
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
state = rwsem_owner_state(new, new_flags, nonspinnable);
|
2019-05-20 20:59:05 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* Ensure we emit the owner->on_cpu, dereference _after_
|
|
|
|
* checking sem->owner still matches owner, if that fails,
|
|
|
|
* owner might point to free()d memory, if it still matches,
|
|
|
|
* the rcu_read_lock() ensures the memory stays valid.
|
|
|
|
*/
|
|
|
|
barrier();
|
|
|
|
|
|
|
|
if (need_resched() || !owner_on_cpu(owner)) {
|
2019-05-20 20:59:05 +00:00
|
|
|
state = OWNER_NONSPINNABLE;
|
|
|
|
break;
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
cpu_relax();
|
|
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
2019-05-20 20:59:05 +00:00
|
|
|
return state;
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
/*
|
|
|
|
* Calculate reader-owned rwsem spinning threshold for writer
|
|
|
|
*
|
|
|
|
* The more readers own the rwsem, the longer it will take for them to
|
|
|
|
* wind down and free the rwsem. So the empirical formula used to
|
|
|
|
* determine the actual spinning time limit here is:
|
|
|
|
*
|
|
|
|
* Spinning threshold = (10 + nr_readers/2)us
|
|
|
|
*
|
|
|
|
* The limit is capped to a maximum of 25us (30 readers). This is just
|
|
|
|
* a heuristic and is subjected to change in the future.
|
|
|
|
*/
|
|
|
|
static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
long count = atomic_long_read(&sem->count);
|
|
|
|
int readers = count >> RWSEM_READER_SHIFT;
|
|
|
|
u64 delta;
|
|
|
|
|
|
|
|
if (readers > 30)
|
|
|
|
readers = 30;
|
|
|
|
delta = (20 + readers) * NSEC_PER_USEC / 2;
|
|
|
|
|
|
|
|
return sched_clock() + delta;
|
|
|
|
}
|
|
|
|
|
2019-05-20 20:59:11 +00:00
|
|
|
static bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
|
|
|
bool taken = false;
|
locking/rwsem: More optimal RT task handling of null owner
An RT task can do optimistic spinning only if the lock holder is
actually running. If the state of the lock holder isn't known, there
is a possibility that high priority of the RT task may block forward
progress of the lock holder if it happens to reside on the same CPU.
This will lead to deadlock. So we have to make sure that an RT task
will not spin on a reader-owned rwsem.
When the owner is temporarily set to NULL, there are two cases
where we may want to continue spinning:
1) The lock owner is in the process of releasing the lock, sem->owner
is cleared but the lock has not been released yet.
2) The lock was free and owner cleared, but another task just comes
in and acquire the lock before we try to get it. The new owner may
be a spinnable writer.
So an RT task is now made to retry one more time to see if it can
acquire the lock or continue spinning on the new owning writer.
When testing on a 8-socket IvyBridge-EX system, the one additional retry
seems to improve locking performance of RT write locking threads under
heavy contentions. The table below shows the locking rates (in kops/s)
with various write locking threads before and after the patch.
Locking threads Pre-patch Post-patch
--------------- --------- -----------
4 2,753 2,608
8 2,529 2,520
16 1,727 1,918
32 1,263 1,956
64 889 1,343
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-10-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:08 +00:00
|
|
|
int prev_owner_state = OWNER_NULL;
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
int loop = 0;
|
|
|
|
u64 rspin_threshold = 0;
|
|
|
|
unsigned long nonspinnable = wlock ? RWSEM_WR_NONSPINNABLE
|
|
|
|
: RWSEM_RD_NONSPINNABLE;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
preempt_disable();
|
|
|
|
|
|
|
|
/* sem->wait_lock should not be held when doing optimistic spinning */
|
|
|
|
if (!osq_lock(&sem->osq))
|
|
|
|
goto done;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Optimistically spin on the owner field and attempt to acquire the
|
|
|
|
* lock whenever the owner changes. Spinning will be stopped when:
|
|
|
|
* 1) the owning writer isn't running; or
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
* 2) readers own the lock and spinning time has exceeded limit.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
locking/rwsem: More optimal RT task handling of null owner
An RT task can do optimistic spinning only if the lock holder is
actually running. If the state of the lock holder isn't known, there
is a possibility that high priority of the RT task may block forward
progress of the lock holder if it happens to reside on the same CPU.
This will lead to deadlock. So we have to make sure that an RT task
will not spin on a reader-owned rwsem.
When the owner is temporarily set to NULL, there are two cases
where we may want to continue spinning:
1) The lock owner is in the process of releasing the lock, sem->owner
is cleared but the lock has not been released yet.
2) The lock was free and owner cleared, but another task just comes
in and acquire the lock before we try to get it. The new owner may
be a spinnable writer.
So an RT task is now made to retry one more time to see if it can
acquire the lock or continue spinning on the new owning writer.
When testing on a 8-socket IvyBridge-EX system, the one additional retry
seems to improve locking performance of RT write locking threads under
heavy contentions. The table below shows the locking rates (in kops/s)
with various write locking threads before and after the patch.
Locking threads Pre-patch Post-patch
--------------- --------- -----------
4 2,753 2,608
8 2,529 2,520
16 1,727 1,918
32 1,263 1,956
64 889 1,343
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-10-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:08 +00:00
|
|
|
for (;;) {
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
enum owner_state owner_state;
|
locking/rwsem: More optimal RT task handling of null owner
An RT task can do optimistic spinning only if the lock holder is
actually running. If the state of the lock holder isn't known, there
is a possibility that high priority of the RT task may block forward
progress of the lock holder if it happens to reside on the same CPU.
This will lead to deadlock. So we have to make sure that an RT task
will not spin on a reader-owned rwsem.
When the owner is temporarily set to NULL, there are two cases
where we may want to continue spinning:
1) The lock owner is in the process of releasing the lock, sem->owner
is cleared but the lock has not been released yet.
2) The lock was free and owner cleared, but another task just comes
in and acquire the lock before we try to get it. The new owner may
be a spinnable writer.
So an RT task is now made to retry one more time to see if it can
acquire the lock or continue spinning on the new owning writer.
When testing on a 8-socket IvyBridge-EX system, the one additional retry
seems to improve locking performance of RT write locking threads under
heavy contentions. The table below shows the locking rates (in kops/s)
with various write locking threads before and after the patch.
Locking threads Pre-patch Post-patch
--------------- --------- -----------
4 2,753 2,608
8 2,529 2,520
16 1,727 1,918
32 1,263 1,956
64 889 1,343
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-10-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:08 +00:00
|
|
|
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
owner_state = rwsem_spin_on_owner(sem, nonspinnable);
|
locking/rwsem: More optimal RT task handling of null owner
An RT task can do optimistic spinning only if the lock holder is
actually running. If the state of the lock holder isn't known, there
is a possibility that high priority of the RT task may block forward
progress of the lock holder if it happens to reside on the same CPU.
This will lead to deadlock. So we have to make sure that an RT task
will not spin on a reader-owned rwsem.
When the owner is temporarily set to NULL, there are two cases
where we may want to continue spinning:
1) The lock owner is in the process of releasing the lock, sem->owner
is cleared but the lock has not been released yet.
2) The lock was free and owner cleared, but another task just comes
in and acquire the lock before we try to get it. The new owner may
be a spinnable writer.
So an RT task is now made to retry one more time to see if it can
acquire the lock or continue spinning on the new owning writer.
When testing on a 8-socket IvyBridge-EX system, the one additional retry
seems to improve locking performance of RT write locking threads under
heavy contentions. The table below shows the locking rates (in kops/s)
with various write locking threads before and after the patch.
Locking threads Pre-patch Post-patch
--------------- --------- -----------
4 2,753 2,608
8 2,529 2,520
16 1,727 1,918
32 1,263 1,956
64 889 1,343
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-10-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:08 +00:00
|
|
|
if (!(owner_state & OWNER_SPINNABLE))
|
|
|
|
break;
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* Try to acquire the lock
|
|
|
|
*/
|
2019-05-20 20:59:11 +00:00
|
|
|
taken = wlock ? rwsem_try_write_lock_unqueued(sem)
|
|
|
|
: rwsem_try_read_lock_unqueued(sem);
|
|
|
|
|
|
|
|
if (taken)
|
2019-05-20 20:59:03 +00:00
|
|
|
break;
|
|
|
|
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
/*
|
|
|
|
* Time-based reader-owned rwsem optimistic spinning
|
|
|
|
*/
|
|
|
|
if (wlock && (owner_state == OWNER_READER)) {
|
|
|
|
/*
|
|
|
|
* Re-initialize rspin_threshold every time when
|
|
|
|
* the owner state changes from non-reader to reader.
|
|
|
|
* This allows a writer to steal the lock in between
|
|
|
|
* 2 reader phases and have the threshold reset at
|
|
|
|
* the beginning of the 2nd reader phase.
|
|
|
|
*/
|
|
|
|
if (prev_owner_state != OWNER_READER) {
|
|
|
|
if (rwsem_test_oflags(sem, nonspinnable))
|
|
|
|
break;
|
|
|
|
rspin_threshold = rwsem_rspin_threshold(sem);
|
|
|
|
loop = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check time threshold once every 16 iterations to
|
|
|
|
* avoid calling sched_clock() too frequently so
|
|
|
|
* as to reduce the average latency between the times
|
|
|
|
* when the lock becomes free and when the spinner
|
|
|
|
* is ready to do a trylock.
|
|
|
|
*/
|
|
|
|
else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
|
|
|
|
rwsem_set_nonspinnable(sem);
|
|
|
|
lockevent_inc(rwsem_opt_nospin);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
locking/rwsem: More optimal RT task handling of null owner
An RT task can do optimistic spinning only if the lock holder is
actually running. If the state of the lock holder isn't known, there
is a possibility that high priority of the RT task may block forward
progress of the lock holder if it happens to reside on the same CPU.
This will lead to deadlock. So we have to make sure that an RT task
will not spin on a reader-owned rwsem.
When the owner is temporarily set to NULL, there are two cases
where we may want to continue spinning:
1) The lock owner is in the process of releasing the lock, sem->owner
is cleared but the lock has not been released yet.
2) The lock was free and owner cleared, but another task just comes
in and acquire the lock before we try to get it. The new owner may
be a spinnable writer.
So an RT task is now made to retry one more time to see if it can
acquire the lock or continue spinning on the new owning writer.
When testing on a 8-socket IvyBridge-EX system, the one additional retry
seems to improve locking performance of RT write locking threads under
heavy contentions. The table below shows the locking rates (in kops/s)
with various write locking threads before and after the patch.
Locking threads Pre-patch Post-patch
--------------- --------- -----------
4 2,753 2,608
8 2,529 2,520
16 1,727 1,918
32 1,263 1,956
64 889 1,343
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-10-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:08 +00:00
|
|
|
* An RT task cannot do optimistic spinning if it cannot
|
|
|
|
* be sure the lock holder is running or live-lock may
|
|
|
|
* happen if the current task and the lock holder happen
|
|
|
|
* to run in the same CPU. However, aborting optimistic
|
|
|
|
* spinning while a NULL owner is detected may miss some
|
|
|
|
* opportunity where spinning can continue without causing
|
|
|
|
* problem.
|
|
|
|
*
|
|
|
|
* There are 2 possible cases where an RT task may be able
|
|
|
|
* to continue spinning.
|
|
|
|
*
|
|
|
|
* 1) The lock owner is in the process of releasing the
|
|
|
|
* lock, sem->owner is cleared but the lock has not
|
|
|
|
* been released yet.
|
|
|
|
* 2) The lock was free and owner cleared, but another
|
|
|
|
* task just comes in and acquire the lock before
|
|
|
|
* we try to get it. The new owner may be a spinnable
|
|
|
|
* writer.
|
|
|
|
*
|
|
|
|
* To take advantage of two scenarios listed agove, the RT
|
|
|
|
* task is made to retry one more time to see if it can
|
|
|
|
* acquire the lock or continue spinning on the new owning
|
|
|
|
* writer. Of course, if the time lag is long enough or the
|
|
|
|
* new owner is not a writer or spinnable, the RT task will
|
|
|
|
* quit spinning.
|
|
|
|
*
|
|
|
|
* If the owner is a writer, the need_resched() check is
|
|
|
|
* done inside rwsem_spin_on_owner(). If the owner is not
|
|
|
|
* a writer, need_resched() check needs to be done here.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
locking/rwsem: More optimal RT task handling of null owner
An RT task can do optimistic spinning only if the lock holder is
actually running. If the state of the lock holder isn't known, there
is a possibility that high priority of the RT task may block forward
progress of the lock holder if it happens to reside on the same CPU.
This will lead to deadlock. So we have to make sure that an RT task
will not spin on a reader-owned rwsem.
When the owner is temporarily set to NULL, there are two cases
where we may want to continue spinning:
1) The lock owner is in the process of releasing the lock, sem->owner
is cleared but the lock has not been released yet.
2) The lock was free and owner cleared, but another task just comes
in and acquire the lock before we try to get it. The new owner may
be a spinnable writer.
So an RT task is now made to retry one more time to see if it can
acquire the lock or continue spinning on the new owning writer.
When testing on a 8-socket IvyBridge-EX system, the one additional retry
seems to improve locking performance of RT write locking threads under
heavy contentions. The table below shows the locking rates (in kops/s)
with various write locking threads before and after the patch.
Locking threads Pre-patch Post-patch
--------------- --------- -----------
4 2,753 2,608
8 2,529 2,520
16 1,727 1,918
32 1,263 1,956
64 889 1,343
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-10-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:08 +00:00
|
|
|
if (owner_state != OWNER_WRITER) {
|
|
|
|
if (need_resched())
|
|
|
|
break;
|
|
|
|
if (rt_task(current) &&
|
|
|
|
(prev_owner_state != OWNER_WRITER))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
prev_owner_state = owner_state;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The cpu_relax() call is a compiler barrier which forces
|
|
|
|
* everything in this loop to be re-loaded. We don't need
|
|
|
|
* memory barriers as we'll eventually observe the right
|
|
|
|
* values at the cost of a few extra spins.
|
|
|
|
*/
|
|
|
|
cpu_relax();
|
|
|
|
}
|
|
|
|
osq_unlock(&sem->osq);
|
|
|
|
done:
|
|
|
|
preempt_enable();
|
|
|
|
lockevent_cond_inc(rwsem_opt_fail, !taken);
|
|
|
|
return taken;
|
|
|
|
}
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should
|
|
|
|
* only be called when the reader count reaches 0.
|
|
|
|
*
|
|
|
|
* This give writers better chance to acquire the rwsem first before
|
|
|
|
* readers when the rwsem was being held by readers for a relatively long
|
|
|
|
* period of time. Race can happen that an optimistic spinner may have
|
|
|
|
* just stolen the rwsem and set the owner, but just clearing the
|
|
|
|
* RWSEM_WR_NONSPINNABLE bit will do no harm anyway.
|
|
|
|
*/
|
|
|
|
static inline void clear_wr_nonspinnable(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
if (rwsem_test_oflags(sem, RWSEM_WR_NONSPINNABLE))
|
|
|
|
atomic_long_andnot(RWSEM_WR_NONSPINNABLE, &sem->owner);
|
|
|
|
}
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This function is called when the reader fails to acquire the lock via
|
|
|
|
* optimistic spinning. In this case we will still attempt to do a trylock
|
|
|
|
* when comparing the rwsem state right now with the state when entering
|
|
|
|
* the slowpath indicates that the reader is still in a valid reader phase.
|
|
|
|
* This happens when the following conditions are true:
|
|
|
|
*
|
|
|
|
* 1) The lock is currently reader owned, and
|
|
|
|
* 2) The lock is previously not reader-owned or the last read owner changes.
|
|
|
|
*
|
|
|
|
* In the former case, we have transitioned from a writer phase to a
|
|
|
|
* reader-phase while spinning. In the latter case, it means the reader
|
|
|
|
* phase hasn't ended when we entered the optimistic spinning loop. In
|
|
|
|
* both cases, the reader is eligible to acquire the lock. This is the
|
|
|
|
* secondary path where a read lock is acquired optimistically.
|
|
|
|
*
|
|
|
|
* The reader non-spinnable bit wasn't set at time of entry or it will
|
|
|
|
* not be here at all.
|
|
|
|
*/
|
|
|
|
static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
|
|
|
|
unsigned long last_rowner)
|
|
|
|
{
|
|
|
|
unsigned long owner = atomic_long_read(&sem->owner);
|
|
|
|
|
|
|
|
if (!(owner & RWSEM_READER_OWNED))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (((owner ^ last_rowner) & ~RWSEM_OWNER_FLAGS_MASK) &&
|
|
|
|
rwsem_try_read_lock_unqueued(sem)) {
|
|
|
|
lockevent_inc(rwsem_opt_rlock2);
|
|
|
|
lockevent_add(rwsem_opt_fail, -1);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
2019-05-20 20:59:03 +00:00
|
|
|
#else
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
|
|
|
|
unsigned long nonspinnable)
|
2019-05-20 20:59:11 +00:00
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
|
|
|
|
static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) { }
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
|
|
|
|
static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
|
|
|
|
unsigned long last_rowner)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
locking/rwsem: Make handoff writer optimistically spin on owner
When the handoff bit is set by a writer, no other tasks other than
the setting writer itself is allowed to acquire the lock. If the
to-be-handoff'ed writer goes to sleep, there will be a wakeup latency
period where the lock is free, but no one can acquire it. That is less
than ideal.
To reduce that latency, the handoff writer will now optimistically spin
on the owner if it happens to be a on-cpu writer. It will spin until
it releases the lock and the to-be-handoff'ed writer can then acquire
the lock immediately without any delay. Of course, if the owner is not
a on-cpu writer, the to-be-handoff'ed writer will have to sleep anyway.
The optimistic spinning code is also modified to not stop spinning
when the handoff bit is set. This will prevent an occasional setting of
handoff bit from causing a bunch of optimistic spinners from entering
into the wait queue causing significant reduction in throughput.
On a 1-socket 22-core 44-thread Skylake system, the AIM7 shared_memory
workload was run with 7000 users. The throughput (jobs/min) of the
following kernels were as follows:
1) 5.2-rc6
- 8,092,486
2) 5.2-rc6 + tip's rwsem patches
- 7,567,568
3) 5.2-rc6 + tip's rwsem patches + this patch
- 7,954,545
Using perf-record(1), the %cpu time used by rwsem_down_write_slowpath(),
rwsem_down_write_failed() and their callees for the 3 kernels were 1.70%,
5.46% and 2.08% respectively.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: x86@kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190625143913.24154-1-longman@redhat.com
2019-06-25 14:39:13 +00:00
|
|
|
|
|
|
|
static inline int
|
|
|
|
rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#define OWNER_NULL 1
|
2019-05-20 20:59:03 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait for the read lock to be granted
|
|
|
|
*/
|
2019-05-20 20:59:04 +00:00
|
|
|
static struct rw_semaphore __sched *
|
|
|
|
rwsem_down_read_slowpath(struct rw_semaphore *sem, int state)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
|
|
|
long count, adjustment = -RWSEM_READER_BIAS;
|
|
|
|
struct rwsem_waiter waiter;
|
|
|
|
DEFINE_WAKE_Q(wake_q);
|
2019-05-20 20:59:15 +00:00
|
|
|
bool wake = false;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
/*
|
|
|
|
* Save the current read-owner of rwsem, if available, and the
|
|
|
|
* reader nonspinnable bit.
|
|
|
|
*/
|
|
|
|
waiter.last_rowner = atomic_long_read(&sem->owner);
|
|
|
|
if (!(waiter.last_rowner & RWSEM_READER_OWNED))
|
|
|
|
waiter.last_rowner &= RWSEM_RD_NONSPINNABLE;
|
|
|
|
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
if (!rwsem_can_spin_on_owner(sem, RWSEM_RD_NONSPINNABLE))
|
2019-05-20 20:59:11 +00:00
|
|
|
goto queue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Undo read bias from down_read() and do optimistic spinning.
|
|
|
|
*/
|
|
|
|
atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
|
|
|
|
adjustment = 0;
|
|
|
|
if (rwsem_optimistic_spin(sem, false)) {
|
2019-07-18 13:08:53 +00:00
|
|
|
/* rwsem_optimistic_spin() implies ACQUIRE on success */
|
2019-05-20 20:59:11 +00:00
|
|
|
/*
|
|
|
|
* Wake up other readers in the wait list if the front
|
|
|
|
* waiter is a reader.
|
|
|
|
*/
|
|
|
|
if ((atomic_long_read(&sem->count) & RWSEM_FLAG_WAITERS)) {
|
|
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
|
|
if (!list_empty(&sem->wait_list))
|
|
|
|
rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
|
|
|
|
&wake_q);
|
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
|
|
wake_up_q(&wake_q);
|
|
|
|
}
|
|
|
|
return sem;
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
} else if (rwsem_reader_phase_trylock(sem, waiter.last_rowner)) {
|
2019-07-18 13:08:53 +00:00
|
|
|
/* rwsem_reader_phase_trylock() implies ACQUIRE on success */
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
return sem;
|
2019-05-20 20:59:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
queue:
|
2019-05-20 20:59:03 +00:00
|
|
|
waiter.task = current;
|
|
|
|
waiter.type = RWSEM_WAITING_FOR_READ;
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
|
|
if (list_empty(&sem->wait_list)) {
|
|
|
|
/*
|
|
|
|
* In case the wait queue is empty and the lock isn't owned
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
* by a writer or has the handoff bit set, this reader can
|
|
|
|
* exit the slowpath and return immediately as its
|
|
|
|
* RWSEM_READER_BIAS has already been set in the count.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
2019-05-20 20:59:11 +00:00
|
|
|
if (adjustment && !(atomic_long_read(&sem->count) &
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
(RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
|
2019-07-18 08:51:25 +00:00
|
|
|
/* Provide lock ACQUIRE */
|
|
|
|
smp_acquire__after_ctrl_dep();
|
2019-05-20 20:59:03 +00:00
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
|
|
rwsem_set_reader_owned(sem);
|
|
|
|
lockevent_inc(rwsem_rlock_fast);
|
|
|
|
return sem;
|
|
|
|
}
|
|
|
|
adjustment += RWSEM_FLAG_WAITERS;
|
|
|
|
}
|
|
|
|
list_add_tail(&waiter.list, &sem->wait_list);
|
|
|
|
|
|
|
|
/* we're now waiting on the lock, but no longer actively locking */
|
2019-05-20 20:59:11 +00:00
|
|
|
if (adjustment)
|
|
|
|
count = atomic_long_add_return(adjustment, &sem->count);
|
|
|
|
else
|
|
|
|
count = atomic_long_read(&sem->count);
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If there are no active locks, wake the front queued process(es).
|
|
|
|
*
|
|
|
|
* If there are no writers and we are first in the queue,
|
|
|
|
* wake our own waiter to join the existing active readers !
|
|
|
|
*/
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
if (!(count & RWSEM_LOCK_MASK)) {
|
|
|
|
clear_wr_nonspinnable(sem);
|
|
|
|
wake = true;
|
|
|
|
}
|
|
|
|
if (wake || (!(count & RWSEM_WRITER_MASK) &&
|
|
|
|
(adjustment & RWSEM_FLAG_WAITERS)))
|
2019-05-20 20:59:04 +00:00
|
|
|
rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
|
|
wake_up_q(&wake_q);
|
|
|
|
|
|
|
|
/* wait to be given the lock */
|
2019-07-18 13:08:53 +00:00
|
|
|
for (;;) {
|
2019-05-20 20:59:03 +00:00
|
|
|
set_current_state(state);
|
2019-07-18 12:56:17 +00:00
|
|
|
if (!smp_load_acquire(&waiter.task)) {
|
2019-07-18 13:08:53 +00:00
|
|
|
/* Matches rwsem_mark_wake()'s smp_store_release(). */
|
2019-05-20 20:59:03 +00:00
|
|
|
break;
|
2019-07-18 12:56:17 +00:00
|
|
|
}
|
2019-05-20 20:59:03 +00:00
|
|
|
if (signal_pending_state(state, current)) {
|
|
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
|
|
if (waiter.task)
|
|
|
|
goto out_nolock;
|
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
2019-07-18 13:08:53 +00:00
|
|
|
/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
|
2019-05-20 20:59:03 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
schedule();
|
|
|
|
lockevent_inc(rwsem_sleep_reader);
|
|
|
|
}
|
|
|
|
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
lockevent_inc(rwsem_rlock);
|
|
|
|
return sem;
|
2019-07-18 13:08:53 +00:00
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
out_nolock:
|
|
|
|
list_del(&waiter.list);
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
if (list_empty(&sem->wait_list)) {
|
|
|
|
atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
|
|
|
|
&sem->count);
|
|
|
|
}
|
2019-05-20 20:59:03 +00:00
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
lockevent_inc(rwsem_rlock_fail);
|
|
|
|
return ERR_PTR(-EINTR);
|
|
|
|
}
|
|
|
|
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
/*
|
|
|
|
* This function is called by the a write lock owner. So the owner value
|
|
|
|
* won't get changed by others.
|
|
|
|
*/
|
|
|
|
static inline void rwsem_disable_reader_optspin(struct rw_semaphore *sem,
|
|
|
|
bool disable)
|
|
|
|
{
|
|
|
|
if (unlikely(disable)) {
|
|
|
|
atomic_long_or(RWSEM_RD_NONSPINNABLE, &sem->owner);
|
|
|
|
lockevent_inc(rwsem_opt_norspin);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* Wait until we successfully acquire the write lock
|
|
|
|
*/
|
2019-05-20 20:59:04 +00:00
|
|
|
static struct rw_semaphore *
|
|
|
|
rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
|
|
|
long count;
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
bool disable_rspin;
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
enum writer_wait_state wstate;
|
2019-05-20 20:59:03 +00:00
|
|
|
struct rwsem_waiter waiter;
|
|
|
|
struct rw_semaphore *ret = sem;
|
|
|
|
DEFINE_WAKE_Q(wake_q);
|
|
|
|
|
|
|
|
/* do optimistic spinning and steal lock if possible */
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
if (rwsem_can_spin_on_owner(sem, RWSEM_WR_NONSPINNABLE) &&
|
2019-07-18 13:08:53 +00:00
|
|
|
rwsem_optimistic_spin(sem, true)) {
|
|
|
|
/* rwsem_optimistic_spin() implies ACQUIRE on success */
|
2019-05-20 20:59:03 +00:00
|
|
|
return sem;
|
2019-07-18 13:08:53 +00:00
|
|
|
}
|
2019-05-20 20:59:03 +00:00
|
|
|
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
/*
|
|
|
|
* Disable reader optimistic spinning for this rwsem after
|
|
|
|
* acquiring the write lock when the setting of the nonspinnable
|
|
|
|
* bits are observed.
|
|
|
|
*/
|
|
|
|
disable_rspin = atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE;
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* Optimistic spinning failed, proceed to the slowpath
|
|
|
|
* and block until we can acquire the sem.
|
|
|
|
*/
|
|
|
|
waiter.task = current;
|
|
|
|
waiter.type = RWSEM_WAITING_FOR_WRITE;
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
|
|
|
|
|
|
/* account for this before adding a new element to the list */
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
list_add_tail(&waiter.list, &sem->wait_list);
|
|
|
|
|
|
|
|
/* we're now waiting on the lock */
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
if (wstate == WRITER_NOT_FIRST) {
|
2019-05-20 20:59:03 +00:00
|
|
|
count = atomic_long_read(&sem->count);
|
|
|
|
|
|
|
|
/*
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
* If there were already threads queued before us and:
|
|
|
|
* 1) there are no no active locks, wake the front
|
|
|
|
* queued process(es) as the handoff bit might be set.
|
|
|
|
* 2) there are no active writers and some readers, the lock
|
|
|
|
* must be read owned; so we try to wake any read lock
|
|
|
|
* waiters that were queued ahead of us.
|
2019-05-20 20:59:03 +00:00
|
|
|
*/
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
if (count & RWSEM_WRITER_MASK)
|
|
|
|
goto wait;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
|
|
|
|
? RWSEM_WAKE_READERS
|
|
|
|
: RWSEM_WAKE_ANY, &wake_q);
|
2019-05-20 20:59:03 +00:00
|
|
|
|
2019-05-20 20:59:07 +00:00
|
|
|
if (!wake_q_empty(&wake_q)) {
|
|
|
|
/*
|
|
|
|
* We want to minimize wait_lock hold time especially
|
|
|
|
* when a large number of readers are to be woken up.
|
|
|
|
*/
|
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
|
|
wake_up_q(&wake_q);
|
|
|
|
wake_q_init(&wake_q); /* Used again, reinit */
|
|
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
|
|
}
|
2019-05-20 20:59:03 +00:00
|
|
|
} else {
|
2019-05-20 20:59:07 +00:00
|
|
|
atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
wait:
|
2019-05-20 20:59:03 +00:00
|
|
|
/* wait until we successfully acquire the lock */
|
|
|
|
set_current_state(state);
|
2019-07-18 13:08:53 +00:00
|
|
|
for (;;) {
|
|
|
|
if (rwsem_try_write_lock(sem, wstate)) {
|
|
|
|
/* rwsem_try_write_lock() implies ACQUIRE on success */
|
2019-05-20 20:59:03 +00:00
|
|
|
break;
|
2019-07-18 13:08:53 +00:00
|
|
|
}
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
|
|
|
locking/rwsem: Make handoff writer optimistically spin on owner
When the handoff bit is set by a writer, no other tasks other than
the setting writer itself is allowed to acquire the lock. If the
to-be-handoff'ed writer goes to sleep, there will be a wakeup latency
period where the lock is free, but no one can acquire it. That is less
than ideal.
To reduce that latency, the handoff writer will now optimistically spin
on the owner if it happens to be a on-cpu writer. It will spin until
it releases the lock and the to-be-handoff'ed writer can then acquire
the lock immediately without any delay. Of course, if the owner is not
a on-cpu writer, the to-be-handoff'ed writer will have to sleep anyway.
The optimistic spinning code is also modified to not stop spinning
when the handoff bit is set. This will prevent an occasional setting of
handoff bit from causing a bunch of optimistic spinners from entering
into the wait queue causing significant reduction in throughput.
On a 1-socket 22-core 44-thread Skylake system, the AIM7 shared_memory
workload was run with 7000 users. The throughput (jobs/min) of the
following kernels were as follows:
1) 5.2-rc6
- 8,092,486
2) 5.2-rc6 + tip's rwsem patches
- 7,567,568
3) 5.2-rc6 + tip's rwsem patches + this patch
- 7,954,545
Using perf-record(1), the %cpu time used by rwsem_down_write_slowpath(),
rwsem_down_write_failed() and their callees for the 3 kernels were 1.70%,
5.46% and 2.08% respectively.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: x86@kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190625143913.24154-1-longman@redhat.com
2019-06-25 14:39:13 +00:00
|
|
|
/*
|
|
|
|
* After setting the handoff bit and failing to acquire
|
|
|
|
* the lock, attempt to spin on owner to accelerate lock
|
|
|
|
* transfer. If the previous owner is a on-cpu writer and it
|
|
|
|
* has just released the lock, OWNER_NULL will be returned.
|
|
|
|
* In this case, we attempt to acquire the lock again
|
|
|
|
* without sleeping.
|
|
|
|
*/
|
2020-01-15 15:43:36 +00:00
|
|
|
if (wstate == WRITER_HANDOFF &&
|
|
|
|
rwsem_spin_on_owner(sem, RWSEM_NONSPINNABLE) == OWNER_NULL)
|
locking/rwsem: Make handoff writer optimistically spin on owner
When the handoff bit is set by a writer, no other tasks other than
the setting writer itself is allowed to acquire the lock. If the
to-be-handoff'ed writer goes to sleep, there will be a wakeup latency
period where the lock is free, but no one can acquire it. That is less
than ideal.
To reduce that latency, the handoff writer will now optimistically spin
on the owner if it happens to be a on-cpu writer. It will spin until
it releases the lock and the to-be-handoff'ed writer can then acquire
the lock immediately without any delay. Of course, if the owner is not
a on-cpu writer, the to-be-handoff'ed writer will have to sleep anyway.
The optimistic spinning code is also modified to not stop spinning
when the handoff bit is set. This will prevent an occasional setting of
handoff bit from causing a bunch of optimistic spinners from entering
into the wait queue causing significant reduction in throughput.
On a 1-socket 22-core 44-thread Skylake system, the AIM7 shared_memory
workload was run with 7000 users. The throughput (jobs/min) of the
following kernels were as follows:
1) 5.2-rc6
- 8,092,486
2) 5.2-rc6 + tip's rwsem patches
- 7,567,568
3) 5.2-rc6 + tip's rwsem patches + this patch
- 7,954,545
Using perf-record(1), the %cpu time used by rwsem_down_write_slowpath(),
rwsem_down_write_failed() and their callees for the 3 kernels were 1.70%,
5.46% and 2.08% respectively.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: x86@kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190625143913.24154-1-longman@redhat.com
2019-06-25 14:39:13 +00:00
|
|
|
goto trylock_again;
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/* Block until there are no active lockers. */
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
for (;;) {
|
2019-05-20 20:59:03 +00:00
|
|
|
if (signal_pending_state(state, current))
|
|
|
|
goto out_nolock;
|
|
|
|
|
|
|
|
schedule();
|
|
|
|
lockevent_inc(rwsem_sleep_writer);
|
|
|
|
set_current_state(state);
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
/*
|
|
|
|
* If HANDOFF bit is set, unconditionally do
|
|
|
|
* a trylock.
|
|
|
|
*/
|
|
|
|
if (wstate == WRITER_HANDOFF)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if ((wstate == WRITER_NOT_FIRST) &&
|
|
|
|
(rwsem_first_waiter(sem) == &waiter))
|
|
|
|
wstate = WRITER_FIRST;
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
count = atomic_long_read(&sem->count);
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
if (!(count & RWSEM_LOCK_MASK))
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The setting of the handoff bit is deferred
|
|
|
|
* until rwsem_try_write_lock() is called.
|
|
|
|
*/
|
|
|
|
if ((wstate == WRITER_FIRST) && (rt_task(current) ||
|
|
|
|
time_after(jiffies, waiter.timeout))) {
|
|
|
|
wstate = WRITER_HANDOFF;
|
|
|
|
lockevent_inc(rwsem_wlock_handoff);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
locking/rwsem: Make handoff writer optimistically spin on owner
When the handoff bit is set by a writer, no other tasks other than
the setting writer itself is allowed to acquire the lock. If the
to-be-handoff'ed writer goes to sleep, there will be a wakeup latency
period where the lock is free, but no one can acquire it. That is less
than ideal.
To reduce that latency, the handoff writer will now optimistically spin
on the owner if it happens to be a on-cpu writer. It will spin until
it releases the lock and the to-be-handoff'ed writer can then acquire
the lock immediately without any delay. Of course, if the owner is not
a on-cpu writer, the to-be-handoff'ed writer will have to sleep anyway.
The optimistic spinning code is also modified to not stop spinning
when the handoff bit is set. This will prevent an occasional setting of
handoff bit from causing a bunch of optimistic spinners from entering
into the wait queue causing significant reduction in throughput.
On a 1-socket 22-core 44-thread Skylake system, the AIM7 shared_memory
workload was run with 7000 users. The throughput (jobs/min) of the
following kernels were as follows:
1) 5.2-rc6
- 8,092,486
2) 5.2-rc6 + tip's rwsem patches
- 7,567,568
3) 5.2-rc6 + tip's rwsem patches + this patch
- 7,954,545
Using perf-record(1), the %cpu time used by rwsem_down_write_slowpath(),
rwsem_down_write_failed() and their callees for the 3 kernels were 1.70%,
5.46% and 2.08% respectively.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: x86@kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190625143913.24154-1-longman@redhat.com
2019-06-25 14:39:13 +00:00
|
|
|
trylock_again:
|
2019-05-20 20:59:03 +00:00
|
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
|
|
}
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
list_del(&waiter.list);
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
rwsem_disable_reader_optspin(sem, disable_rspin);
|
2019-05-20 20:59:03 +00:00
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
|
|
lockevent_inc(rwsem_wlock);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
out_nolock:
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
|
|
list_del(&waiter.list);
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
|
|
|
|
if (unlikely(wstate == WRITER_HANDOFF))
|
|
|
|
atomic_long_add(-RWSEM_FLAG_HANDOFF, &sem->count);
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
if (list_empty(&sem->wait_list))
|
|
|
|
atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
|
|
|
|
else
|
2019-05-20 20:59:04 +00:00
|
|
|
rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
|
2019-05-20 20:59:03 +00:00
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
|
|
wake_up_q(&wake_q);
|
|
|
|
lockevent_inc(rwsem_wlock_fail);
|
|
|
|
|
|
|
|
return ERR_PTR(-EINTR);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* handle waking up a waiter on the semaphore
|
|
|
|
* - up_read/up_write has decremented the active part of count if we come here
|
|
|
|
*/
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
DEFINE_WAKE_Q(wake_q);
|
|
|
|
|
|
|
|
raw_spin_lock_irqsave(&sem->wait_lock, flags);
|
|
|
|
|
|
|
|
if (!list_empty(&sem->wait_list))
|
2019-05-20 20:59:04 +00:00
|
|
|
rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
|
|
|
|
wake_up_q(&wake_q);
|
|
|
|
|
|
|
|
return sem;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* downgrade a write lock into a read lock
|
|
|
|
* - caller incremented waiting part of count and discovered it still negative
|
|
|
|
* - just wake up any readers at the front of the queue
|
|
|
|
*/
|
2019-05-20 20:59:04 +00:00
|
|
|
static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
|
2019-05-20 20:59:03 +00:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
DEFINE_WAKE_Q(wake_q);
|
|
|
|
|
|
|
|
raw_spin_lock_irqsave(&sem->wait_lock, flags);
|
|
|
|
|
|
|
|
if (!list_empty(&sem->wait_list))
|
2019-05-20 20:59:04 +00:00
|
|
|
rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
|
2019-05-20 20:59:03 +00:00
|
|
|
|
|
|
|
raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
|
|
|
|
wake_up_q(&wake_q);
|
|
|
|
|
|
|
|
return sem;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* lock for reading
|
|
|
|
*/
|
|
|
|
inline void __down_read(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-05-20 20:59:15 +00:00
|
|
|
if (!rwsem_read_trylock(sem)) {
|
2019-05-20 20:59:04 +00:00
|
|
|
rwsem_down_read_slowpath(sem, TASK_UNINTERRUPTIBLE);
|
2019-05-20 20:59:12 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
|
2019-05-20 20:59:03 +00:00
|
|
|
} else {
|
|
|
|
rwsem_set_reader_owned(sem);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int __down_read_killable(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-05-20 20:59:15 +00:00
|
|
|
if (!rwsem_read_trylock(sem)) {
|
2019-05-20 20:59:04 +00:00
|
|
|
if (IS_ERR(rwsem_down_read_slowpath(sem, TASK_KILLABLE)))
|
2019-05-20 20:59:03 +00:00
|
|
|
return -EINTR;
|
2019-05-20 20:59:12 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
|
2019-05-20 20:59:03 +00:00
|
|
|
} else {
|
|
|
|
rwsem_set_reader_owned(sem);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int __down_read_trylock(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-07-29 04:47:35 +00:00
|
|
|
long tmp;
|
|
|
|
|
|
|
|
DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
|
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
/*
|
|
|
|
* Optimize for the case when the rwsem is not locked at all.
|
|
|
|
*/
|
2019-07-29 04:47:35 +00:00
|
|
|
tmp = RWSEM_UNLOCKED_VALUE;
|
2019-05-20 20:59:03 +00:00
|
|
|
do {
|
|
|
|
if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
|
|
|
|
tmp + RWSEM_READER_BIAS)) {
|
|
|
|
rwsem_set_reader_owned(sem);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} while (!(tmp & RWSEM_READ_FAILED_MASK));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* lock for writing
|
|
|
|
*/
|
|
|
|
static inline void __down_write(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-05-20 20:59:04 +00:00
|
|
|
long tmp = RWSEM_UNLOCKED_VALUE;
|
|
|
|
|
|
|
|
if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
|
|
|
|
RWSEM_WRITER_LOCKED)))
|
|
|
|
rwsem_down_write_slowpath(sem, TASK_UNINTERRUPTIBLE);
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
else
|
|
|
|
rwsem_set_owner(sem);
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline int __down_write_killable(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-05-20 20:59:04 +00:00
|
|
|
long tmp = RWSEM_UNLOCKED_VALUE;
|
|
|
|
|
|
|
|
if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
|
|
|
|
RWSEM_WRITER_LOCKED))) {
|
|
|
|
if (IS_ERR(rwsem_down_write_slowpath(sem, TASK_KILLABLE)))
|
2019-05-20 20:59:03 +00:00
|
|
|
return -EINTR;
|
locking/rwsem: Adaptive disabling of reader optimistic spinning
Reader optimistic spinning is helpful when the reader critical section
is short and there aren't that many readers around. It makes readers
relatively more preferred than writers. When a writer times out spinning
on a reader-owned lock and set the nospinnable bits, there are two main
reasons for that.
1) The reader critical section is long, perhaps the task sleeps after
acquiring the read lock.
2) There are just too many readers contending the lock causing it to
take a while to service all of them.
In the former case, long reader critical section will impede the progress
of writers which is usually more important for system performance.
In the later case, reader optimistic spinning tends to make the reader
groups that contain readers that acquire the lock together smaller
leading to more of them. That may hurt performance in some cases. In
other words, the setting of nonspinnable bits indicates that reader
optimistic spinning may not be helpful for those workloads that cause it.
Therefore, any writers that have observed the setting of the writer
nonspinnable bit for a given rwsem after they fail to acquire the lock
via optimistic spinning will set the reader nonspinnable bit once they
acquire the write lock. Similarly, readers that observe the setting
of reader nonspinnable bit at slowpath entry will also set the reader
nonspinnable bit when they acquire the read lock via the wakeup path.
Once the reader nonspinnable bit is on, it will only be reset when
a writer is able to acquire the rwsem in the fast path or somehow a
reader or writer in the slowpath doesn't observe the nonspinable bit.
This is to discourage reader optmistic spinning on that particular
rwsem and make writers more preferred. This adaptive disabling of reader
optimistic spinning will alleviate some of the negative side effect of
this feature.
In addition, this patch tries to make readers in the spinning queue
follow the phase-fair principle after quitting optimistic spinning
by checking if another reader has somehow acquired a read lock after
this reader enters the optimistic spinning queue. If so and the rwsem
is still reader-owned, this reader is in the right read-phase and can
attempt to acquire the lock.
On a 2-socket 40-core 80-thread Skylake system, the page_fault1 test of
the will-it-scale benchmark was run with various number of threads. The
number of operations done before reader optimistic spinning patches,
this patch and after this patch were:
Threads Before rspin Before patch After patch %change
------- ------------ ------------ ----------- -------
20 5541068 5345484 5455667 -3.5%/ +2.1%
40 10185150 7292313 9219276 -28.5%/+26.4%
60 8196733 6460517 7181209 -21.2%/+11.2%
80 9508864 6739559 8107025 -29.1%/+20.3%
This patch doesn't recover all the lost performance, but it is more
than half. Given the fact that reader optimistic spinning does benefit
some workloads, this is a good compromise.
Using the rwsem locking microbenchmark with very short critical section,
this patch doesn't have too much impact on locking performance as shown
by the locking rates (kops/s) below with equal numbers of readers and
writers before and after this patch:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 4,730 4,969
4 4,814 4,786
8 4,866 4,815
16 4,715 4,511
32 3,338 3,500
64 3,212 3,389
80 3,110 3,044
When running the locking microbenchmark with 40 dedicated reader and writer
threads, however, the reader performance is curtailed to favor the writer.
Before patch:
40 readers, Iterations Min/Mean/Max = 204,026/234,309/254,816
40 writers, Iterations Min/Mean/Max = 88,515/95,884/115,644
After patch:
40 readers, Iterations Min/Mean/Max = 33,813/35,260/36,791
40 writers, Iterations Min/Mean/Max = 95,368/96,565/97,798
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-16-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:14 +00:00
|
|
|
} else {
|
|
|
|
rwsem_set_owner(sem);
|
2019-05-20 20:59:04 +00:00
|
|
|
}
|
2019-05-20 20:59:03 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int __down_write_trylock(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-07-29 04:47:35 +00:00
|
|
|
long tmp;
|
2019-05-20 20:59:03 +00:00
|
|
|
|
2019-07-29 04:47:35 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
|
|
|
|
|
|
|
|
tmp = RWSEM_UNLOCKED_VALUE;
|
2019-05-20 20:59:04 +00:00
|
|
|
if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
|
|
|
|
RWSEM_WRITER_LOCKED)) {
|
2019-05-20 20:59:03 +00:00
|
|
|
rwsem_set_owner(sem);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* unlock after reading
|
|
|
|
*/
|
|
|
|
inline void __up_read(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
long tmp;
|
|
|
|
|
2019-07-29 04:47:35 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
|
2019-05-20 20:59:12 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
|
2019-07-29 04:47:35 +00:00
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
rwsem_clear_reader_owned(sem);
|
|
|
|
tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
|
2019-05-20 20:59:15 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
|
2019-05-20 20:59:04 +00:00
|
|
|
if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
RWSEM_FLAG_WAITERS)) {
|
|
|
|
clear_wr_nonspinnable(sem);
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
rwsem_wake(sem, tmp);
|
locking/rwsem: Enable time-based spinning on reader-owned rwsem
When the rwsem is owned by reader, writers stop optimistic spinning
simply because there is no easy way to figure out if all the readers
are actively running or not. However, there are scenarios where
the readers are unlikely to sleep and optimistic spinning can help
performance.
This patch provides a simple mechanism for spinning on a reader-owned
rwsem by a writer. It is a time threshold based spinning where the
allowable spinning time can vary from 10us to 25us depending on the
condition of the rwsem.
When the time threshold is exceeded, the nonspinnable bits will be set
in the owner field to indicate that no more optimistic spinning will
be allowed on this rwsem until it becomes writer owned again. Not even
readers is allowed to acquire the reader-locked rwsem by optimistic
spinning for fairness.
We also want a writer to acquire the lock after the readers hold the
lock for a relatively long time. In order to give preference to writers
under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split
into two - one for reader and one for writer. When optimistic spinning
is disabled, both bits will be set. When the reader count drop down
to 0, the writer nonspinnable bit will be cleared to allow writers to
spin on the lock, but not the readers. When a writer acquires the lock,
it will write its own task structure pointer into sem->owner and clear
the reader nonspinnable bit in the process.
The time taken for each iteration of the reader-owned rwsem spinning
loop varies. Below are sample minimum elapsed times for 16 iterations
of the loop.
System Time for 16 Iterations
------ ----------------------
1-socket Skylake ~800ns
4-socket Broadwell ~300ns
2-socket ThunderX2 (arm64) ~250ns
When the lock cacheline is contended, we can see up to almost 10X
increase in elapsed time. So 25us will be at most 500, 1300 and 1600
iterations for each of the above systems.
With a locking microbenchmark running on 5.1 based kernel, the total
locking rates (in kops/s) on a 8-socket IvyBridge-EX system with
equal numbers of readers and writers before and after this patch were
as follows:
# of Threads Pre-patch Post-patch
------------ --------- ----------
2 1,759 6,684
4 1,684 6,738
8 1,074 7,222
16 900 7,163
32 458 7,316
64 208 520
128 168 425
240 143 474
This patch gives a big boost in performance for mixed reader/writer
workloads.
With 32 locking threads, the rwsem lock event data were:
rwsem_opt_fail=79850
rwsem_opt_nospin=5069
rwsem_opt_rlock=597484
rwsem_opt_wlock=957339
rwsem_sleep_reader=57782
rwsem_sleep_writer=55663
With 64 locking threads, the data looked like:
rwsem_opt_fail=346723
rwsem_opt_nospin=6293
rwsem_opt_rlock=1127119
rwsem_opt_wlock=1400628
rwsem_sleep_reader=308201
rwsem_sleep_writer=72281
So a lot more threads acquired the lock in the slowpath and more threads
went to sleep.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:13 +00:00
|
|
|
}
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* unlock after writing
|
|
|
|
*/
|
|
|
|
static inline void __up_write(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-05-20 20:59:04 +00:00
|
|
|
long tmp;
|
|
|
|
|
2019-07-29 04:47:35 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
|
2019-05-20 20:59:10 +00:00
|
|
|
/*
|
|
|
|
* sem->owner may differ from current if the ownership is transferred
|
|
|
|
* to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
|
|
|
|
*/
|
2019-05-20 20:59:12 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
|
|
|
|
!rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
|
2019-07-29 04:47:35 +00:00
|
|
|
|
2019-05-20 20:59:03 +00:00
|
|
|
rwsem_clear_owner(sem);
|
2019-05-20 20:59:04 +00:00
|
|
|
tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
|
|
|
|
if (unlikely(tmp & RWSEM_FLAG_WAITERS))
|
locking/rwsem: Implement lock handoff to prevent lock starvation
Because of writer lock stealing, it is possible that a constant
stream of incoming writers will cause a waiting writer or reader to
wait indefinitely leading to lock starvation.
This patch implements a lock handoff mechanism to disable lock stealing
and force lock handoff to the first waiter or waiters (for readers)
in the queue after at least a 4ms waiting period unless it is a RT
writer task which doesn't need to wait. The waiting period is used to
avoid discouraging lock stealing too much to affect performance.
The setting and clearing of the handoff bit is serialized by the
wait_lock. So racing is not possible.
A rwsem microbenchmark was run for 5 seconds on a 2-socket 40-core
80-thread Skylake system with a v5.1 based kernel and 240 write_lock
threads with 5us sleep critical section.
Before the patch, the min/mean/max numbers of locking operations for
the locking threads were 1/7,792/173,696. After the patch, the figures
became 5,842/6,542/7,458. It can be seen that the rwsem became much
more fair, though there was a drop of about 16% in the mean locking
operations done which was a tradeoff of having better fairness.
Making the waiter set the handoff bit right after the first wakeup can
impact performance especially with a mixed reader/writer workload. With
the same microbenchmark with short critical section and equal number of
reader and writer threads (40/40), the reader/writer locking operation
counts with the current patch were:
40 readers, Iterations Min/Mean/Max = 1,793/1,794/1,796
40 writers, Iterations Min/Mean/Max = 1,793/34,956/86,081
By making waiter set handoff bit immediately after wakeup:
40 readers, Iterations Min/Mean/Max = 43/44/46
40 writers, Iterations Min/Mean/Max = 43/1,263/3,191
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Link: https://lkml.kernel.org/r/20190520205918.22251-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-20 20:59:06 +00:00
|
|
|
rwsem_wake(sem, tmp);
|
2019-05-20 20:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* downgrade write lock to read lock
|
|
|
|
*/
|
|
|
|
static inline void __downgrade_write(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
long tmp;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When downgrading from exclusive to shared ownership,
|
|
|
|
* anything inside the write-locked region cannot leak
|
|
|
|
* into the read side. In contrast, anything in the
|
|
|
|
* read-locked region is ok to be re-ordered into the
|
|
|
|
* write side. As such, rely on RELEASE semantics.
|
|
|
|
*/
|
2019-05-20 20:59:12 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
|
2019-05-20 20:59:03 +00:00
|
|
|
tmp = atomic_long_fetch_add_release(
|
|
|
|
-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
|
|
|
|
rwsem_set_reader_owned(sem);
|
|
|
|
if (tmp & RWSEM_FLAG_WAITERS)
|
|
|
|
rwsem_downgrade_wake(sem);
|
|
|
|
}
|
locking/rwsem: Support optimistic spinning
We have reached the point where our mutexes are quite fine tuned
for a number of situations. This includes the use of heuristics
and optimistic spinning, based on MCS locking techniques.
Exclusive ownership of read-write semaphores are, conceptually,
just about the same as mutexes, making them close cousins. To
this end we need to make them both perform similarly, and
right now, rwsems are simply not up to it. This was discovered
by both reverting commit 4fc3f1d6 (mm/rmap, migration: Make
rmap_walk_anon() and try_to_unmap_anon() more scalable) and
similarly, converting some other mutexes (ie: i_mmap_mutex) to
rwsems. This creates a situation where users have to choose
between a rwsem and mutex taking into account this important
performance difference. Specifically, biggest difference between
both locks is when we fail to acquire a mutex in the fastpath,
optimistic spinning comes in to play and we can avoid a large
amount of unnecessary sleeping and overhead of moving tasks in
and out of wait queue. Rwsems do not have such logic.
This patch, based on the work from Tim Chen and I, adds support
for write-side optimistic spinning when the lock is contended.
It also includes support for the recently added cancelable MCS
locking for adaptive spinning. Note that is is only applicable
to the xadd method, and the spinlock rwsem variant remains intact.
Allowing optimistic spinning before putting the writer on the wait
queue reduces wait queue contention and provided greater chance
for the rwsem to get acquired. With these changes, rwsem is on par
with mutex. The performance benefits can be seen on a number of
workloads. For instance, on a 8 socket, 80 core 64bit Westmere box,
aim7 shows the following improvements in throughput:
+--------------+---------------------+-----------------+
| Workload | throughput-increase | number of users |
+--------------+---------------------+-----------------+
| alltests | 20% | >1000 |
| custom | 27%, 60% | 10-100, >1000 |
| high_systime | 36%, 30% | >100, >1000 |
| shared | 58%, 29% | 10-100, >1000 |
+--------------+---------------------+-----------------+
There was also improvement on smaller systems, such as a quad-core
x86-64 laptop running a 30Gb PostgreSQL (pgbench) workload for up
to +60% in throughput for over 50 clients. Additionally, benefits
were also noticed in exim (mail server) workloads. Furthermore, no
performance regression have been seen at all.
Based-on-work-from: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
[peterz: rej fixup due to comment patches, sched/rt.h header]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Scott J Norton" <scott.norton@hp.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Link: http://lkml.kernel.org/r/1399055055.6275.15.camel@buesod1.americas.hpqcorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-02 18:24:15 +00:00
|
|
|
|
2006-07-03 07:24:29 +00:00
|
|
|
/*
|
|
|
|
* lock for reading
|
|
|
|
*/
|
2007-12-18 14:21:13 +00:00
|
|
|
void __sched down_read(struct rw_semaphore *sem)
|
2006-07-03 07:24:29 +00:00
|
|
|
{
|
|
|
|
might_sleep();
|
|
|
|
rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
|
|
|
|
|
2007-07-19 08:48:58 +00:00
|
|
|
LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
|
2006-07-03 07:24:29 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_read);
|
|
|
|
|
2017-09-29 16:06:38 +00:00
|
|
|
int __sched down_read_killable(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
might_sleep();
|
|
|
|
rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
|
|
|
|
|
|
|
|
if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
|
|
|
|
rwsem_release(&sem->dep_map, 1, _RET_IP_);
|
|
|
|
return -EINTR;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_read_killable);
|
|
|
|
|
2006-07-03 07:24:29 +00:00
|
|
|
/*
|
|
|
|
* trylock for reading -- returns 1 if successful, 0 if contention
|
|
|
|
*/
|
|
|
|
int down_read_trylock(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
int ret = __down_read_trylock(sem);
|
|
|
|
|
2019-04-04 17:43:11 +00:00
|
|
|
if (ret == 1)
|
2006-07-03 07:24:29 +00:00
|
|
|
rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_read_trylock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* lock for writing
|
|
|
|
*/
|
2007-12-18 14:21:13 +00:00
|
|
|
void __sched down_write(struct rw_semaphore *sem)
|
2006-07-03 07:24:29 +00:00
|
|
|
{
|
|
|
|
might_sleep();
|
|
|
|
rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
|
2007-07-19 08:48:58 +00:00
|
|
|
LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
|
2006-07-03 07:24:29 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_write);
|
|
|
|
|
2016-04-07 15:12:31 +00:00
|
|
|
/*
|
|
|
|
* lock for writing
|
|
|
|
*/
|
|
|
|
int __sched down_write_killable(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
might_sleep();
|
|
|
|
rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
|
|
|
|
|
2019-05-20 20:59:04 +00:00
|
|
|
if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
|
|
|
|
__down_write_killable)) {
|
2016-04-07 15:12:31 +00:00
|
|
|
rwsem_release(&sem->dep_map, 1, _RET_IP_);
|
|
|
|
return -EINTR;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_write_killable);
|
|
|
|
|
2006-07-03 07:24:29 +00:00
|
|
|
/*
|
|
|
|
* trylock for writing -- returns 1 if successful, 0 if contention
|
|
|
|
*/
|
|
|
|
int down_write_trylock(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
int ret = __down_write_trylock(sem);
|
|
|
|
|
2019-04-04 17:43:11 +00:00
|
|
|
if (ret == 1)
|
2007-05-08 07:29:10 +00:00
|
|
|
rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
|
locking/rwsem: Support optimistic spinning
We have reached the point where our mutexes are quite fine tuned
for a number of situations. This includes the use of heuristics
and optimistic spinning, based on MCS locking techniques.
Exclusive ownership of read-write semaphores are, conceptually,
just about the same as mutexes, making them close cousins. To
this end we need to make them both perform similarly, and
right now, rwsems are simply not up to it. This was discovered
by both reverting commit 4fc3f1d6 (mm/rmap, migration: Make
rmap_walk_anon() and try_to_unmap_anon() more scalable) and
similarly, converting some other mutexes (ie: i_mmap_mutex) to
rwsems. This creates a situation where users have to choose
between a rwsem and mutex taking into account this important
performance difference. Specifically, biggest difference between
both locks is when we fail to acquire a mutex in the fastpath,
optimistic spinning comes in to play and we can avoid a large
amount of unnecessary sleeping and overhead of moving tasks in
and out of wait queue. Rwsems do not have such logic.
This patch, based on the work from Tim Chen and I, adds support
for write-side optimistic spinning when the lock is contended.
It also includes support for the recently added cancelable MCS
locking for adaptive spinning. Note that is is only applicable
to the xadd method, and the spinlock rwsem variant remains intact.
Allowing optimistic spinning before putting the writer on the wait
queue reduces wait queue contention and provided greater chance
for the rwsem to get acquired. With these changes, rwsem is on par
with mutex. The performance benefits can be seen on a number of
workloads. For instance, on a 8 socket, 80 core 64bit Westmere box,
aim7 shows the following improvements in throughput:
+--------------+---------------------+-----------------+
| Workload | throughput-increase | number of users |
+--------------+---------------------+-----------------+
| alltests | 20% | >1000 |
| custom | 27%, 60% | 10-100, >1000 |
| high_systime | 36%, 30% | >100, >1000 |
| shared | 58%, 29% | 10-100, >1000 |
+--------------+---------------------+-----------------+
There was also improvement on smaller systems, such as a quad-core
x86-64 laptop running a 30Gb PostgreSQL (pgbench) workload for up
to +60% in throughput for over 50 clients. Additionally, benefits
were also noticed in exim (mail server) workloads. Furthermore, no
performance regression have been seen at all.
Based-on-work-from: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
[peterz: rej fixup due to comment patches, sched/rt.h header]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Scott J Norton" <scott.norton@hp.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Link: http://lkml.kernel.org/r/1399055055.6275.15.camel@buesod1.americas.hpqcorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-02 18:24:15 +00:00
|
|
|
|
2006-07-03 07:24:29 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_write_trylock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* release a read lock
|
|
|
|
*/
|
|
|
|
void up_read(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
rwsem_release(&sem->dep_map, 1, _RET_IP_);
|
|
|
|
__up_read(sem);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(up_read);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* release a write lock
|
|
|
|
*/
|
|
|
|
void up_write(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
rwsem_release(&sem->dep_map, 1, _RET_IP_);
|
|
|
|
__up_write(sem);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(up_write);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* downgrade write lock to read lock
|
|
|
|
*/
|
|
|
|
void downgrade_write(struct rw_semaphore *sem)
|
|
|
|
{
|
2017-02-02 16:38:17 +00:00
|
|
|
lock_downgrade(&sem->dep_map, _RET_IP_);
|
2006-07-03 07:24:29 +00:00
|
|
|
__downgrade_write(sem);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(downgrade_write);
|
2006-07-03 07:24:53 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
|
|
|
|
|
|
void down_read_nested(struct rw_semaphore *sem, int subclass)
|
|
|
|
{
|
|
|
|
might_sleep();
|
|
|
|
rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
|
2007-07-19 08:48:58 +00:00
|
|
|
LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
|
2006-07-03 07:24:53 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_read_nested);
|
|
|
|
|
2013-01-11 22:31:56 +00:00
|
|
|
void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
|
|
|
|
{
|
|
|
|
might_sleep();
|
|
|
|
rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
|
|
|
|
LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(_down_write_nest_lock);
|
|
|
|
|
2011-09-22 04:43:05 +00:00
|
|
|
void down_read_non_owner(struct rw_semaphore *sem)
|
|
|
|
{
|
|
|
|
might_sleep();
|
|
|
|
__down_read(sem);
|
2018-09-06 20:18:34 +00:00
|
|
|
__rwsem_set_reader_owned(sem, NULL);
|
2011-09-22 04:43:05 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_read_non_owner);
|
|
|
|
|
2006-07-03 07:24:53 +00:00
|
|
|
void down_write_nested(struct rw_semaphore *sem, int subclass)
|
|
|
|
{
|
|
|
|
might_sleep();
|
|
|
|
rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
|
2007-07-19 08:48:58 +00:00
|
|
|
LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
|
2006-07-03 07:24:53 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_write_nested);
|
|
|
|
|
2016-05-26 04:04:58 +00:00
|
|
|
int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
|
|
|
|
{
|
|
|
|
might_sleep();
|
|
|
|
rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
|
|
|
|
|
2019-05-20 20:59:04 +00:00
|
|
|
if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
|
|
|
|
__down_write_killable)) {
|
2016-05-26 04:04:58 +00:00
|
|
|
rwsem_release(&sem->dep_map, 1, _RET_IP_);
|
|
|
|
return -EINTR;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(down_write_killable_nested);
|
|
|
|
|
2011-09-22 04:43:05 +00:00
|
|
|
void up_read_non_owner(struct rw_semaphore *sem)
|
|
|
|
{
|
2019-05-20 20:59:12 +00:00
|
|
|
DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
|
2011-09-22 04:43:05 +00:00
|
|
|
__up_read(sem);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(up_read_non_owner);
|
|
|
|
|
2006-07-03 07:24:53 +00:00
|
|
|
#endif
|