linux-stable/fs/xfs/scrub/agheader.c

956 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2017-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_sb.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_rmap.h"
#include "xfs_ag.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
int
xchk_setup_agheader(
struct xfs_scrub *sc)
{
if (xchk_need_intent_drain(sc))
xchk_fsgates_enable(sc, XCHK_FSGATES_DRAIN);
return xchk_setup_fs(sc);
}
/* Superblock */
/* Cross-reference with the other btrees. */
STATIC void
xchk_superblock_xref(
struct xfs_scrub *sc,
struct xfs_buf *bp)
{
struct xfs_mount *mp = sc->mp;
xfs_agnumber_t agno = sc->sm->sm_agno;
xfs_agblock_t agbno;
int error;
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
return;
agbno = XFS_SB_BLOCK(mp);
error = xchk_ag_init_existing(sc, agno, &sc->sa);
if (!xchk_xref_process_error(sc, agno, agbno, &error))
return;
xchk_xref_is_used_space(sc, agbno, 1);
xchk_xref_is_not_inode_chunk(sc, agbno, 1);
xchk_xref_is_only_owned_by(sc, agbno, 1, &XFS_RMAP_OINFO_FS);
xchk_xref_is_not_shared(sc, agbno, 1);
xchk_xref_is_not_cow_staging(sc, agbno, 1);
/* scrub teardown will take care of sc->sa for us */
}
/*
* Scrub the filesystem superblock.
*
* Note: We do /not/ attempt to check AG 0's superblock. Mount is
* responsible for validating all the geometry information in sb 0, so
* if the filesystem is capable of initiating online scrub, then clearly
* sb 0 is ok and we can use its information to check everything else.
*/
int
xchk_superblock(
struct xfs_scrub *sc)
{
struct xfs_mount *mp = sc->mp;
struct xfs_buf *bp;
struct xfs_dsb *sb;
struct xfs_perag *pag;
xfs_agnumber_t agno;
uint32_t v2_ok;
__be32 features_mask;
int error;
__be16 vernum_mask;
agno = sc->sm->sm_agno;
if (agno == 0)
return 0;
/*
* Grab an active reference to the perag structure. If we can't get
* it, we're racing with something that's tearing down the AG, so
* signal that the AG no longer exists.
*/
pag = xfs_perag_get(mp, agno);
if (!pag)
return -ENOENT;
error = xfs_sb_read_secondary(mp, sc->tp, agno, &bp);
/*
* The superblock verifier can return several different error codes
* if it thinks the superblock doesn't look right. For a mount these
* would all get bounced back to userspace, but if we're here then the
* fs mounted successfully, which means that this secondary superblock
* is simply incorrect. Treat all these codes the same way we treat
* any corruption.
*/
switch (error) {
case -EINVAL: /* also -EWRONGFS */
case -ENOSYS:
case -EFBIG:
error = -EFSCORRUPTED;
xfs: Fix fall-through warnings for Clang In preparation to enable -Wimplicit-fallthrough for Clang, fix the following warnings by replacing /* fall through */ comments, and its variants, with the new pseudo-keyword macro fallthrough: fs/xfs/libxfs/xfs_alloc.c:3167:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_da_btree.c:286:3: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_ag_resv.c:346:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_ag_resv.c:388:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_bmap_util.c:246:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_export.c:88:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_export.c:96:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_file.c:867:3: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_ioctl.c:562:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_ioctl.c:1548:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_iomap.c:1040:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_inode.c:852:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_log.c:2627:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_trans_buf.c:298:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/bmap.c:275:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/btree.c:48:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/common.c:85:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/common.c:138:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/common.c:698:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/dabtree.c:51:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/repair.c:951:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/agheader.c:89:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] Notice that Clang doesn't recognize /* fall through */ comments as implicit fall-through markings, so in order to globally enable -Wimplicit-fallthrough for Clang, these comments need to be replaced with fallthrough; in the whole codebase. Link: https://github.com/KSPP/linux/issues/115 Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2021-04-20 22:54:36 +00:00
fallthrough;
default:
break;
}
if (!xchk_process_error(sc, agno, XFS_SB_BLOCK(mp), &error))
goto out_pag;
sb = bp->b_addr;
/*
* Verify the geometries match. Fields that are permanently
* set by mkfs are checked; fields that can be updated later
* (and are not propagated to backup superblocks) are preen
* checked.
*/
if (sb->sb_blocksize != cpu_to_be32(mp->m_sb.sb_blocksize))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_dblocks != cpu_to_be64(mp->m_sb.sb_dblocks))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_rblocks != cpu_to_be64(mp->m_sb.sb_rblocks))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_rextents != cpu_to_be64(mp->m_sb.sb_rextents))
xchk_block_set_corrupt(sc, bp);
if (!uuid_equal(&sb->sb_uuid, &mp->m_sb.sb_uuid))
xchk_block_set_preen(sc, bp);
if (sb->sb_logstart != cpu_to_be64(mp->m_sb.sb_logstart))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_rootino != cpu_to_be64(mp->m_sb.sb_rootino))
xchk_block_set_preen(sc, bp);
if (sb->sb_rbmino != cpu_to_be64(mp->m_sb.sb_rbmino))
xchk_block_set_preen(sc, bp);
if (sb->sb_rsumino != cpu_to_be64(mp->m_sb.sb_rsumino))
xchk_block_set_preen(sc, bp);
if (sb->sb_rextsize != cpu_to_be32(mp->m_sb.sb_rextsize))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_agblocks != cpu_to_be32(mp->m_sb.sb_agblocks))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_agcount != cpu_to_be32(mp->m_sb.sb_agcount))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_rbmblocks != cpu_to_be32(mp->m_sb.sb_rbmblocks))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_logblocks != cpu_to_be32(mp->m_sb.sb_logblocks))
xchk_block_set_corrupt(sc, bp);
/* Check sb_versionnum bits that are set at mkfs time. */
vernum_mask = cpu_to_be16(~XFS_SB_VERSION_OKBITS |
XFS_SB_VERSION_NUMBITS |
XFS_SB_VERSION_ALIGNBIT |
XFS_SB_VERSION_DALIGNBIT |
XFS_SB_VERSION_SHAREDBIT |
XFS_SB_VERSION_LOGV2BIT |
XFS_SB_VERSION_SECTORBIT |
XFS_SB_VERSION_EXTFLGBIT |
XFS_SB_VERSION_DIRV2BIT);
if ((sb->sb_versionnum & vernum_mask) !=
(cpu_to_be16(mp->m_sb.sb_versionnum) & vernum_mask))
xchk_block_set_corrupt(sc, bp);
/* Check sb_versionnum bits that can be set after mkfs time. */
vernum_mask = cpu_to_be16(XFS_SB_VERSION_ATTRBIT |
XFS_SB_VERSION_NLINKBIT |
XFS_SB_VERSION_QUOTABIT);
if ((sb->sb_versionnum & vernum_mask) !=
(cpu_to_be16(mp->m_sb.sb_versionnum) & vernum_mask))
xchk_block_set_preen(sc, bp);
if (sb->sb_sectsize != cpu_to_be16(mp->m_sb.sb_sectsize))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_inodesize != cpu_to_be16(mp->m_sb.sb_inodesize))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_inopblock != cpu_to_be16(mp->m_sb.sb_inopblock))
xchk_block_set_corrupt(sc, bp);
if (memcmp(sb->sb_fname, mp->m_sb.sb_fname, sizeof(sb->sb_fname)))
xchk_block_set_preen(sc, bp);
if (sb->sb_blocklog != mp->m_sb.sb_blocklog)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_sectlog != mp->m_sb.sb_sectlog)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_inodelog != mp->m_sb.sb_inodelog)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_inopblog != mp->m_sb.sb_inopblog)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_agblklog != mp->m_sb.sb_agblklog)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_rextslog != mp->m_sb.sb_rextslog)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_imax_pct != mp->m_sb.sb_imax_pct)
xchk_block_set_preen(sc, bp);
/*
* Skip the summary counters since we track them in memory anyway.
* sb_icount, sb_ifree, sb_fdblocks, sb_frexents
*/
if (sb->sb_uquotino != cpu_to_be64(mp->m_sb.sb_uquotino))
xchk_block_set_preen(sc, bp);
if (sb->sb_gquotino != cpu_to_be64(mp->m_sb.sb_gquotino))
xchk_block_set_preen(sc, bp);
/*
* Skip the quota flags since repair will force quotacheck.
* sb_qflags
*/
if (sb->sb_flags != mp->m_sb.sb_flags)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_shared_vn != mp->m_sb.sb_shared_vn)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_inoalignmt != cpu_to_be32(mp->m_sb.sb_inoalignmt))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_unit != cpu_to_be32(mp->m_sb.sb_unit))
xchk_block_set_preen(sc, bp);
if (sb->sb_width != cpu_to_be32(mp->m_sb.sb_width))
xchk_block_set_preen(sc, bp);
if (sb->sb_dirblklog != mp->m_sb.sb_dirblklog)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_logsectlog != mp->m_sb.sb_logsectlog)
xchk_block_set_corrupt(sc, bp);
if (sb->sb_logsectsize != cpu_to_be16(mp->m_sb.sb_logsectsize))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_logsunit != cpu_to_be32(mp->m_sb.sb_logsunit))
xchk_block_set_corrupt(sc, bp);
/* Do we see any invalid bits in sb_features2? */
if (!xfs_sb_version_hasmorebits(&mp->m_sb)) {
if (sb->sb_features2 != 0)
xchk_block_set_corrupt(sc, bp);
} else {
v2_ok = XFS_SB_VERSION2_OKBITS;
if (xfs_sb_is_v5(&mp->m_sb))
v2_ok |= XFS_SB_VERSION2_CRCBIT;
if (!!(sb->sb_features2 & cpu_to_be32(~v2_ok)))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_features2 != sb->sb_bad_features2)
xchk_block_set_preen(sc, bp);
}
/* Check sb_features2 flags that are set at mkfs time. */
features_mask = cpu_to_be32(XFS_SB_VERSION2_LAZYSBCOUNTBIT |
XFS_SB_VERSION2_PROJID32BIT |
XFS_SB_VERSION2_CRCBIT |
XFS_SB_VERSION2_FTYPE);
if ((sb->sb_features2 & features_mask) !=
(cpu_to_be32(mp->m_sb.sb_features2) & features_mask))
xchk_block_set_corrupt(sc, bp);
/* Check sb_features2 flags that can be set after mkfs time. */
features_mask = cpu_to_be32(XFS_SB_VERSION2_ATTR2BIT);
if ((sb->sb_features2 & features_mask) !=
(cpu_to_be32(mp->m_sb.sb_features2) & features_mask))
xfs: fix online fsck handling of v5 feature bits on secondary supers While I was auditing the code in xfs_repair that adds feature bits to existing V5 filesystems, I decided to have a look at how online fsck handles feature bits, and I found a few problems: 1) ATTR2 is added to the primary super when an xattr is set to a file, but that isn't consistently propagated to secondary supers. This isn't a corruption, merely a discrepancy that repair will fix if it ever has to restore the primary from a secondary. Hence, if we find a mismatch on a secondary, this is a preen condition, not a corruption. 2) There are more compat and ro_compat features now than there used to be, but we mask off the newer features from testing. This means we ignore inconsistencies in the INOBTCOUNT and BIGTIME features, which is wrong. Get rid of the masking and compare directly. 3) NEEDSREPAIR, when set on a secondary, is ignored by everyone. Hence a mismatch here should also be flagged for preening, and online repair should clear the flag. Right now we ignore it due to (2). 4) log_incompat features are ephemeral, since we can clear the feature bit as soon as the log no longer contains live records for a particular log feature. As such, the only copy we care about is the one in the primary super. If we find any bits set in the secondary super, we should flag that for preening, and clear the bits if the user elects to repair it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-01-08 01:45:51 +00:00
xchk_block_set_preen(sc, bp);
if (!xfs_has_crc(mp)) {
/* all v5 fields must be zero */
if (memchr_inv(&sb->sb_features_compat, 0,
sizeof(struct xfs_dsb) -
offsetof(struct xfs_dsb, sb_features_compat)))
xchk_block_set_corrupt(sc, bp);
} else {
xfs: fix online fsck handling of v5 feature bits on secondary supers While I was auditing the code in xfs_repair that adds feature bits to existing V5 filesystems, I decided to have a look at how online fsck handles feature bits, and I found a few problems: 1) ATTR2 is added to the primary super when an xattr is set to a file, but that isn't consistently propagated to secondary supers. This isn't a corruption, merely a discrepancy that repair will fix if it ever has to restore the primary from a secondary. Hence, if we find a mismatch on a secondary, this is a preen condition, not a corruption. 2) There are more compat and ro_compat features now than there used to be, but we mask off the newer features from testing. This means we ignore inconsistencies in the INOBTCOUNT and BIGTIME features, which is wrong. Get rid of the masking and compare directly. 3) NEEDSREPAIR, when set on a secondary, is ignored by everyone. Hence a mismatch here should also be flagged for preening, and online repair should clear the flag. Right now we ignore it due to (2). 4) log_incompat features are ephemeral, since we can clear the feature bit as soon as the log no longer contains live records for a particular log feature. As such, the only copy we care about is the one in the primary super. If we find any bits set in the secondary super, we should flag that for preening, and clear the bits if the user elects to repair it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-01-08 01:45:51 +00:00
/* compat features must match */
if (sb->sb_features_compat !=
cpu_to_be32(mp->m_sb.sb_features_compat))
xchk_block_set_corrupt(sc, bp);
xfs: fix online fsck handling of v5 feature bits on secondary supers While I was auditing the code in xfs_repair that adds feature bits to existing V5 filesystems, I decided to have a look at how online fsck handles feature bits, and I found a few problems: 1) ATTR2 is added to the primary super when an xattr is set to a file, but that isn't consistently propagated to secondary supers. This isn't a corruption, merely a discrepancy that repair will fix if it ever has to restore the primary from a secondary. Hence, if we find a mismatch on a secondary, this is a preen condition, not a corruption. 2) There are more compat and ro_compat features now than there used to be, but we mask off the newer features from testing. This means we ignore inconsistencies in the INOBTCOUNT and BIGTIME features, which is wrong. Get rid of the masking and compare directly. 3) NEEDSREPAIR, when set on a secondary, is ignored by everyone. Hence a mismatch here should also be flagged for preening, and online repair should clear the flag. Right now we ignore it due to (2). 4) log_incompat features are ephemeral, since we can clear the feature bit as soon as the log no longer contains live records for a particular log feature. As such, the only copy we care about is the one in the primary super. If we find any bits set in the secondary super, we should flag that for preening, and clear the bits if the user elects to repair it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-01-08 01:45:51 +00:00
/* ro compat features must match */
if (sb->sb_features_ro_compat !=
cpu_to_be32(mp->m_sb.sb_features_ro_compat))
xchk_block_set_corrupt(sc, bp);
xfs: fix online fsck handling of v5 feature bits on secondary supers While I was auditing the code in xfs_repair that adds feature bits to existing V5 filesystems, I decided to have a look at how online fsck handles feature bits, and I found a few problems: 1) ATTR2 is added to the primary super when an xattr is set to a file, but that isn't consistently propagated to secondary supers. This isn't a corruption, merely a discrepancy that repair will fix if it ever has to restore the primary from a secondary. Hence, if we find a mismatch on a secondary, this is a preen condition, not a corruption. 2) There are more compat and ro_compat features now than there used to be, but we mask off the newer features from testing. This means we ignore inconsistencies in the INOBTCOUNT and BIGTIME features, which is wrong. Get rid of the masking and compare directly. 3) NEEDSREPAIR, when set on a secondary, is ignored by everyone. Hence a mismatch here should also be flagged for preening, and online repair should clear the flag. Right now we ignore it due to (2). 4) log_incompat features are ephemeral, since we can clear the feature bit as soon as the log no longer contains live records for a particular log feature. As such, the only copy we care about is the one in the primary super. If we find any bits set in the secondary super, we should flag that for preening, and clear the bits if the user elects to repair it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-01-08 01:45:51 +00:00
/*
* NEEDSREPAIR is ignored on a secondary super, so we should
* clear it when we find it, though it's not a corruption.
*/
features_mask = cpu_to_be32(XFS_SB_FEAT_INCOMPAT_NEEDSREPAIR);
if ((cpu_to_be32(mp->m_sb.sb_features_incompat) ^
sb->sb_features_incompat) & features_mask)
xchk_block_set_preen(sc, bp);
xfs: fix online fsck handling of v5 feature bits on secondary supers While I was auditing the code in xfs_repair that adds feature bits to existing V5 filesystems, I decided to have a look at how online fsck handles feature bits, and I found a few problems: 1) ATTR2 is added to the primary super when an xattr is set to a file, but that isn't consistently propagated to secondary supers. This isn't a corruption, merely a discrepancy that repair will fix if it ever has to restore the primary from a secondary. Hence, if we find a mismatch on a secondary, this is a preen condition, not a corruption. 2) There are more compat and ro_compat features now than there used to be, but we mask off the newer features from testing. This means we ignore inconsistencies in the INOBTCOUNT and BIGTIME features, which is wrong. Get rid of the masking and compare directly. 3) NEEDSREPAIR, when set on a secondary, is ignored by everyone. Hence a mismatch here should also be flagged for preening, and online repair should clear the flag. Right now we ignore it due to (2). 4) log_incompat features are ephemeral, since we can clear the feature bit as soon as the log no longer contains live records for a particular log feature. As such, the only copy we care about is the one in the primary super. If we find any bits set in the secondary super, we should flag that for preening, and clear the bits if the user elects to repair it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-01-08 01:45:51 +00:00
/* all other incompat features must match */
if ((cpu_to_be32(mp->m_sb.sb_features_incompat) ^
sb->sb_features_incompat) & ~features_mask)
xchk_block_set_corrupt(sc, bp);
xfs: fix online fsck handling of v5 feature bits on secondary supers While I was auditing the code in xfs_repair that adds feature bits to existing V5 filesystems, I decided to have a look at how online fsck handles feature bits, and I found a few problems: 1) ATTR2 is added to the primary super when an xattr is set to a file, but that isn't consistently propagated to secondary supers. This isn't a corruption, merely a discrepancy that repair will fix if it ever has to restore the primary from a secondary. Hence, if we find a mismatch on a secondary, this is a preen condition, not a corruption. 2) There are more compat and ro_compat features now than there used to be, but we mask off the newer features from testing. This means we ignore inconsistencies in the INOBTCOUNT and BIGTIME features, which is wrong. Get rid of the masking and compare directly. 3) NEEDSREPAIR, when set on a secondary, is ignored by everyone. Hence a mismatch here should also be flagged for preening, and online repair should clear the flag. Right now we ignore it due to (2). 4) log_incompat features are ephemeral, since we can clear the feature bit as soon as the log no longer contains live records for a particular log feature. As such, the only copy we care about is the one in the primary super. If we find any bits set in the secondary super, we should flag that for preening, and clear the bits if the user elects to repair it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-01-08 01:45:51 +00:00
/*
* log incompat features protect newer log record types from
* older log recovery code. Log recovery doesn't check the
* secondary supers, so we can clear these if needed.
*/
if (sb->sb_features_log_incompat)
xchk_block_set_preen(sc, bp);
/* Don't care about sb_crc */
if (sb->sb_spino_align != cpu_to_be32(mp->m_sb.sb_spino_align))
xchk_block_set_corrupt(sc, bp);
if (sb->sb_pquotino != cpu_to_be64(mp->m_sb.sb_pquotino))
xchk_block_set_preen(sc, bp);
/* Don't care about sb_lsn */
}
if (xfs_has_metauuid(mp)) {
/* The metadata UUID must be the same for all supers */
if (!uuid_equal(&sb->sb_meta_uuid, &mp->m_sb.sb_meta_uuid))
xchk_block_set_corrupt(sc, bp);
}
/* Everything else must be zero. */
if (memchr_inv(sb + 1, 0,
BBTOB(bp->b_length) - sizeof(struct xfs_dsb)))
xchk_block_set_corrupt(sc, bp);
xchk_superblock_xref(sc, bp);
out_pag:
xfs_perag_put(pag);
return error;
}
/* AGF */
/* Tally freespace record lengths. */
STATIC int
xchk_agf_record_bno_lengths(
struct xfs_btree_cur *cur,
const struct xfs_alloc_rec_incore *rec,
void *priv)
{
xfs_extlen_t *blocks = priv;
(*blocks) += rec->ar_blockcount;
return 0;
}
/* Check agf_freeblks */
static inline void
xchk_agf_xref_freeblks(
struct xfs_scrub *sc)
{
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
xfs_extlen_t blocks = 0;
int error;
if (!sc->sa.bno_cur)
return;
error = xfs_alloc_query_all(sc->sa.bno_cur,
xchk_agf_record_bno_lengths, &blocks);
if (!xchk_should_check_xref(sc, &error, &sc->sa.bno_cur))
return;
if (blocks != be32_to_cpu(agf->agf_freeblks))
xchk_block_xref_set_corrupt(sc, sc->sa.agf_bp);
}
/* Cross reference the AGF with the cntbt (freespace by length btree) */
static inline void
xchk_agf_xref_cntbt(
struct xfs_scrub *sc)
{
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
xfs_agblock_t agbno;
xfs_extlen_t blocks;
int have;
int error;
if (!sc->sa.cnt_cur)
return;
/* Any freespace at all? */
error = xfs_alloc_lookup_le(sc->sa.cnt_cur, 0, -1U, &have);
if (!xchk_should_check_xref(sc, &error, &sc->sa.cnt_cur))
return;
if (!have) {
if (agf->agf_freeblks != cpu_to_be32(0))
xchk_block_xref_set_corrupt(sc, sc->sa.agf_bp);
return;
}
/* Check agf_longest */
error = xfs_alloc_get_rec(sc->sa.cnt_cur, &agbno, &blocks, &have);
if (!xchk_should_check_xref(sc, &error, &sc->sa.cnt_cur))
return;
if (!have || blocks != be32_to_cpu(agf->agf_longest))
xchk_block_xref_set_corrupt(sc, sc->sa.agf_bp);
}
/* Check the btree block counts in the AGF against the btrees. */
STATIC void
xchk_agf_xref_btreeblks(
struct xfs_scrub *sc)
{
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
struct xfs_mount *mp = sc->mp;
xfs_agblock_t blocks;
xfs_agblock_t btreeblks;
int error;
/* agf_btreeblks didn't exist before lazysbcount */
if (!xfs_has_lazysbcount(sc->mp))
return;
/* Check agf_rmap_blocks; set up for agf_btreeblks check */
if (sc->sa.rmap_cur) {
error = xfs_btree_count_blocks(sc->sa.rmap_cur, &blocks);
if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur))
return;
btreeblks = blocks - 1;
if (blocks != be32_to_cpu(agf->agf_rmap_blocks))
xchk_block_xref_set_corrupt(sc, sc->sa.agf_bp);
} else {
btreeblks = 0;
}
/*
* No rmap cursor; we can't xref if we have the rmapbt feature.
* We also can't do it if we're missing the free space btree cursors.
*/
if ((xfs_has_rmapbt(mp) && !sc->sa.rmap_cur) ||
!sc->sa.bno_cur || !sc->sa.cnt_cur)
return;
/* Check agf_btreeblks */
error = xfs_btree_count_blocks(sc->sa.bno_cur, &blocks);
if (!xchk_should_check_xref(sc, &error, &sc->sa.bno_cur))
return;
btreeblks += blocks - 1;
error = xfs_btree_count_blocks(sc->sa.cnt_cur, &blocks);
if (!xchk_should_check_xref(sc, &error, &sc->sa.cnt_cur))
return;
btreeblks += blocks - 1;
if (btreeblks != be32_to_cpu(agf->agf_btreeblks))
xchk_block_xref_set_corrupt(sc, sc->sa.agf_bp);
}
/* Check agf_refcount_blocks against tree size */
static inline void
xchk_agf_xref_refcblks(
struct xfs_scrub *sc)
{
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
xfs_agblock_t blocks;
int error;
if (!sc->sa.refc_cur)
return;
error = xfs_btree_count_blocks(sc->sa.refc_cur, &blocks);
if (!xchk_should_check_xref(sc, &error, &sc->sa.refc_cur))
return;
if (blocks != be32_to_cpu(agf->agf_refcount_blocks))
xchk_block_xref_set_corrupt(sc, sc->sa.agf_bp);
}
/* Cross-reference with the other btrees. */
STATIC void
xchk_agf_xref(
struct xfs_scrub *sc)
{
struct xfs_mount *mp = sc->mp;
xfs_agblock_t agbno;
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
return;
agbno = XFS_AGF_BLOCK(mp);
xchk_ag_btcur_init(sc, &sc->sa);
xchk_xref_is_used_space(sc, agbno, 1);
xchk_agf_xref_freeblks(sc);
xchk_agf_xref_cntbt(sc);
xchk_xref_is_not_inode_chunk(sc, agbno, 1);
xchk_xref_is_only_owned_by(sc, agbno, 1, &XFS_RMAP_OINFO_FS);
xchk_agf_xref_btreeblks(sc);
xchk_xref_is_not_shared(sc, agbno, 1);
xchk_xref_is_not_cow_staging(sc, agbno, 1);
xchk_agf_xref_refcblks(sc);
/* scrub teardown will take care of sc->sa for us */
}
/* Scrub the AGF. */
int
xchk_agf(
struct xfs_scrub *sc)
{
struct xfs_mount *mp = sc->mp;
struct xfs_agf *agf;
struct xfs_perag *pag;
xfs_agnumber_t agno = sc->sm->sm_agno;
xfs_agblock_t agbno;
xfs_agblock_t eoag;
xfs_agblock_t agfl_first;
xfs_agblock_t agfl_last;
xfs_agblock_t agfl_count;
xfs_agblock_t fl_count;
int level;
int error = 0;
error = xchk_ag_read_headers(sc, agno, &sc->sa);
if (!xchk_process_error(sc, agno, XFS_AGF_BLOCK(sc->mp), &error))
goto out;
xchk_buffer_recheck(sc, sc->sa.agf_bp);
agf = sc->sa.agf_bp->b_addr;
pag = sc->sa.pag;
/* Check the AG length */
eoag = be32_to_cpu(agf->agf_length);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 09:13:02 +00:00
if (eoag != pag->block_count)
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
/* Check the AGF btree roots and levels */
agbno = be32_to_cpu(agf->agf_roots[XFS_BTNUM_BNO]);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 09:13:02 +00:00
if (!xfs_verify_agbno(pag, agbno))
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
agbno = be32_to_cpu(agf->agf_roots[XFS_BTNUM_CNT]);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 09:13:02 +00:00
if (!xfs_verify_agbno(pag, agbno))
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
level = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
if (level <= 0 || level > mp->m_alloc_maxlevels)
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
level = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
if (level <= 0 || level > mp->m_alloc_maxlevels)
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
if (xfs_has_rmapbt(mp)) {
agbno = be32_to_cpu(agf->agf_roots[XFS_BTNUM_RMAP]);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 09:13:02 +00:00
if (!xfs_verify_agbno(pag, agbno))
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
level = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
if (level <= 0 || level > mp->m_rmap_maxlevels)
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
}
if (xfs_has_reflink(mp)) {
agbno = be32_to_cpu(agf->agf_refcount_root);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 09:13:02 +00:00
if (!xfs_verify_agbno(pag, agbno))
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
level = be32_to_cpu(agf->agf_refcount_level);
if (level <= 0 || level > mp->m_refc_maxlevels)
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
}
/* Check the AGFL counters */
agfl_first = be32_to_cpu(agf->agf_flfirst);
agfl_last = be32_to_cpu(agf->agf_fllast);
agfl_count = be32_to_cpu(agf->agf_flcount);
if (agfl_last > agfl_first)
fl_count = agfl_last - agfl_first + 1;
else
fl_count = xfs_agfl_size(mp) - agfl_first + agfl_last + 1;
if (agfl_count != 0 && fl_count != agfl_count)
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
/* Do the incore counters match? */
if (pag->pagf_freeblks != be32_to_cpu(agf->agf_freeblks))
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
if (pag->pagf_flcount != be32_to_cpu(agf->agf_flcount))
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
if (xfs_has_lazysbcount(sc->mp) &&
pag->pagf_btreeblks != be32_to_cpu(agf->agf_btreeblks))
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
xchk_agf_xref(sc);
out:
return error;
}
/* AGFL */
struct xchk_agfl_info {
/* Number of AGFL entries that the AGF claims are in use. */
unsigned int agflcount;
/* Number of AGFL entries that we found. */
unsigned int nr_entries;
/* Buffer to hold AGFL entries for extent checking. */
xfs_agblock_t *entries;
struct xfs_buf *agfl_bp;
struct xfs_scrub *sc;
};
/* Cross-reference with the other btrees. */
STATIC void
xchk_agfl_block_xref(
struct xfs_scrub *sc,
xfs_agblock_t agbno)
{
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
return;
xchk_xref_is_used_space(sc, agbno, 1);
xchk_xref_is_not_inode_chunk(sc, agbno, 1);
xchk_xref_is_only_owned_by(sc, agbno, 1, &XFS_RMAP_OINFO_AG);
xchk_xref_is_not_shared(sc, agbno, 1);
xchk_xref_is_not_cow_staging(sc, agbno, 1);
}
/* Scrub an AGFL block. */
STATIC int
xchk_agfl_block(
struct xfs_mount *mp,
xfs_agblock_t agbno,
void *priv)
{
struct xchk_agfl_info *sai = priv;
struct xfs_scrub *sc = sai->sc;
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 09:13:02 +00:00
if (xfs_verify_agbno(sc->sa.pag, agbno) &&
sai->nr_entries < sai->agflcount)
sai->entries[sai->nr_entries++] = agbno;
else
xchk_block_set_corrupt(sc, sai->agfl_bp);
xchk_agfl_block_xref(sc, agbno);
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
return -ECANCELED;
return 0;
}
static int
xchk_agblock_cmp(
const void *pa,
const void *pb)
{
const xfs_agblock_t *a = pa;
const xfs_agblock_t *b = pb;
return (int)*a - (int)*b;
}
/* Cross-reference with the other btrees. */
STATIC void
xchk_agfl_xref(
struct xfs_scrub *sc)
{
struct xfs_mount *mp = sc->mp;
xfs_agblock_t agbno;
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
return;
agbno = XFS_AGFL_BLOCK(mp);
xchk_ag_btcur_init(sc, &sc->sa);
xchk_xref_is_used_space(sc, agbno, 1);
xchk_xref_is_not_inode_chunk(sc, agbno, 1);
xchk_xref_is_only_owned_by(sc, agbno, 1, &XFS_RMAP_OINFO_FS);
xchk_xref_is_not_shared(sc, agbno, 1);
xchk_xref_is_not_cow_staging(sc, agbno, 1);
/*
* Scrub teardown will take care of sc->sa for us. Leave sc->sa
* active so that the agfl block xref can use it too.
*/
}
/* Scrub the AGFL. */
int
xchk_agfl(
struct xfs_scrub *sc)
{
struct xchk_agfl_info sai = {
.sc = sc,
};
struct xfs_agf *agf;
xfs_agnumber_t agno = sc->sm->sm_agno;
unsigned int i;
int error;
/* Lock the AGF and AGI so that nobody can touch this AG. */
error = xchk_ag_read_headers(sc, agno, &sc->sa);
if (!xchk_process_error(sc, agno, XFS_AGFL_BLOCK(sc->mp), &error))
return error;
if (!sc->sa.agf_bp)
return -EFSCORRUPTED;
/* Try to read the AGFL, and verify its structure if we get it. */
error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &sai.agfl_bp);
if (!xchk_process_error(sc, agno, XFS_AGFL_BLOCK(sc->mp), &error))
return error;
xchk_buffer_recheck(sc, sai.agfl_bp);
xchk_agfl_xref(sc);
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
goto out;
/* Allocate buffer to ensure uniqueness of AGFL entries. */
agf = sc->sa.agf_bp->b_addr;
sai.agflcount = be32_to_cpu(agf->agf_flcount);
if (sai.agflcount > xfs_agfl_size(sc->mp)) {
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
goto out;
}
sai.entries = kvcalloc(sai.agflcount, sizeof(xfs_agblock_t),
XCHK_GFP_FLAGS);
if (!sai.entries) {
error = -ENOMEM;
goto out;
}
/* Check the blocks in the AGFL. */
error = xfs_agfl_walk(sc->mp, sc->sa.agf_bp->b_addr, sai.agfl_bp,
xchk_agfl_block, &sai);
if (error == -ECANCELED) {
error = 0;
goto out_free;
}
if (error)
goto out_free;
if (sai.agflcount != sai.nr_entries) {
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
goto out_free;
}
/* Sort entries, check for duplicates. */
sort(sai.entries, sai.nr_entries, sizeof(sai.entries[0]),
xchk_agblock_cmp, NULL);
for (i = 1; i < sai.nr_entries; i++) {
if (sai.entries[i] == sai.entries[i - 1]) {
xchk_block_set_corrupt(sc, sc->sa.agf_bp);
break;
}
}
out_free:
kvfree(sai.entries);
out:
return error;
}
/* AGI */
/* Check agi_count/agi_freecount */
static inline void
xchk_agi_xref_icounts(
struct xfs_scrub *sc)
{
struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
xfs_agino_t icount;
xfs_agino_t freecount;
int error;
if (!sc->sa.ino_cur)
return;
error = xfs_ialloc_count_inodes(sc->sa.ino_cur, &icount, &freecount);
if (!xchk_should_check_xref(sc, &error, &sc->sa.ino_cur))
return;
if (be32_to_cpu(agi->agi_count) != icount ||
be32_to_cpu(agi->agi_freecount) != freecount)
xchk_block_xref_set_corrupt(sc, sc->sa.agi_bp);
}
/* Check agi_[fi]blocks against tree size */
static inline void
xchk_agi_xref_fiblocks(
struct xfs_scrub *sc)
{
struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
xfs_agblock_t blocks;
int error = 0;
if (!xfs_has_inobtcounts(sc->mp))
return;
if (sc->sa.ino_cur) {
error = xfs_btree_count_blocks(sc->sa.ino_cur, &blocks);
if (!xchk_should_check_xref(sc, &error, &sc->sa.ino_cur))
return;
if (blocks != be32_to_cpu(agi->agi_iblocks))
xchk_block_xref_set_corrupt(sc, sc->sa.agi_bp);
}
if (sc->sa.fino_cur) {
error = xfs_btree_count_blocks(sc->sa.fino_cur, &blocks);
if (!xchk_should_check_xref(sc, &error, &sc->sa.fino_cur))
return;
if (blocks != be32_to_cpu(agi->agi_fblocks))
xchk_block_xref_set_corrupt(sc, sc->sa.agi_bp);
}
}
/* Cross-reference with the other btrees. */
STATIC void
xchk_agi_xref(
struct xfs_scrub *sc)
{
struct xfs_mount *mp = sc->mp;
xfs_agblock_t agbno;
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
return;
agbno = XFS_AGI_BLOCK(mp);
xchk_ag_btcur_init(sc, &sc->sa);
xchk_xref_is_used_space(sc, agbno, 1);
xchk_xref_is_not_inode_chunk(sc, agbno, 1);
xchk_agi_xref_icounts(sc);
xchk_xref_is_only_owned_by(sc, agbno, 1, &XFS_RMAP_OINFO_FS);
xchk_xref_is_not_shared(sc, agbno, 1);
xchk_xref_is_not_cow_staging(sc, agbno, 1);
xchk_agi_xref_fiblocks(sc);
/* scrub teardown will take care of sc->sa for us */
}
/* Scrub the AGI. */
int
xchk_agi(
struct xfs_scrub *sc)
{
struct xfs_mount *mp = sc->mp;
struct xfs_agi *agi;
struct xfs_perag *pag;
struct xfs_ino_geometry *igeo = M_IGEO(sc->mp);
xfs_agnumber_t agno = sc->sm->sm_agno;
xfs_agblock_t agbno;
xfs_agblock_t eoag;
xfs_agino_t agino;
xfs_agino_t first_agino;
xfs_agino_t last_agino;
xfs_agino_t icount;
int i;
int level;
int error = 0;
error = xchk_ag_read_headers(sc, agno, &sc->sa);
if (!xchk_process_error(sc, agno, XFS_AGI_BLOCK(sc->mp), &error))
goto out;
xchk_buffer_recheck(sc, sc->sa.agi_bp);
agi = sc->sa.agi_bp->b_addr;
pag = sc->sa.pag;
/* Check the AG length */
eoag = be32_to_cpu(agi->agi_length);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 09:13:02 +00:00
if (eoag != pag->block_count)
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
/* Check btree roots and levels */
agbno = be32_to_cpu(agi->agi_root);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 09:13:02 +00:00
if (!xfs_verify_agbno(pag, agbno))
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
level = be32_to_cpu(agi->agi_level);
if (level <= 0 || level > igeo->inobt_maxlevels)
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
if (xfs_has_finobt(mp)) {
agbno = be32_to_cpu(agi->agi_free_root);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 09:13:02 +00:00
if (!xfs_verify_agbno(pag, agbno))
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
level = be32_to_cpu(agi->agi_free_level);
if (level <= 0 || level > igeo->inobt_maxlevels)
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
}
/* Check inode counters */
xfs_agino_range(mp, agno, &first_agino, &last_agino);
icount = be32_to_cpu(agi->agi_count);
if (icount > last_agino - first_agino + 1 ||
icount < be32_to_cpu(agi->agi_freecount))
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
/* Check inode pointers */
agino = be32_to_cpu(agi->agi_newino);
if (!xfs_verify_agino_or_null(pag, agino))
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
agino = be32_to_cpu(agi->agi_dirino);
if (!xfs_verify_agino_or_null(pag, agino))
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
/* Check unlinked inode buckets */
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
agino = be32_to_cpu(agi->agi_unlinked[i]);
if (!xfs_verify_agino_or_null(pag, agino))
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
}
if (agi->agi_pad32 != cpu_to_be32(0))
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
/* Do the incore counters match? */
if (pag->pagi_count != be32_to_cpu(agi->agi_count))
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
if (pag->pagi_freecount != be32_to_cpu(agi->agi_freecount))
xchk_block_set_corrupt(sc, sc->sa.agi_bp);
xchk_agi_xref(sc);
out:
return error;
}